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The cross section for single hard photon bremsstrahlung in Bhabha scattering is presented, 
and its main qualitative features are reviewed. Subsequently, the structure of a Monte Carlo event 
generator for Bhabha scattering at LEP/SLC energies, including all one-loop electroweak correc- 
tions, is discussed, in which the results on the virtual and soft photon corrections, given in the first 
paper of this set, are incorporated. Finally, a number of numerical results is presented. 

I. Introduction 

This paper is the second one of a pair dealing with the detailed predictions of the 
standard model of electroweak interactions [1] in the process of Bhabha scattering. 
In the first paper (ref. [2], hereafter referred to as I) the phenomenological 

importance of this process was discussed in some detail. The authors presented 
expressions for the cross section for 

e + ( p + ) e - ( p _ )  ~ e + ( q + ) e - ( q _ ) ,  (1.1) 

in which all one-loop corrections arising in the standard model were included, as 
well as bremsstrahlung of a soft photon, i.e. with an energy not exceeding a (small) 
value A E. This cross section, which is both ultraviolet and infrared finite, incorpo- 
rates all "s tandard"  weak effects, and would in principle also be the quantity in 
which "new-physics effects" in this process [3] are most likely to show up (an 
exception is the case of the existence of an excited electron, e*, with mass small 
enough to be produced at a given energy: this would most clearly be seen as an ee3, 
or eey-{ event [4]). 
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Complete as they are, the results of I are not enough for a successful phenomeno- 
logical treatment; the effects of hard photon radiation have to be adequately 
included before a successful prediction is possible. Restricting ourselves to the 
one-loop level, this means we have to know the cross section for 

e + ( p + ) e - ( p _ )  --+ e+(q+)e-(q_)T(k), (1.2) 

where the photon has an energy greater than AE. Once the ingredients (1.1) and 
(1.2) are available, we still are not finished; it remains to integrate these cross 
sections over the phase space admitted by a given experiment. As soon as a 3-body 
radiative final state is involved this also becomes a highly nontrivial problem. The 
aim of the present paper is, therefore, threefold. In the first place an expression for 
the cross section for (1.2) must be presented in a form which is as simple as possible, 
and its qualitative features must be well understood. Secondly, these results must be 
combined with those of I in such a way that they can be suitably integrated over 
phase space: the integration procedure must be both accurate enough so that the 
one-loop effects can be studied, and flexible enough so that all kinds of experimen- 
tal restrictions can be imposed on the data. The optimal integration technique seems 
to be that of Monte Carlo integration by importance sampling, using a multi-chan- 
nel approach in which each channel is dominant in one kinematical situation. 
Finally, a number of numerical results are in order; apart from being a reference for 
checking purposes and an example of the method, these will provide estimates for 
the radiative corrections which will approximate those made for a very concrete, 
specific detector set-up. The layout of this paper is as follows. In sect. 2 we discuss 
the multi-differential hard photon cross section and present an expression valid in 
all kinematical situations of interest in Bhabha scattering. In sect. 3 we sketch the 
Monte  Carlo approach and draw up a list of ingredients needed for this technique; 
we subsequently set out to supply all these ingredients. Sect. 4 deals with the cross 
section (1.1): as will be shown, this is the simplest ingredient from the point of view 
of Monte Carlo integration. In sect. 5 we discuss the 4 different channels into which 
the hard photon cross section (1.2) can be split, and in sect. 6 the approximate cross 
sections valid in the kinematical regions where each of these channels dominate, 
together with the integrals of these approximate cross sections over the phase space. 
These results lead directly, in sect. 7, to the derivation of numerical algorithms to 
generate random values for the various phase-space variables. (Appendix B is 
devoted to a discussion of the structure of the Monte Carlo program which we have 
developed with these results.) In sect. 8 we discuss some canonical cuts [5] ap- 
propriate for Bhabha scattering, and present numerical results for these cuts. 

Finally, a Monte Carlo treatment of mu-pairs can be obtained from the Bhabha 
case by omitting the t-channel contributions and by introducing muon masses. Such 
a muon event generator has been constructed. 
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Fig. 1. The sixteen Feynman diagrams contributing to e + e - ~  e+e 7 in the Standard Model. 

2. The hard photon cross section 

In the standard model, the radiative process (1.2) is described by 16 Feynman 
diagrams, depicted in fig. 1 (as is usual, we neglect the diagrams containing a Higgs 
boson exchange, and also the q~q, part of the Z ° propagator; these give contribu- 
tions that are suppressed by powers of m J E ) .  Relatively simple expressions for this 
cross section, valid in the high-energy limit, have been known for some time. In ref. 
[6] the first of these was introduced: these results were subsequently further 
developed by the CALKUL collaboration [7]. Particularly noteworthy is the fact 
that a factorization of similar nature as to the soft photon limit occurs; the cross 
section can be written as a slightly generalized form of the nonradiative cross 
section, multiplied by the well-known "infrared factor" which describes the various 
infrared and collinear singularities. 

In ref. [7] the complete expression for the cross section e+e----> e÷e-3,, including a 
Z ° with finite width, was given in terms of vector products of the particle momenta. 
As discussed at length in ref. [8] a better way to handle these processes seems to be 
to evaluate helicity amplitudes using spinor products. A numerically well-behaved, 
and very compact form for the amplitudes, and the one we shall use in the 
following, was given in ref. [8]. In that paper, emphasis was placed on the correct 
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treatment of the complex phases of the various helicity amplitudes, so that arbitrary 
beam polarization can be taken into account; here, we shall restrict ourselves to the 
case of unpolarized beams, and consequently the complex phases are of no impor- 
tance. 

Our expression for the squared matrix element, summed over the final-state spins 
and averaged over the initial-state spins, is 

12 

IMI 2= ¼ Y'. IMil2Wm. (2.1) 
i = 1  

Here the M i are the twelve helicity amplitudes which do not vanish in the 
high-energy limit, and W,, is a factor incorporating the more complicated behaviour 
in situations where the photon is collinear to one of the fermions. Up to an 
irrelevant overall complex phase, the Mi are given by 

ml=U[E++(s ' )o  i-k- E++(s)uf-4- E++(tt)Up-a¢- E++(t)Oe], 

M2 = u'[e++(s')  + + e++(C)o? + 

M 3 = t[E+_(s')v i+ E+_(s)vf], 

M 4= tt[E+_(st) u'~ -]- E+__(s)u?], 

Ms=s[E+_(t')o p+ E+_(t)G], 

M 6 = s ' [ E + _ ( t ' ) v f  + E+_(t)Ve*], 

Mv=s'[E_+(t')vp+E_+(t)G], 

Ms=s[E_+(t')v p + E_+(t)v*], 

M9 = t'[E_+(s')vi + E_+(s)vf] , 

Mlo = t[E_+(s')v* + E_+(s)v~'], 

Mll=U'[E__(S ' )O i + E__( s )o f+  E _(t')Op-I- E__(t)Oe] , 

M12=u[E__(s')v* + E_ (s)v[~ + E__(t')Vp + E__(t)v*]. (2.2) 

Here, we have introduced the kinematic invariants 

s=(p++p_)  2, t=(p+-q+)  2, 

s'= (q++ q_)2, t'= (p_ -  q )2, 

u = ( p + - q _ )  2, 

u '=(p  -q+) 2. (2.3) 
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The functions E are the combination of the photon and Z ° propagator and the 
electroweak coupling constants 

Ex~x2(x) = i~f8- x 
e ( v - ~ x a ) ( v - X 2 a )  + 

x _  m2z + imzEz ' 

v = a ( 1  - 4sinVOw), a= -e/4sinSwcOSOw, (2.4a) 

where e denotes the positron electric charge, 4Vr~,  and m z and F z are the Z ° 
mass and total width, respectively; O w stands for the electroweak mixing angle. In 
the notation of I, eq. (2.4a) can be written as 

ie~/-ff 
V' ,,(i) ,~i~ ~ (i) (x  ~ (2.4b) 

G ~ x = ( x )  x , = - -  / . . ~ / 5 _ h l r _ ~ 2 A  \ ] • 

The quantities vi.f,p, e are the so-called radiation factors, each corresponding to 
photon bremsstrahlung from a particular fermion line in the diagrams of fig. 1 

vi; initial-state radiation (figs. l a - d ) :  

vi= s( q_, q + )*/s( k, p + )s( p_, k ), (2.5a) 

vf; final-state radiation (figs. l e - h )  : 

vf= s(p+, p_)* / s (k ,  q_)s(q+, k ) ,  (2.5b) 

Vp; radiation from the positron line (figs. li-1) : 

Vp= s( q_, p_)*/s(  k, p + )s( q+, k ), (2.5c) 

re; radiation from the electron line (figs. l m - p ) :  

ve = s( p +, q + )*/s( k, q_ )s( p_, k ), (2.5d) 

where the spinorproduct of two four-momenta pl  ~ and p~' is defined as 

[pO_p~]l/2 [, ,0 , x  ]1/2 
• z X / F 1 - - F 1  [ s(pl ,  p 2 ) = ( p f + i p ~ ) [ ~ l  - ( p Y + l p 2 ) [ ~ ]  . (2.6) 

For  a derivation of these formulae we refer the reader to ref. [8]. Up to this point 
our results are only strictly valid if m e = 0. In order to correctly describe the 
situations where the photon makes a small angle (of order m J E )  with one of the 
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charged fermions, we have introduced the mass effect factor W,,. It reads 

717 

_ I s ( p + , k ) l  2 [ 
wm 2 ( p + - k )  [1 

2 s'(s-s')] m e  

(p+.k)  s2+s  '2 

× 
Is(p_,k)12[ m~ s'(s-s') ] 

2 (p  . k )  1 (p_.k) s~-+---~ 

2 s(s-s')] Is(q_,k)l 2 me 
× 2 ( q _ ' k )  1 ( q _ ' k )  s 2 + s  '2 

Is(q+,k)12[ m~ s(s-s') ] 
× 1-(qTk) (2.7) 

The effect of this factor is on the one hand to ensure that the cross section peaks 
in the right places (for not-strictly-massless p~, the product s(p, k) vanishes for 
some k ~ that are not strictly coUinear), and on the other hand to take care of the 

2 (this also accounts for those nonleading terms that are suppressed by a factor m e 
helicity amplitudes that are neglected in the high-energy limit). A more detailed 
discussion of these points can again be found in ref. [8]. If we evaluate the cross 
section as indicated above, taking care to handle correctly small values of p • k, the 
result will describe the process (1.2) up to truly negligible terms everywhere in phase 
space except when s', t or t '  are of O(m2/s). The first of these cases will be treated 
later in this paper; the latter two, corresponding to situations where e ÷ or e -  are 
scattered over angles of order mJE < 10-3 degrees, are outside of the scope of this 
paper: they are, for instance, discussed (in the context of single-photon events) in 
refs. [9]. The square of the matrix elements can, of course, also be written in a more 
conventional form, in which no spinor products are involved, but only vector 
dot-products. This result, which is of course very similar to the one for e+e - ~ e + e - 7  
given in ref. [7], although a bit more systematic and compact, is given for complete- 
ness in appendix A. 

Now, a short discussion of the phase space is in order. The 5-dimensional phase 
space element d ~  is defined as 

d~b=84(p++P--q+-q_-k)d4q+ 3(q2+)d4q_3(q2)d4k3(k2). (2.8) 

Various choices of phase-space variables can be made; we shall use three different 
alternatives. First 

drb = ~dq ° dk°d~2., dCa , (2.9a) 

where qO is the e + energy, f2. its solid angle, and ~a the "y azimuthal angle around 
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the I2+ direction, everything being defined in the lab frame; then, 

kOq o2 

d ~  2 E ( E -  k °) d k ° d ~ d ~ + '  (2.9b) 

where k ° and 12~ are the photon energy and solid angle in the lab frame, and E is 
the beam energy; finally, 

d(/) = l~k°dk°d$2rd~2e, (2.9c) 

where 12 e is the production solid angle of the e +, now defined in the centre-of-mass 
frame of the outgoing e+e - pair. Thus, the observable cross section is given by 

1 
dSoee~ 64rr 5s IMl2dO. (2.10) 

Before concluding this section we want to summarize the main qualitative features 
of the cross section (2.10). These are: 

(a) Infrared peak - the cross section diverges for k ° ~ 0 as 1 / k  °. Since k ° is 
defined to be larger than AE, which is typically of order 10-3-10 -2 of E, there is 
no real singularity; nonetheless the cross section varies over several orders of 
magnitude as a function of k°; 

(b) collinear peaks - if the angle between the photon and any of the e -+ direc- 
tions varies from zero to order 1, the cross section changes over typically 10 orders 
of magnitude (5 orders of magnitude between zero and 0.2 degrees!). This wild 
behaviour calls for a careful treatment of the photon emission angles; 

(c) low-energy p e a k -  if the invariant mass of the outgoing e+e - pair goes to 
zero, the s-channel photon propagator blows up; therefore, the photon spectrum is 
rather wild at its high end as well; 

(d) forward peaks - as in the nonradiative case, the cross section rises as either 
the e ÷ or e -  scattering angle decreases. In the bremsstrahlung case the cross section 
in fact remains finite for zero angle; on the other hand the forward peaks for the e ÷ 
and e -  no longer coincide owing to the 3-body kinematics. Although we shall not 
deal with the zero-angle case here, the cross section increase over 3-4  orders of 
magnitude in an angular range of 10°-170 ° again calls for careful treatment. 

3. The Monte Carlo approach 

We now come to the second part of the problem, namely the integration of the 
cross section over the allowed phase space. There are two goals which have to be 
attained. In the first place we want a numerical result for the total cross section, 
containing as much as possible of the experimental cuts. For the nonradiative cross 
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section which, due to the 2-body kinematics, depends essentially only on the 
scattering angle O, this is a relatively simple problem which can be solved by about 
every possible numerical integration technique (and possibly even analytically). The 
radiative cross section varies in four dimensions, rather than one, and behaves 
wildly, as we have seen. This, together with the necessity of folding in the 
experimental cuts which are seldom simple in terms of any set of phase-space 
variables, indicates that our numerical technique has to be that of Monte Carlo 
integration. In the second place, for purposes of an analysis of the experiments it is 
desirable to have an event generator for our process, which yields events which have 
the correct distribution, and (a no less important requirement) are independent of 
one another. In our view the most sensible way to achieve this is to use importance 
sampling [10,11]. Alternative methods, such as the use of antithetic variates, which 
rely on artificial dependences between subsequent Monte Carlo events, or of 
stratified sampling, which only works if a minimum number of events is required 
and their distribution is artificially uniform due to the stratification, seem not to 
correspond in any simple way to the event-by-event independence, and the statisti- 
cal fluctuations to be expected, in the actual experiment. Our approach is as follows. 
The cross section to be integrated consists of the hard photon cross section (2.10), 
taken over H, the allowed phase space for eel/ events, and the soft photon cross 
section 

d2oee do 
d~2 d~2 (the result of I),  (3.1) 

defined in the soft region S, i.e. the phase space allowed for elastic ee events. The 
result for the total cross section can then be written as follows 

= I" d2aee ( d 5aee'y 
Oto t jS- - '~-d~2+ j - - - ~ d g , .  (3.2) 

The technique of importance sampling now consists of finding a number of 
(relatively simple) functions f~(q~) of the phase space variables such that the hard 
photon cross section is more or less approximated by a sum of the fv The f~ are 
called the channels. In other words, for some a~ the weight 

w ( ,  ) -= (dS°~eJd¢) 
Eia,f~(~ ) , a , >  0, (3.3) 

should not be too different from a constant over the whole phase space of interest. 
In our case each ~ describes a different set of the peaks in phase space, and is 
simple when expressed in different phase-space variables. The numerator in eq. (3.3) 
is essentially just the matrix element squared, summed and averaged over the spins; 
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common factors in dSo/d~ and the fs can of course be disregarded. The integral 
(3.2) can now be rewritten as 

= f d2°ee 
Oto t jS--d--~- d ~~ -}- (3.4) 

Having thus split up the integral in separate pieces we proceed to choose in each 
integral a particular set of variables ~i which makes the integral simple. We shall use 
4 different channels for the hard photon events; we can now interpret the soft 
photon contribution as a fifth channel, and write 

5 

Otot "~- i E = l O l i f A i W ( ~ i ) f i ( ~ i ) d d P i  . ( 3 . 5 )  

Here, ~5 is the 2-dimensional ~2, and the other ~, are 5-dimensional. A~ is the 
appropriate integration region in each case, and fs(q~5) = d2oee/d~2 as given in eq. 
(3.1). 

When we choose the f,(q)~) carefully enough, the integrals 

oi= fA~.( ePi)dePi (3.6) 

can be calculated, without problems, to great accuracy. Our Monte Carlo approach 
now consists of the following steps. First, the o~ are computed under some set of 
reasonable a priori experimental cuts, such as a minimum scattering angle for the e ÷ 
and e-.  The second step, which can be repeated as often as desired, is the generation 
of a Monte Carlo event. To this end, first a channel is chosen in a random way, with 
the probability of channel i being picked equal to 

e i  = ol io  i olj . (3.v) 

Then, a set of random phase space variables q~i is generated by the so-called i th 
subgenerator such that it is distributed according to the probability density f, (#),)/a i, 
finally, the event weight w(q 0 is computed using eq. (3.3). After the desired number 
N of events has been generated, the exact cross section is estimated to be 

Ekw( k) 
Oexact -- N Eo~jaJ' ( 3 . 8 a )  

J 

where the sum runs over the Monte Carlo events, defined by #)k. The error estimate 
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on the result is given by [10] 

721 

A°exact 

exact 

- (3.8b) 

A few remarks are in order here. Firstly, in the simulation of experiments it is often 
desirable to use unweighted events. This can be achieved by applying the following 
rejection algorithm. Let W s be the supremum of the weights W, and take a random 
number  p, equidistributed in [0,1]. Then, if W(q~k) > 1,W s, accept the Monte Carlo 
event ~k, else reject it and try the next event. In case W s is not known beforehand 
any value larger than the largest observed weight will do. In this way an unbiased 
sample of events is obtained in which the weights can be taken as unity. 

In the second place, the weights W(~k) are only well-behaved if the f, are chosen 
carefully enough, so the qualitative features of dSoeev are discussed in the previous 
section will direct our choice of f~. 

In the third place, the a priori weights a i are in principle arbitrary as long as they 
are positive; for N ~ oo the Monte Carlo estimate (3.8a) will converge to the true 
answer for any choice of a r For finite N, however, the convergence, depending on 
the variance of the weight w, will depend on the a i. This gives us a handle to " tune"  
the relative strengths of the subgenerators so as to optimize the convergence 
somewhat. A perhaps more useful property of the a~ is that a subgenerator can be 
"switched off" by putting the corresponding ai to zero; the channel will then never 
be chosen. In particular, if a 5 = 0, only ee7 events will be generated. If a kinemati- 
cal configuration is known to be ruled out by the experimental cuts, the channel 
dominating in that configuration can be suppressed or switched off. This can be 
done provided that w is set equal to zero in the "unwanted" situations, so as to 
avoid the occurrence of huge w values. This leads to the last and nicest aspect; 
experimental cuts can simply and directly be applied by setting w = 0 if the events 
are outside the cuts. 

The above discussion is of course also applicable to other processes than ee --* eel,. 
We shall now start to focus on Bhabha scattering. As mentioned, the following 
ingredients are needed for our Monte Carlo treatment: 

(i) approximate cross sections f, and the appropriate sets of phase-space vari- 
ables q~, in which to write them; 

(ii) analytical expressions or numerical results for the integrals o~; 
(iii) algorithms to obtain the phase space variables ~i from random numbers 

equidistributed between [0,1). We assume these latter to be given by some standard 
(pseudo-)random-number generator [10], and only need to find the appropriate 
mappings. 

In the next few sections we shall discuss these points in detail. 
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4. The soft photon cross section 

We start our discussion of the various channels in Bhabha scattering with the 
elastic scattering process (1.1). The calculation of the complete one-loop corrected 
formula for this channel, described in I, is very nontrivial; on the other hand, from 
the point of view of Monte Carlo event generation, this channel is the simplest. In 
particular, since it describes a two-body final state, there is, in the absence of 
transverse polarization, only one nontrivial kinematical variable to be generated. 
Also, the complete formula for do /dI2  presented in I is analytically very com- 

plicated; but  numerically the result is a very smooth function, with no strong peaks 
other than the forward peak already present in the Born approximation. For these 
two reasons a simple approach can be used, which we shall now discuss. Let us 
define the following function of one variable 

do 
Fc(x ) = ~---~ (cos 0 = x ) ,  (4.1) 

where the right-hand side denotes the result of I. In terms of computer program- 
ming, Fc(x) is a function subprogram containing all the formulae of I. In the 
present paper we consider this subprogram as a black box, with one input variable 
x = cos 0 (other variable quantities such as fs-, m z, m w etc. are assumed to be 
constants whose values are fixed throughout the Monte Carlo generation). We do 
not consider the detailed form of F~(x), other than to note that for x close to 1, F~ 
behaves roughly as (1 - x )  -2, and that around the Z ° resonance the comparatively 
isotropic s-channel distribution is strongly enhanced. The evaluation of F,(x) is 
speeded up by several orders of magnitude by the use of an interpolation scheme; 
we first evaluate Fc(x ) at 40 equidistant points in the interval from cos 0ma x to 
cos(20°), and 20 equidistant points in the interval from cos(20 °) to cos 0mi n. After 
this, the value of Fc(x) is determined by a form of cubic spline interpolation. This 
means that the whole set of complicated diagrams only has to be evaluated 60 times, 
irrespective of the number of events to be generated in channel 5. Therefore, 
complicated functions and time-consuming operations in I are no problem. We have 
checked that the interpolation reproduces the exact value of F c with an error of at 
most 0.01%; by taking more points this can of course be reduced still further. 

We now turn to the determination of %. The behaviour of d o s / d ~  with cos 0 
motivates a change of variable from c = cos 0 to u, where 

1 
--]- a z  de (1 - c) 2 ' 

a s  2 
= ( 4 . 2 )  

az (s_m~)2+m~r~ 

The constant a z incorporates the s-channel resonance, and the factor a can be used 
to tune the relative importance of the two channels; we found empirically that for 
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a - 10 -2 the Born-level cross section (do/d~2)Bo m is approximated for all ~ by a 

constant  times du/dc  to within a factor of about 10 over the whole angular range, 

so we expect the approximation to the corrected cross section also to be reasonable. 
Integrating eq. (4.2) and solving for c we find 

u = u(c) = azc + 1/ (1  - c ) ,  

1 

c = c ( u ) =  2az{  }, - -  a z + u -  [ (a  z -  u) 2+  4az ]  1/2 (4.3) 

so that the differential cross section can now be rewritten as 

do=Fu(u)du ,  

F . ( u )  = 2 7rFc (c(  u) ) [  a z + (1 - c( u ) ) - 2 ] - 1  (4.4) 

The result of this exercise is that instead of the strongly peaked F c we now have a 
much smoother  F., from which we can obtain a numerical value for the integrated 

cross section using, e.g., the trapezoidal rule 

U N -- U 1 [ 
° s -  N -  1 ½Fu(ul) + 1Fu(UN) + 

L 

where the u k are equidistant in the interval from 

U 1 = U(COS Omax) 

k - 1  
Uk ~--- Ul q- N ------~ (uN - u l ) "  

E Fu(uk) , (4.5) 
k=2 

to  uN = u ( c o s  0. o) : 

(4.6) 

Of  course, much more accurate quadrature formulae are available instead of eq. 
(4.6). Since, however, we aim at an accuracy of, say, 10 -4 (because the second-order 

corrections are unknown anyway), the simple rule (4.6), with an accuracy of order 
N - 2 ,  is quite sufficient. For our purposes N is, say, 1000. 

We now come to the generation of Monte Carlo events. This is done by a simple 
hit-and-miss technique: denoting by p or Pi a random number*  equidistributed in 
[0,1), we proceed as follows 

u = u 1 + (u N -  ul )p  1. (4.7) 

If  p2 Fest > Fu(U), try again. Here the estimator F est is defined as 

F est= (1 + b) max Fu(uk) , (4.8) 
k = l , . . . , N  

and is obtained as a by-product of the integration in eq. (4.6). The factor (1 + b) in 

* For a discussion of our random number generator, see sect. 7. 
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eq. (4.8) is introduced to ensure that F,(u)< F est for all u values; that way the 
exact F~ distribution is generated. In practice, we use b = 0.01 which seems to be all 
right for N =  1000. Notice that with increasing b the expected speed of the 
algorithm (4.7) decreases as (1 + b) -1. Since the evaluation of F ~ is so fast we can 
therefore, in principle, choose b much larger (of order 1, say) without slowing the 
event generation down appreciably. Once a value for u has been generated, the 
computation of cos 0 from eq. (4.3) and the construction of the four-momenta q~+ 
and q"_ is of course trivial; k s is taken to be zero in this case (see, however, the 
interesting results in ref. [12]). We were able to make the treatment of the virtual 
and soft photon corrections very fast, as a consequence of the essential one-dimen- 
sionality of the soft photon region. In the hard photon region, which we shall now 
discuss, another strategy will have to be employed. 

We finish this section by pointing out that, since we know the exact value of the 
soft photon cross section, and the elastic events (1.1) will be generated with the 
correct angular distribution, the event weight from this channel is just a constant 

1 
w(~)  = - - .  (4.9) 

ot 5 

Here a s is the a priori weight assigned to the soft photon channel, as discussed in 
sect. 3. 

5. Channels for the hard photon cross section 

Because of both its multidimensionality and its peaked structure, the hard photon 
cross section discussed in sect. 2 calls for a slightly more sophisticated treatment 
than that of the soft photon. Upon studying the 16 Feynman graphs of fig. 1 it is 
clear that we can distinguish several groups which dominate the cross section in 
different parts of the phase space. These are the following. 

Channel 1 (a, b) - initial-state radiation in the photon s-channel. These graphs give 
rise to the low-energy peak (c) of section 2, and dominate generally if v;S-< m z, 
especially if the photon is emitted at small angles. 

Channel 2 (e, f, g, h) - final-state radiation. This is important if the photon is close 
to the outgoing e ÷ or e- ,  and dominates if v~- - mz, at large angles of the e ÷, e- .  

Channel 3 (c, d ) -  initial-state radiation in the Z ° s-channel. This is similar to 
channel 1 except that it tends to yield e+e - pairs with mass - m z. For 7~- >_. m z it 
dominates at large angles. 

Channel 4 (i,j, m, n) - t-channel radiative scattering. This dominates for all V~ at 
small scattering angles of the e ÷ or e- ,  and is described by QED only. 

The remaining diagrams (k, l ,o,p)  and the interference between the various 
groups of diagrams are much less important, and are taken into account in the 
weights assigned to the Monte Carlo events, described in sect. 3. It is the distribu- 



F.A. Berends et a L /  Radiative corrections (II) 725 

tion of these event weights, obtained in a Monte Carlo run, that ultimately justifies 
our choice of channels; however, that the above split-up is reasonable can be argued 
by simply looking at the various propagators. 

We shall now proceed to derive the various approximants f~. First of all, we 
remark that the mass effect factors W m of eq. (2.7) will be incorporated in the event 
weight; so for the moment we may neglect m e. For massless electrons, simple 
expressions are available [7] for the spin-summed/averaged squares of the various 
subsets of diagrams. Denoting by M i the set of diagrams in channel i, we have 

e 6 

IM112 = (5.1) s ' ( e  +. k) (p_ .  ~) It2 + t'2 + u2 + u'2]' 

e 2 

IMzl2= s(q+.k)(q_.k) 

X [(t2+t'l+u2+ u'2)(e4+2v2S(S;sm)2) 2"~ 2 $2 / 
+ ( ~  + ~ , ~(~)  ] 

+(ul +u'2-t2-t'z)(2a2S(s-m2)l -B-(~ +4°za2B--~s))] '  (5.2) 

e2s , 
1M312= n(s')(p+.k)(p_.k) [(02 + a2)Z(t2 + t'2 + u2 + u'2) 

+4v2aZ(u2 + u 'z-  t z -  t ' z ) ] ,  (5.3) 

e6 i/t2 ) IM, I Z -  - --(s2+s'=+uZ+ 
tt' 

s s' t 
x (p+.k)(p_.k) + (q+.k)(q_.k) - (p+.k)(q+.k) 

t' u u' ] 

(p_.k)(q_.k) + (p+.k)(q .k) + (p_.k)(q+.k) ]" (5.4) 

Here, B(s) stands for the Z ° resonance shape 

2 2 B(s)=(s-mZ)2+mzFz . (5.5) 

We proceed to modify eqs. (5.1)-(5.4) in order to arrive at the approximants. To 
this end we first note that t 2 + t '2 + u 2 + u '2 ~< s 2 + s '2 in the whole phase space. 
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Also, in eq. (5.4) the four terms in the last factor (with s, s', u and u'), which 
describe the interference between radiation from the electron line and positron line, 
can be expected to be small whenever channel 4 is important (i.e. e + a n d / o r  e -  at 
small angles). Applying this we arrive at the following approximants 

e 6 

A I =  s ' ( p + . k ) ( p  . k )  (Sz + s'2) '  (5.6) 

e 2 

A2 = (q+. k ) (q_ ,  k )  D(s ) ( s2  + s'2) '  (5.7) 

e 4 2 ) s - m 2  s 
D ( s )  = - -  + 2(v2 + - ~  + (v4 + 6v2a2 + a4) B(s)--' 

e2(v 4 + 6v2a 2 + a4)(s  2 + s'2)s ' 

A3= B ( s ' ) ( p + . k ) ( p _ . k )  ' (5.8) 

- 1  - 1  ) 
A 4 = e 6 ( s 2 + s ' 2 )  t ' ( p + . k ) ( q + . k )  + t ( p _ . ~ - ( q _ . k )  " (5.9) 

According to the prescription given in sect. 3, whenever a Monte Carlo event is 
generated in channels 1, 2, 3 or 4 its weight will be computed as 

IMI 2 

W = a l A 1  + ° t2A2  + °t3A3 + ° t4A4  . (5.10) 

The next step is the computation of the cross sections o i corresponding to the 
various channels. This we shall do in sect. 6. 

6. Boundaries and integrals 

Before we can calculate the integrals o i (i = 1, 2, 3, 4) of the approximants A i we 
have to choose those phase-space elements d~b that are most appropriate for each 
channel. These are: eq. (2.9a) for A2, eq. (2.9b) for A4,  and eq. (2.9c) for both A 1 
and A 3. Also, we will have to take the nonzero value of the electron mass m e into 
account in the products p _+- k and q _+. k, since we are going to integrate over the 
collinear peaks. 
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The multidifferential cross section for channel 1 can be written as 

727 

a 3 l + ( 1 - k )  2 1 

d 5 ° 1 -  4~r2s k ( 1 - k )  ( p + . k ) ( p _ . k )  dkdl2edzrdqS~'  

1 2 = m e / E b ,  (6.1) p +_" k = kE2(e-T- zr)  + O ( m ' ) ,  e = 1 + gm , m 

where k is the photon energy k ° normalized to the beam energy Eb, and zr is the 
cosine of the angle between k and p + and ~r the azimuthal angle of k around p +. 
The only nontrivial integrals are those over zr and k. We obtain 

o I -~- 

2~ 3 s 
In [Hl(kmax)-/ l(ko)], 

s m e 

H l ( k  ) = 21n k - ln(1 - k )  - k .  (6.2) 

Here,  k o is A E / E b ,  i.e. the minimum value of k, and kma x is the maximum value of 
k that we want  to allow in the Monte Carlo event sample. A difficulty arises if we 
do not want to impose an upper bound on k: H l ( k  ) diverges as k ~ 1. In reality, 
the endpoint  of the photon spectrum behaves as [13] 

( 1( 211J2 d% 1 2m 2 m e 
l i m - - c c - -  1 + - -  1 -  (6.3) 
k-~l dk  1 - k s '  

rather than as ( 1 -  k)  -1, for finite me. We solve this problem by defining an 

effective supremum ksu p such that o 1 with kma x = k~u p has precisely the correct area 
under  the photon spectrum curve. This value turns out to be 

2 
m e  [ S X  

ksu p = 1 - - - e x p t g ) .  (6.4) 
s 

Using this value, we ensure that the total number of events ee-/ with very-low- 
invariant-mass ee pairs will be correct. The angular distribution of these pairs in 
their centre-of-mass frame will not be correct; but for pairs of such extremely low 
mass this is unimportant.  

Channel 2 is most easily treated by noticing that the expression (5.7) is symmetric 
in q"+ ~ q~_. Provided that in the Monte Carlo generation of events we apply this 
symmetry,  we may write 

a 1 + (1  - k)  2 
dS°2-  647r ' D ( s )  k(1 - x + 8) dxdkdl2dq~y,  

8 = m ~ k / s ' ,  (6.5) 
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where x is the positron energy qO in units of E b. A derivation of the expression 
2E2(1 - x + 8) for q_. k can, for instance, be found in ref. [13]. Integrating over dl2 
and dq~v, and over x from the kinematical limits 1 - k up to 1, we find 

do a 1 + ( 1 - k ) 2  [ s ( 1 - k ) ~  
= 81r : D ( s )  k lnl ) 2  ' (6.6) 

me 

and for the total cross section between k = k 0 and k = kma x 

Ol 
02= - ~ :  D( s )[ Hz( kmax) - H z ( k o ) ] ,  

= _ lk2l ln s _ 2 L i 2 ( k )  H2(k ) [21nk 2 k +  ~ , ._-22 
Ygl ¢ 

+ ½ ( 3 -  k)(1 - k)ln(1 - k)  - ¼ ( 5 -  k)(1 - k ) ,  (6.7) 

where Li 2 denotes the dilogarithm function. It should be noted that H2(k ) remains 
finite as k ~ 1; for consistency reasons, however, we shall always use, at most, ksup, 
as defined in eq. (6.4), in H(k) as well. 

Channel 3 differs from channel 1 only in its overall factor and photon spectrum. 
We have: 

d5o3 = 
a(v4+6v2aa+a 4) (1 - k)[1 + (1 - k)  2] 1 

64~r's [(k - ~)2 + y2]k  e 2 _zv2 dk  d~2 d~2r, 

ti = 1 - I~, I1 = m ~ / s ,  "y = m z r z / s ,  (6.8) 
which can be integrated over dO d~2r to give the photon spectrum 

s ) ( 1 - k ) ( 2 - 2 k + k  2) da3/dk = a(v4 + 602a2 + a4) In (6.9) 
' 

and the total cross section 

a(v4 +6v2a2 +a 4) 

O 3 ~--- 8,/i,2 S 

(s) 
In ._-77_2 [H3(km~,) - H3(ko) ] , 

me 

( k - ~ )  
H 3 ( k ) = h l l n k +  ½h21n[ (k -~)  2 + ' I  2] +h3arctan - - 7 -  - k ,  

hx = 2(~2 + V2) -1, 
h z = 3 - 2 ~ - h  1, 

h3 ~--~- [~h I - 4  + 3~- -  ~2 -t'- y21/ . / .  (6.10) 
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Like H2, H 3 is regular for k ~ 1. Due to the presence of the two mass scales s and 
mE in the spectrum, its form is quite complicated; for a discussion, see for instance, 

refs. [14,15]. 
Our treatment of channel 4 is essentially the same as was given for pure-QED 

Bhabha scattering in ref. [15]. Again, we employ the symmetry of eq. (5.9) under the 
interchange of electrons and positrons to retain only the term with [t(p_. k)(q_. 
k)] - 1, and find 

20t 3 1 + (1 -- k)  2 1 1 1 
d5o4 . . . . . .  

~r2s k 1 - c  e+z  e+c  r 
- -  dk d ~  d~v,  (6.11) 

where z is the cosine of angle between k and p+, and cv that of the angle between 
k and q +. In this channel the most complicated integral is that over ~2v rather than 
over k. It is most simply and elegantly solved by applying the Feynman integral 
parametrization, which introduces one additional dimension into the integral. This 
is described in detail in ref. [15]. We end up with 

so that 

1613 1 + (1 - k )  2 ln(2(1 - c)/m 2) 
d204 - dk dc (6.12) 

s k (1 - c )  2 ' 

0-4= 16°t3 [/-/4(kmax)_ H 4 ( k o ) ] [ F ( c o s O m i n ) -  F(COS Omax)] , 
S 

H4(k ) = 21n k- 2k + ½k 2, 

F ( c )  = [1 + 1n(2(1 - c)/m 2)]/(1 - c) .  (6.13) 

This integral forces us to include also the minimum and maximum allowed 
scattering angles 8mi~,ma ~ as a priori cuts on the phase space, which leads to the 
following observation. In all channels, k appears as one of the integration variables, 
and consequently a priori cuts on k are easy; no generated Monte Carlo event will 
have k < k ° or k > km~. However, ¢ appears as an integration variable only in 0 4. 
Therefore, some events generated in channels 1, 2 or 3 will have c > cos 8m~ or 
c < cos 8m~. Moreover, since in channel 4 we are only able to restrict the direction 
of q+, not of q_, also q_ will sometimes fall outside of the admissible range. Since 
no peak of the cross section is associated to such events (remember that the peak for 
t '  ~ 0 is obtained afterwards by symmetrization) the number of these events, which 
of course have to be rejected, is modest. 

At this point, several of the Monte Carlo ingredients have been obtained. We 
have the approximants A~, and the total cross sections o, corresponding to them. 
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Also, the exact matrix element can be calculated as soon as the momenta q~+, q~ 
and k" of a Monte Carlo event are specified. The last necessary part, the algorithms 
to obtain these values, is discussed in sect. 7. 

7. Generation algorithms 

We shall now discuss the methods used to generate Monte Carlo events, that is, a 
set of phase-space variables appropriate to the particular channel (1-4) chosen, 
distributed randomly with probability densities proportional to one of eqs. 
(5.6)-(5.9). An excellent review of the methods available to generate random 
variables with a specified distribution is given in ref. [16]. We assume the existence 
of a source of satisfactorily random real numbers equidistributed between [0, 1); in 
practice we use the CERNLIB routine RN32 given in ref. [10]. These numbers are 
subsequently transformed by mappings and rejection procedures so as to ensure the 
correct distribution. The above random-number generator can, of course, be re- 
placed by any other generator in which the user has confidence, without changing 
anything but  the statistical fluctuations in our results. As in sect. 4, we shall denote 
the above random numbers by P(i)- We now list the various algorithms; for proofs 
that these do give the correct distributions we refer the reader to refs. [11] and [16]. 

7.1. CHANNEL 1 

The photon spectrum 
two peaks for small and 
so as to have the correct 

is generated by a combination of mapping (to obtain the 
large values for k) and rejection (refining the distribution 
factor 2 - 2k + k 2) 

k =  1 + exp - l n  1 _ k----~ 01In k-m-~) ' 

w 1 = (1 + (1 - k )2)/(1 + (1 - k o ) 2 )  , (7.1) 

if w a < to2, try again. 

The boundaries k 0 and kma x on the k-spectrum have been defined in sect. 6. The 
angular variable zv requires only a simple mapping. Using e = m Z / 2 E  2, we have 

2 + e \  
v = e x p  l n e + 0 3 1 n ~  - ) - e ,  

z v =  1 - v ,  s r = ( v ( 2 -  v ) )  1/2, (7.2) 

if 04 > 1, replace z v by - z v . 
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It should be noted that due to the smallness of e (about 5 X 10 -11 at LEP I 
energies), the typical value attained by [zrl is very close to 1. This would make the 

2 numerically unstable. By generating not computat ion of s~ = sin<(k, p+)  = ~/1-  z~ 

zv but  v = 1 - I%1, which is typically small (median about v~-e), the accuracy of s v 
is improved by quite a few digits. The other variables are obtained trivially 

q~v = 2~r05 ' ~R = 2~'P6, COS 0 R = 207 -- 1, (7.3) 

where q~R and O R are the two Euler angles of the outgoing e + in the e+e - c.m.s.; 
since these angles are trivially distributed their orientation is irrelevant, and we take 
O R = 0 to correspond to the positive z-axis. From the five variables k, zr, q~r, cos O R 
and q~R the four-momenta q~+, q~ and k ~ are easily constructed, and can be used to 
compute the matrix element. However, some care is necessary in the computation of 
p +. k, p _ - k  and Wm since significant cancellations are to be expected. We tackle 
this problem in two ways. Firstly, the factors Is(p, k)12/(2p • k) in Wm in eq. (2.7) 
were necessitated because s(p, k) and p • k do not behave in precisely the same way 
in the collinear situation k lip. We are, however, not interested in the squared 
matrix element (2.1) itself but only in the weight function defined in eq. (3.3). 
Therefore, if we replace the denominators (p  +. k) and (q +-k)  in eqs. (5.6)-(5.9) by 
½ls(p+_,k)l 2 and ½ls(q+,k)l 2 in the computation of the weight, and keep the 
correct expressions in the calculation of o1_ 4 in sect. 6, we can disregard the 
incorrect behaviour at the peaks; the weight will be computed correctly. Moreover, 
at most only one of the four remaining factors in eq. (2.7) can differ appreciably 
from 1 for any event. The consequence of all this is, that for events generator in 
channel 1, we may compute W,, as 

(1 -k)  
W m = 1 - - -  (7.4) 

e+v  l + ( 1 - k )  2" 

This form for W m is independent of the sign flip of zr in eq. (7.2), and gives the 
correct suppression due to the mass effect up to O(m2/s). 

7.2. CHANNEL 2 

Again the photon spectrum is obtained by combining mapping and rejection 

(/,  ,x /k  )~1 k =  k 0 m o , 

w 2 = [ ( l + ( 1 - k ) 2 ) l n S ( 1 - m - ~ 2 k ) J / [ ( l + ( 1 - k o ) 2 ) l n S ( l m ? ° )  ] , (7.5) 

if w 2 < 02, try again. 
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The variable x is given by a k-dependent mapping 

8 = m 2 k / s ( 1  - k ) ,  

k + ~ l  
vx = exp ln6 + p 3 1 n - - ~ ]  - 8, 

x=Eb(1 -vx). (7.6) 

The angular variables fa+ and % are again trivially generated as in eq. (7.3). As in 
channel 1, the cosine cv and sine sy of the angle between q+ and k, which tends to 
be close to 180 ° , have to be computed carefully, using 

2v~(1-  k) 
vv= k ( 1 - v ~ )  ' c v = v , - 1 ,  s ,  = ( 0 , ( 2  , 1/2 - o , ) )  . ( 7 . 7 )  

After the four-momenta have been constructed, q~ and q~_ have to be interchanged 
in one half of the events, as described in sect. 6. Finally, in this channel the mass 
effect is incorporated as 

e k 
W,, = 1 - v~ +--~ 1 + (1 - k)  2" (7.8) 

Again, this definition is independent of the interchange of q~+ and q~_. 

7.3. CHANNEL 3 

As stated before, the shape of the photon spectrum in the Z°-exchange s-channel 
is complicated by the occurrence of different mass scales. No simple combination of 
mapping and rejection is known to us which would be efficient for all possible 
combinations of s and M z. Instead we rely on a purely numerical method, which 
was introduced and explained in detail in ref. [17]. We construct a histogram of the 
photon spectrum with, say, 1000 bins, such that all bins have the same area to a very 
good approximation. The total area under the histogram can be compared to the 
purely analytical result (6.10) to provide a check. Subsequently, a k value is 
generated by choosing a bin at random, and generating a k value uniformly 
distributed in the bin. This procedure yields a distribution equal to the desired one 
to a very good approximation. In particular the soft photon and Z ° resonance peak 
are accurately described because the bins are quite narrow in that region. For 
completeness we summarize this algorithm in appendix B. 

The remaining algorithms for this channel are precisely the same as for channel 1. 
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7.4. C H A N N E L  4 

As stated before, this channel is just QED Bhabha scattering, and the discussion 
of ref. [15] can be carried over without modification; only the photon spectrum 
contains an additional factor 1 + (1 - k) 2 in the present case (in ref. [15] this factor 
was neglected in order to make the weights better behaved for k ---> 1; since in this 
paper we explicitly include channel 1 this is not necessary here). Again, the photon 
spectrum is given by mapping and rejection 

k =  k o ( k m a x / k o )  °' , 

w4=(1 + ( 1 - k ) 2 / ( 1  + ( 1 - k o ) 2 ) ,  (7.9) 

if w 4 < P2, try again. 

The cosine c of the angle between q+ and p+ is obtained via a similar rule 

¢ = 1 - -  [ 103(1 - -  COS ~ m i n )  - 1  "-F (1 - ps) (1  - c o s  6m~ ) - '] - 1, 

(, cOSOm x) 
w c = In n , 

E 
(7.1o) 

if w c < P4, try again, 

while the corresponding azimuthal angle ~ is again trivial. The algorithm for the 
photon direction is more complicated, since its distribution peaks for both k lip_ 
and k II q_ (cf. eq. (6.11)). As explained in ref. [15] we solve this by the Feynman 
trick, by which we write the distribution of the photon solid angle as a superposition 
of distributions with a more peaked behaviour, each distribution oriented with 
respect to a linear combination (parametrized by the Feynman variable u) of the 
directions of p_  and q_ (see eq. (4.2) of [15]). A Feynman variable is now picked 
according to the following prescription 

u o=  e / (1  - c ) ,  u x = 1 + u0, 

u = exp(ln u o + p s l n ( u l / u o ) )  -- Uo, (7.11) 

if P6 > ½, replace u by 1 - u. 

The choice of u determines a particular linear combination of the directions 
P - / I P -  I and q _ / I q _  I. For the moment we assume this direction to be the positive 
z-axis. The recipe for c', the cosine of the angle between k and this axis, and for s C, 
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and q'c', the corresponding sine and azimuthal angle, is then 

e 2 = 2 ( 1  - ¢ ) ( u  1 - u ) ( u +  u0)  , 

e -~1/2 G = (  l + 2 e -  2J , 

v ' =  2e2(1 - 07)[e2 + 2o7eu(1 + 2e + e . ) ]  -1,  

t c ' = l - o  , 

q~, = 2~rPs. 

S c , = ( O ' ( 2 - - V ' ) )  1/2, 

(7.12) 

The direction ek of k in the lab frame is, finally, obtained by rotating the positive 
z-axis to the actual direction specified by the Feynman variable u 

e~ ,=l sc , cosqJc , (u - l -uc ) -uc ' (1 -c2 ) l /2] / e  u, 

e [  = s~,sin ¢~,, 

e~= [USc,COS,c,(1- c2) 1/2 + ( u -  1 - uc)c']/e u. (7.13) 

The four-momenta can now be constructed without more ado. Notice that, since 
c = cos <(p+,  q) was restricted to be within the range between cos 0m~ x and cos 0mi n, 
the symmetrization qO o qO, q + o  _ q _  and k ~ - k  (which we have to apply in 1 

of the cases) forces us to reject an event that has cos < (p_ ,  q_) outside this range. 
Fortunately, the number of these events is small, as discussed in sect. 6. The 
derivation of a numerically stable representation for this case is not trivial, again 
because of the variable distance between the two peaks in the direction of k. We 

find 

= U((1 -- C 2)1/2Sc,cOS ~)c' + (1 - c )c ' )  + v', 

v = (,~ + (2e - e2) / (1  + e ~ ) ) / e . ,  

e 2 ( 1  - k )  
W m= 1 - - -  (7.14) 

e+v  l + ( 1 - k )  2" 

Again, this is independent of the replacement u ---, 1 - u in eq. (7.11). This finishes 
our description of the generation algorithms. When an event has been generated, it 
must be checked whether it is within the allowed phase space; bothq+ and q_ must 
have polar angles between 0m~ and 0m~ x. If the event fails this check the weight has 
to be put to zero (in practice the program then tries again, while storing the 
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zero-weight result in a bookkeeping device). If the event is admissible, its weight is 
calculated, keeping in mind the remarks made in connection with the computation 
of W m. The event and its weight are then output. Optionally, there is an internal 
additional rejection to obtain unweighted events. 

8. Results 

After having discussed, in the previous sections, how the Monte Carlo approach 
to radiative corrections, together with the particulars of Bhabha scattering, led to 
the algorithms which we have described, it is now time for a review of the physics 
results, obtained with the Monte Carlo program. Throughout the discussion we have 
used the following parameter choices 

m z = 93 GeV, i n t o  p = 40 GeV, mniggs = 100 GeV, (8.1) 

which lead to a value of 2.464 GeV for F z, 82 GeV for m w, and hence 0.2227 for 
sin20w . Our results do not, however, change qualitatively for reasonable changes in 
the parameters (8.1). 

We start with some remarks on the choice of A E, the cut-off between the hard 
and soft photon regions. As discussed in sect. 4, Monte Carlo events from channel 5 
(the soft photon and virtual corrections) have a photon with an energy which is 
strictly zero. This is, of course, an approximation to the real situation in which an 
unlimited number of arbitrarily soft photons is emitted [18]. Recently, algorithms 
have been developed to deal with these photons [12]; however, the kinematics of the 
remainder of the event, and in particular its recoil (which gives rise to e.g. e+e - 
pairs with extremely small but nonzero acollinearity) is not yet understood very 
well. We therefore stick to putting k 0 to zero in the soft photon region. This, 
however, forces us to choose A E / E  b as small as possible. A logical lower limit on 
AE is that value that makes doee/dO (as defined in sect. 3) vanish, i.e. the sum of 
virtual and soft-photon corrections are exactly 100% (of course, the contributions 
from hard bremsstrahlung, with k 0 > A E are always positive). This approach has 
been taken successfully in ref. [16]. In the present case, however, the corrections 
depend on 0; generally, they decrease with increasing 0. We therefore determined 
0x, defined to be that value of 0 for which doee/d~2 becomes zero, for the energy 
range of interest, for various values of A E / E  b. The result is given in fig. 2. For 
A E / E  = 10 -2, 0x(Eb) is quite well-behaved. In particular, at the r e s o n a n c e  ( E  b = 

46.5 GeV = m z / 2 ) O  x is essentially 180 °, so that doee/dI2 is positive for all scatter- 
ing angles. Outside this region the cross section is well-defined up to scattering 
angles of at least 170 °. Since Bhabha scattering favours small angles so much, this is 
quite acceptable. A drastically different situation arises if we decrease the value of 
A E / E  b to 5 x 10 -3. Especially at the resonance, 0 x drops to a spectacular 122.1 
degrees. This means that, for this value of A E / E ,  a Monte Carlo study of Z ° 
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Fig. 2. Boundaries of the area of positivity of doee/d~2 as a function of beam energy, for different values 
of the soft-photon cutoff A E / E  b. 

production at the resonance is meaningless for all those events that have an angle 
between its incoming and outgoing electrons larger than 122 degrees! This is clearly 
unacceptable. At higher energies the situation is not very much better. The transi- 
tion from the well-behaved to the ill-behaved cross section is sketched in table 1, 
where we give 0 x at the fixed resonance beam energy of 46.5 GeV, for varying 
A E / E  b. The value of 0 x is seen to drop quite suddenly when A E / E  b decreases 
from 0.7% to 0.5% (for values of A E / E  b larger than 1%, 0x remains at 180 degrees). 
We can draw two conclusions. 

(1) A lower limit on A E / E  b is naturally given to be about 0.7% (in practice we 
have always used 1%). 

(2) Any experimental setup which is sensitive to values of A E / E  b smaller than 
1% (for instance, an angular resolution which makes an acollinearity determination 

TABLE 1 

Position of the zero in doee/dI2 at resonance (x/J- = mz)  as a function of the soft-photon cutoff A E / E  b 

A E / E  b (%) 0 x (deg) A E / E  b (%) 0:, (deg) 

1.0 179.97 0.5 122.1 
0.9 179.9 0.4 71.7 
0.8 179.2 0.3 46.8 
0.7 176.4 0.2 31.5 
0.6 164.4 0.1 12.4 
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down to 0.5 degrees possible) will necessitate the inclusion of higher order correc- 
tions to make a study of resonant Z ° production meaningful. Note  that, here, the 
issue is not so much whether the Standard model can be tested to one-loop 
accuracy, but whether it can be tested at all. 

The second point of interest is the total radiative correction. In contrast to the 
case of muon pair production, this concept has to be defined carefully here, due to 
the forward singularities. In the Born approximation, both e + and e -  will always be 
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Figs. 3(a)-(d). Born cross section and total radiative correction as a function of beam energy, for 
various angular ranges. Dashed line: lowest order, solid line: corrected result. 
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restricted in the same angular range, because the events are elastic. We therefore 
define the total correction for a given angular range to be given by the total cross 
section for all events that have the scattering angles of the e ÷ and e -  restricted 

between 0mi n and 0max, but with no additional cuts. We always take 0m~ x = 180 ° - 

0min, and studied four cases in detail: 0mi n = 5 °,  10 °, 30 ° and 50 °. At 0mi n = 5 ° the 
cross section is dominated by the t-channel photon graphs, while at 0mj" = 50 ° the 

situation can be expected to look quite a bit like muon pair production. The two 
other cases are intermediate; 0mi n = 30 ° is typical for experiments in a "central 
detector". 

We have made runs of the MC program at various energies, for the four angular 

ranges specified above. Due to the forward peak, it is not practical to obtain the 
three smaller angular ranges by making cuts in the sample with 0mi ~ = 5°; hardly 
any events are left that way. Instead, separate runs are advisable. In each case we 
generated 104 weighted events (each run typically takes about 20 minutes on an 
IBM P C / A T ) .  In figs. 3a to 3d we plot both the Born-term cross section and the 
cross section with the total correction discussed above. The Born cross section is 
obtained analytically, using the formula given in appendix C. A few qualitative 

features are evident. Firstly, at small 0mi n the Z ° "peak"  is nearly invisible. Only at 
0mi n = 30 is something like the muon-pair resonance evident. Furthermore, at the 
resonance the correction is actually positive for small O. Being about 5%, this 
correction gives no indication of a necessity of higher order corrections in the 

photon exchange channel. Finally, the high radiative tail ( -  100%) of the resonance 
of higher energies which is familiar from the muon case is not evident for 0mi n = 30 ° 

and Om~ . = 50 °. This can be understood easily; the radiative tail originates from 

events in channel 3, where a hard photon is typically emitted close to the beam, with 
the fermion pair recoiling in the other direction. Such configurations tend to be 

rejected by the angular cuts on both the e ÷ and e . 
Of  course, the total correction is not what is usually measured, which brings us to 

the topic of canonical cuts. In ref. [5] the application was advocated of canonical 
cuts, i.e. simple and well-defined cuts which reduce (if possible) the radiative 
corrections and, since they would be applied at least once by the relevant experi- 
ments, would allow for unambiguous comparison between the results of different 
experiments. For  e+e - as well as/~+/~- it seems that the best canonical cuts are the 
following set: 

(1) the energies of the e ÷ and e -  must be larger than some threshold value Eth; 
(2) the angle between the e ÷ and e directions must be larger than 180 ° - ~ ;  

is called the acollinearity cut. 
1 We apply Eth = 2E b and ~ = 10 degrees and of course the angular cuts discussed 

before. The effect of this choice of Eth is marginal, the acollinearity cut being much 
tighter; a motivation for the choice of ~ will be given later on. 

In a figs. 4a -4d  we present close-ups of the resonance region for the four values 
of 0m~ .. We draw both the Born cross section (dashed line), the fully corrected one 
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Fig. 5. Apparent  mass shift of the Z ° related to the scattering angle, in the Born approximation. 

(dashed-dotted line) and the result after the canonical cuts. As is seen, the cuts serve 

to lower the resonance curve without affecting its shape. After cuts, the correction 

also becomes negative again at 0mi n = 5 °. 
A remark is in order on the statistical accuracy of our results. The (statistical) 

error of course depends on the parameters. It  is smallest for 0rnin = 5 °, being about 
0.3% for 104 events, and increases to about 0.7% for 0mi n = 50 °. Of course, this error 
can be reduced to an arbitrarily small amount by using a sufficiently large number  

of events. The only possible source of a systematic error can be the particular 
r andom-number  algorithm; we have found no evidence for any such effect. In figs. 
3a-3d ,  4c, and 4d the error is of the order of the line widths in the plots, in fig. 4a 
the error is about  0.05 nb, and in fig. 4b it is about 0.01 nb. It turns out, however, 
that  it is easy to draw a nice smooth curve through the central values, indicating that 
our error estimates may be quite conservative. In particular, the peak of the 

resonance curve can be well identified. 
This brings us to the next topic of interest; the peak shift. Due to the interference 

between the Z ° and photon exchange graphs the peak of the cross section will be 
shifted f rom the exact value of v~- = mz  to a value x/~ = mz - Am: Am is the peak 
shift (positive if the peak is at lower values than mz) .  The peak shift is present 
already at the Born level where we can find it with great precision because we know 
the resonance curve analytically. In fig. 5 we present the relation between A m and 
the scattering angle O. The peak shift is always positive: its minimum is about 70 
MeV at O around 100 degrees. For larger values of O it remains essentially constant. 
At smaller angles the peak shift increases rapidly; at O = 23 ° it reaches 1 GeV. For 
O ~ 13 ° ( A , - 1 9 0 0  MeV) the effect of the Z ° resonance becomes sufficiently 
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TABLE 2 
Apparent  mass shift of the Z ° for various angular ranges 
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Angular  Peak shifts (MeV) 

range (deg) Born full correction canonical 

5-175 680 900 + 100 900 _+ 100 
10-170 444 460 ___ 40 460 + 40 
30-150 214 80 + 40 70 _+ 40 
50-130 132 - 2 0  _+ 40 - 4 0  _+ 40 

relatively small that it can no longer compensate the 1Is  dependence of the photon 

cross section, and the cross section does not even become flat anymore as a function 
of yeS -. Determinat ion of the peak shift in the radiatively corrected cross sections is 

less precise due to the statistical errors. We determined the peak shift both 
graphically and by fitting to the cross section values at four points in a 300 MeV 
interval around the resonance. These results typically coincide to about 20-40 MeV 
which we take as an error estimate. In table 2 we present the peak shifts for the 
Born, fully corrected and canonically corrected cross sections in the four angular 

ranges. For  Omi n = 5 ° and 10 ° the corrections shift the peak to lower values. In the 
more  central regions the peak shift is reduced by the corrections; for 0mi n = 50 the 
peak actually shifts to values of vcJ - larger than m z. Of course, runs with higher 
statistics can improve the accuracy of these results. We deemed this not relevant at 
this point because of the extent uncertainties in m z. The overall conclusion is clear 
however: the peak shift is quite substantial and can be given about any value by 
applying suitable cuts. 

The last quantity of interest is the effect of changes in the acollinearity cut ~'. To 

this end we made a number of runs using 105 points at values E b = 44, 46.5 and 49 
GeV. The resulting values for the radiative corrections are given in fig. 6. It  is seen 

that the absolute value of the correction depends (of course) on Eb; its variation 
with ~ is, however, always about the same. Moreover, for ~ smaller than about 10 
degrees the correction varies quite rapidly with ~, implying that measurement errors 

in the e ÷, e -  directions will become important. ~ = 10 degrees seems to be the 
opt imal  choice, giving reasonable corrections which are not too sensitive to measure- 
ment  errors. We finish this section by presenting our conclusions. 

First, an optimal choice for A E / E  b is dictated by the process under study; if we 
restrict ourselves to first-order corrections, A E / E  b must be between 0.7% and 1%. 

Second, the total radiative correction is a bit more moderate than in the muon 
case; at smaller scattering angles it remains positive even at resonance. No high 
radiative tail is present. As for canonical cuts, an acollinearity cut on the e ÷ e -  pair 
works well and a value ~ = 10 ° is optimal. After canonical cuts the resonance peak 
drops  in height but keeps the same shape. Finally, we have determined the shifts in 
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the apparent Z ° peak from its exact mass value. This shift is affected considerably 
by the angular interval considered and by radiative corrections, and to a lesser 
extent by the application of canonical cuts. 

Appendix A 

In sect. 2 we gave an expression for the matrix element squared, summed and 
averaged over the spins. This expression is in terms of spinor products. As stated 
there, it can be rewritten in a form consisting of only the more conventional vector 
products, which we shall give below. First, we define two functions of four 

four-momenta Pl, P2, P3 and P4 

R(  Pl,  P2, P3, P4) = 4{ - (k .p l ) (k  "P3)(P2 "P4) + (k .pz)(k "P3)(Pl "P4) 

+(k .p l ) ( k . p4 ) (pe .p3  ) - ( k . p z ) ( k . p 4 ) ( p l . p 3 ) } ,  (A.1) 

I (P l ,  P2, P3, P4) = 4{(k .pl)e,~oop~k"p~p~ - (k .pz)e,~oopfk~p~p~}, (A.2) 

where k ~ is the four-momenta of the bremsstrahlung photon, and e,~po the 
Levi-Civita tensor with e0123 = + 1. The I has, in fact, the same symmetries in the 
Pi as R; this is easily proved using Schouten's identities. Next, we have two 
functions of two kinematic invariants (s, s', t . . . .  ) 

e ( y - m  2 
Qxlx2(x' y ) = 8 e 2  ~y + e 2 ( v - ~ l a ) ( v - ~ 2 a )  xB(y )  

x-m ) 
_ _  + 

+ ( v -  Xla)Z(v - Xza) 2 ( x -  m2z)( y - m 2) + m2zr~ ] 
Jxlx2( x, Y) = 8e2(v -  • l a ) ( v - X 2 a ) m z F  z 

(A.3) 

- e  2 e 2 x - y  ] (A.4) 
X[y-B--~(X) + xB(y~  + (V-- ~,la)(v - X2a ) B ( x ) B ( y )  ' 

where )kl, 2 take on the values + or - ,  and 

B( x ) = ( x - mz) 2 + m2zr~. (A.5) 
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The equivalent expression to eq. (2.1) can then be written as 

¼2~IMI 2= [(u 2 + u'2)(R(q_q+q_q+)[Q++(s',s') + Q__(s',s')] 

+ R(p+p_p+p_)[Q++(s, s) + Q__(s, s)] 

+ R(q_p_q_p_)[Q++(t', t') + Q__(t', t')] 

+ R(p÷q+p+q+)[Q++(t, t) + Q__(t, t)] 

+ 2R(q_q+p+p_)[Q++(s', s) + Q__(s', s)] 

+ 2R(q_q+q_p_)[Q++(s', t') + Q__(s', t')] 

+ 2R(q_q+p+q+)[Q++(s', t) + Q__(s', t)] 

+2R(p+p q_p_)[Q++(s,t')+Q__(s,t')] 

+2R(p+p_p+q+)[Q++(s, t) + Q (s, t)] 

+2R(q_p p+q+)[Q++(t',t) + Q__(t',t)]} 

- 2 ( u  2 - u ' 2 ) ( I (q_q+p+p_)  [ J++ (s' ,  s) - J__(s', s)] 

+I(q_q+q p_)[J++(s', t') -J__(s ' ,  t')] 

+I(q_q+p+q+)[J++(s', t) -J__(s ' ,  t)] 

+I(p+p_q_p_)[J++(s, t') -J__(s ,  t')] 

+I(p+p_p+q+)[J++(s, t) - J__(s, t)] 

+I(q_p_p+q+)[J++(t',t)-J (t ' ,  t)] } 

+2( t  2 + t'z){ R(q_q+q+q+)Q+_(s', s') + R(p+p_p+p_)Q+_(s, s) 

+2R(q_q+p+p_)Q+_(s',s)} 

+ 2 ( s 2 +  s'2)(R(q p_q_p_)Q+_(t', t') + R(p+q+p+q+)Q+_(t, t) 

+2R(q_p_p+q+)Q+ (t ' , t)}]/64(p+k)(p_k)(q+k)(q k). 

(A.6) 
We have checked both analytically and numerically that this result is identical to the 
one obtained in sect. 2. 
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Appendix B 

We briefly outline the structure of our Monte Carlo program. The five different 
channels in which events can be generated are represented by so many "subgenera- 
tors", sets of subroutines that operate independently. Our program, therefore, has a 
modular structure. The initialization of the program is performed by calling the 
routine SETBAB. To this the user supplies the beam energy, and the masses of the 
Z ° and Higgs bosons, and of the top quark. Furthermore, the crude phase space 

cu ts  0min, 0ma x and kma x are specified, where kma x is the maximum energy one 
wishes to allow for in units of E b (for instance, with the canonical cuts described in 
sect. 8 a value of kma x = 0.51 would be appropriate since events with larger photon 
energy would always be rejected). The initialization program then performs the 
following tasks; it calculates the Standard Model values of m w, F z and sin20w; then, 
it calls five separate initialization routines for the five subgenerators. These return 
the values of the approximate cross sections o i, i = 1 . . . . .  5. On the basis of these 
values, and using given a priori probabilities a, (i---1 . . . .  ,5), it computes the 
relative probabilities of an event to come from each channel*. An actual Monte 
Carlo event is generated by a call to the generation routine GENBAB. This routine 
first picks a channel and calls the subgenerator routine for that channel. These 
routines use the algorithms given in sect. 7 and return the values of q~+, q~_ and k ~, 
together with the value of W m. GENBAB first checks whether the event satisfies the 
restrictions given by 8~n and 8ma x (the kma x cut is automatically satisfied). If so, the 
event weight is calculated. For hard photon events the expressions given in sects. 2 
and 5 are used, while a soft photon event has constant weight. The weight 
information is stored in common, while the routine outputs the momenta values and 
the total weight. Optionally, unweighted events are generated by rejection. Ad- 
ditional cuts (such as canonical ones) have to be implemented by the calling 
program. 

After the desired event sample has been generated, the computation of the cross 
section corresponding to this sample is performed by routine ENDBAB. This uses 
the values of o~ and ai, and the information on the event weights, to estimate the 
resultant cross section and the statistical uncertainty. The results are printed in the 
form of a table in which also information on the performance of the individual 
subgenerators is given. 

We finish this appendix by specifying the random-number generator used in our 
program. It is a multiplicative congruentional pseudo-random-number generator 
based on the algorithm 

ki = (69069ki-1) m°d231, Pi = ki/231 , (B.1) 

where Pi is the current random number, and pi_ ~ the previous one. If desired, this 

* The results presented in sect. 8 are based on a t = 1. 
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generator can be replaced by any other one in which the user has confidence; the 
results should be the same within statistical errors. 

Appendix C 

We present the Born level formula for the cross section for e + e - ~  e - e - ,  
integrated over the complete azimuthal range, and polar angles from 0mi n up to 0ma ~. 
TO our knowledge this result has not been given anywhere in the literature, and we 
include it here for completeness. It reads 

where 

1 
or = ~ [B(cos Omin) - B(cos Omax)], (C.1) 

n(c)  = 2e4~bl(c) + ((12 + i/2 )~b2 (¢) 

+ [(gv + ga) 4 + ( g v -  ga)4] ~b3(c) + 2e2Re(or + + or_) q54(c ) 

+2Re[(gv+ga)20++(gv-ga)2or ] dP5 (c) 

+ 2e2 [(gv + ga) 2 + ( g v - g a ) 2 ] ' 6 ( ¢ ) +  2or~7(¢) 

+ 2s2e %8(c) + 2s2( g2 _ g~)2q~9(c) + as 2e2( g2 _ ga 2)qho(c), (C.2) 

where 

e 2 

o r + =  - -  + 
s 

e 2 

o r _ =  - - +  
s 

e 2 

O x =  - -  + 
S 

(gv q- ga) 2 

S - -  m2z + i m z F  z ' 

( g v  - -  g a )  2 

s - m 2 + i m z F  z ' 

( s ~ - s  2) 
s - m ~  + i m z F z  ' 

(c.3) 
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and the functions , i ( c )  are given by 

747 

4 
- + 41n(1 - c)  - (1 - c ) ,  

' 1 ( C )  I -- C 

02(c) = ~s2[c + c2+ ~ , ] ,  

(2 +/z)  2 

' 3 ( c )  - 1 + ~ t - c  
+ 2(2 + tt)ln(1 + bt - c) + (1 +/~ - c) ,  

0 4 ( c )  = ½s [41n(1 - c) - 4(1 - c) + ½(1 - c)2], 

, s ( c )  = ½s[(2 +/~)21n(1 + / ~ - c ) -  2(2 + #)(1 + / ~ - c )  + 1(1 + ~ -  c)2] , 

1 
,6(¢)  = m--~(,5(¢) - , , ( c ) ) ,  

,7(c) = ¼s2[c-c2+ ~c,], 

4 
' 8 ( c )  - s2(1 - c ) '  

4 
~9(C)  ~2(1 + # - c) 

4 ( l + ~ t - c )  (C.4)  - -  , qho(C) = In 1 - c 

where/~ is given by 

I~ = 2 m Z  / s  • 

It should be noted that this formula assumes that a Z ° exchanged in the t-channel 
has a propagator  proportional to ( t -  m2), without imaginary part. This is in 
accordance with the interpretation of the Z ° width as a perturbative, Q2-dependent 
quanti ty.  
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