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A rigorous path integral treatment for the d-dimensional pseudosphere I!“- ‘, a Riemannian 
manifold of constant negative curvature, is presented. The path integral formulation is based 
on a canonical approach using Weyl-ordering and the Hamiltonian path integral detined on 
midpoints. The time-dependent and energy-dependent Feynman kernels obtain different 
expressions in the even- and odd-dimensional cases, respectively. The special case of the three- 
dimensional pseudosphere, which is analytically equivalent to the Poincart upper half plane. 
the Poincare disc, and the hyperbolic strip, is discussed in detail including the energy 
spectrum and the normahsed wave-functions. ‘( 1 1988 Academrc Press. Inc. 

I. INTRODUCTION 

Ever since Feynman’s fundamental paper [ 133 there were attempts to calculate 
path integrals explicitly. Unfortunately, there are essentially only two examples 
which allow a direct solution: the harmonic oscillator (including, of course, the free 
particle motion) and the rigid rotator. All other quantum mechanical systems 
require more sophisticated methods which have been invented only recently. The 
key to all known solutions is to find a symmetry, often “hidden,” which allows a 
coordinate transformation, which may be non-linear or must be accompanied by a 
time transformation, to bring the path integral into a manageable form, such that 
one of the fundamental solutions can be applied (for recent reviews see [ 18, 261). 

With this paper we continue our previous work [18, 191, where we have 
formulated a canonical approach to calculate path integrals on curved manifolds. 
Let us consider the generic case (see [IS] and references therein for further details), 
where the classical Lagrangian is given by 

=%I(% 4) = F &b@ib - V(q) (1) 
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PATH INTEGRAL ON THE PSEUDOSPHERE 121 

with metric g,, and line element ds* = g,, dq” dq’. The quantum Hamiltonian reads 
(k= 1)’ 

(2) 

where A,, is the Laplace-Beltrami operator 

n,,=‘a,p&ab 
,/;; 

(3) 

(g is the determinant of the metric tensor). In order to express H by position and 
momentum operators, one constructs the momenta 

(4) 

which are hermitian with respect to the scalar product 

(f,JJ=~f:fi&&. (5) 

In terms of the momentum operators (4) the Weyl-orderedform of the Hamiltonian 
(2) reads 

H=&(g”hp~p,+2p,guhp,+p,p,g”“)+ V(q)+AV(q) (6) 

with the well-defined quantum correction (of order h*) 

(7) 

(R is the scalar curvature; gub is the inverse of g,,; r;, are the Christoffel symbols). 
Using the Trotter formula eeifH :=e~“‘AfB’=~-lim.,,(e~i’A’Ne-i’eiN)N and 

the short-time approximation to the matrix element (q”1 ePi’ H Is’), one obtains 
the Hamiltonian path integral ($j’ .- ’ .- ?(q(j’ + q’j- ‘)), E = T/N, T = t” - t’, d = dimen- 
sion of the Riemannian manifold), 

p?‘(q”’ eq”- “ye& ,Ub(q”‘) py’py~-Ev(q”‘)--s Av(q”‘) , 

(8) 

1 We only consider systems with such a simple structure: see [30] for a discussion of more 
complicated systems. 
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and the Lagrangian path integral (the momentum integrations can be carried out), 

= [ g( q’) g(q”)] - l/4 ~.-(~)““‘(~~~‘Idq(j))~,~ lim 

xexp i 
i[ 

; ga,(P’)(P - 4 (I- l))yqW _ qC~- l))h-EV(q(i))-EdV(q(/)) II 
(9) 

Note that it is crucial that all coordinate-dependent expressions be taken at the 
midpoints 4”‘. This prescription follows in an unambiguous way from the Weyl- 
ordering rule (see, e.g., [27, p. 479, 301). For the correct form of the normalisation 
C= [g(q’) g(q”)Jp”” see, e.g., [32]. 

In [lS] we have calculated the path integral for the d-dimensional rotator, i.e., 
for the quantum mechanical motion on the sphere S- ‘. In addition, we have dis- 
cussed some path integral calculations, which have become important in recent 
years, i.e., the Coulomb problem (see [7,23-25,38]), the Morse potential 
(see [6]), the Langer transformation in a semiclassical treatment in radial path 
integrals (see [ 15]), and general space-time transformations in radial path integrals 
(see [3&38]). A further application of the Weyl-ordering rule has been presented 
in [19], where we have explicitly calculated the path integrals for the Poincare 
upper half plane and Liouville quantum mechanics, respectively. 

In this paper we present the path integral formulation for the pseudosphere /id-‘. 
Our work was motivated by the observation that the quantum motion on the 
pseudosphere Ad- ’ is formally similar to the quantum motion on the sphere S-I, 
but, of course, very different in its character. To our knowledge, no consistent and 
complete path integral treatment for the pseudosphere exists up to now. 

Recently, there have been two path integral treatments of the pseudosphere. The 
first is a semiclassical calculation for A2 and A3 due to Gutzwiller [21]. He noticed 
in the case of A3 a “mysterious phase factor” C$ = 1/2mR2 in the Feynman kernel 
K(T) which is due to the zero-momentum energy-shift: E, = 1/2mR’. This shift did 
not arise in the semiclassical calculation, but it appears very naturally in deriving 
K(T) directly from the Schrodinger equation. 

A second work on this subject is due to Biihm and Junker [4], who discuss path 
integrals over compact and non-compact rotation groups. However, these authors 
missed the essential point leading to the quantum correction (7) and so they got an 
incorrect energy spectrum for /Id-i: ET’= ( 1/2mR2)(pZ + l/4) (p > 0, d= 2, 3, . ..). 

Our paper is organized as follows. In Section II we discuss and calculate the 
path integral for the d-dimensional pseudosphere. We show that the correct energy 
spectrum reads 

E;L-&-~~+(~)‘] (p>O,d=2, 3,4 ,... ). (10) 
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In Sections III and IV we discuss in some detail the even- and odd-dimensional 
cases. On the one hand, it is possible in even dimensions to express the Feynman 
kernel K(T) in closed form, yielding simple expressions for d = 2,4 and finite sums 
for d= 6, 8, . . . . On the other hand, one can express in all dimensions the Green’s 
function G(E) by associated Legendre functions of the second kind. 

In Section V we discuss the pseudosphere A ‘. A2 is of special interest, because it 
is analytically equivalent to three further Riemannian spaces: (1) the Poincare 
upper half plane U, (2) the Poincare disc D, and (3) the hyperbolic strip S. These 
spaces play an important role in the Polyakov approach to string theory (see 
[lo, 11,17,31,35]) and in the theory of quantum chaos (see [ 1,21,39,40]). In 
string perturbation theory one considers open or closed Riemannian surfaces of 
genus g. The order of the perturbation expansion corresponds to g. For a closed 
Riemannian surface one has, e.g., for g = 1 the torus and for g = 2 the double 
doughnut. By the uniformisation theorem of Klein, Fricke, and Koebe (see, e.g., 
[3]) these surfaces are conformally equivalent to compact domains (polygons) with 
4g edges and vertices in these Riemannian spaces (e.g., for g = 2 an octagon in D, 
say). Furthermore, these compact domains are fundamental domains of discrete 
subgroups of PSL(2, R). The action of the group elements are for, e.g., z E D, 

az + b 
ZH 

a* + b*z 
(Ial*- lb\“= 1) (11) 

which are isometries in D. Under the action of the generators of the group the 
polygons tessalate D, say. These features have been extensively studied by Poincare 
[34] and Fricke and Klein [9]. A more recent discussion is, e.g., due to Fenn [S]. 
All these spaces have constant negative curvature. This hyperbolic structure is 
responsible for the fact that classical and quantum motion in the polygons is 
chaotic. 

In our path integral treatment we shall show that the Feynman kernels K(T) on 
A* and U can be transformed into each other. Further, having the path integral for 
/1* it is quite simple to express it in terms of the variables on the Poincare disc D. 
This enables us to write down the path integral solution for the disc. We shall 
briefly mention the path integral formulation for the strip S, but a detailed treat- 
ment for S will be given in a forthcoming paper. 

Section VI summarizes our results. 
The appendices contain further details and some important but tedious 

calculations. They concern Legendre functions (Appendix A) and the proof of an 
important path integral equivalence (Appendix B), and the Appendices C and D 
contain detailed proofs for deriving the Schrodinger equation from the short-time 
kernels corresponding to the different path integral representations for A”- ‘. 
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II. THE PATH INTEGRAL ON THE ~-DIMENSIONAL PSEUDOSPHERE 

We are considering the Schriidinger equation 

in d-dimensional pseudospherical polar coordinates (see [41 I), 

x, = Rcosh t 

x2 = R sinh r cos %,- 2 

xj = R sinh r sin %d--2 cos %,- 3 

. . (2) 

xdP, = R sinh t sin %,- 2 . . sin e2 cos 8, 

x,=Rsinhrsin%, ,...sin%,sin%,, 

where O<r<co, O<%,<n (v=2,...,d-2), 06%,<2~. The metric in x-space 
reads as (G,,) = diag( - 1, 1, . . . . 1) (a, b = 1, . . . . d) such that x2= -R2= 
-xf + C:‘= 2 xt with R fixed (A cd- ‘) has constant negative Gaussian curvature, 
K = -(d - l)(d - 2)/2R2; we will often also use %,_, = t and 8, = 4). The 
metric in pseudospherical polar coordinates reads (gob) = R2 diag( 1, sinh* r, 
sinh2 r sin’ %,_ *, . . . . sinh’ t . . . sin2%?)(a, b = 1, . . . . d - I). K:,, is the Legendre 
operator in the space /id- ‘: 

K&,=[$+(d-Z)cothr;]+-&-[&+(d-3)cot%,qq&]+ ... 

+cot%*$ + 1 1 a* 
(3) 

2 sinh2r . ..sin2%. @’ 

The Hamiltonian reads 

(4) 

The solutions of the eigenvalue problem (see [2]) 

H$=Ell/ (5) 

are the zonal spherical harmonics Hp.,,, cd) (u) with the spectrum (1.10) (u is a unit 
vector on Ad-‘: u =x/R). The H$,(u) can be written as 

H$),(u, = ZJ4 Sj,;- “P), (6) . . 
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where the S)d,-l)(Q) are the usual orthonormal spherical harmonics for the S”-” 
sphere and b denotes a (d- 1 )-dimensional unit vector on Sd- 2. The Z,,,(z) read 

[p>O, IEN~, p= 1, 2, . . . . M, M=(2l+d-3)(f+d-4)!/(l!(d-3)!), d=4, 5, 
d= 2, 3 see (48) and (49)]. The Z,,, are orthonormal 

I 

cc 

Z,,,(7) Zt,.,( 7) sinhd- ‘7 dz = 6( p - p’) 
0 

and form a complete set 

i 
Om Z,,,(T) Z37’) dp = (sinh 7 sinh T’)‘*~~)‘~~(T - 7’) 

.  . . )  

(7) 

for 

(8) 

(9) 

(for details see Appendix A). Therefore the Hb‘$, are orthonormal and form a 
complete set on A’-‘. 

In order to construct the path integral on A”-’ we start with the momentum 
operators which are given by (see (1.4)) 

coth 7 

h=f &+T ( Y 
V-l 

cot 8, 

> 

,,=I? 

i I@’ 

(10) 

and are hermitian with respect to the scalar product 

(f, g) = IOX sinhd-*r dz ‘fi2 In sin”-‘O,, d0, [:= dq5 f *g. (11) 
v=2 0 

Rewriting the Hamiltonian (4) with the help of (1.6) and (1.7) yields (in H no 
ordering ambiguity arises, because of the special form of g,, for the pseudosphere) 

1 
smh’r . sin%, P; +wwt 1 

(12) 

with 

dV({~})=&[(d-2)2-&- ... - 
1 

sinh2z . .. sin28, 1 (13) 
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({ .} denotes a collection of variables). We thus infer that the Hanzil&nian path 
integral on the pseudosphere reads (see (1.8)) 

IP’( { O”}, (0’); T) 

= C lim N-,~ j- {d@“} . . . j” (d@‘-“} j” k!$$. . . j- k$$ 

. (14) 

C is the normalisation (see (1.8)) 

d-2 

1 
~ I/2 

C = (sinh r’ sinh r”)(‘~ ‘)I2 fl sin”- ’ 19: sin” ~ ’ 0: , (15) 
v=2 

and X denotes the effective classical Hamiltonian on the lattice, 

~({O”‘, W”}, {p/j’}) 

‘& [py]‘+ 
i 

1 
sinh ,(j),inhz(j.-l) [pX’,l’+ “’ 

1 
+ sinhz(j)sinht(~-“...sineV)sineY-*) cppq2]+dv(je(j), e(j-1))) (16) 

with AV given by 

1 
-sinh5(j)sinhz(j-*)...sineY)sine~~*) ’ 1 (17) 

Here some remarks are in order. As mentioned already in the Introduction, the 
consistent lattice definition of the path integral requires one to take all coordinates 
{e} at the midpoints f?i? = f 8”’ ( LI + Ok’- I)). However, in our case it is legitimate to 
make the replacement sin*@ -i sin ey sin ey l) etc. (“product form”). This follows 
from the fact that the relevzmt terms of O(E) arising from the above replacement are 
exactly cancelling each other. A general discussion of path integrals based on the 
“product form” definition will be given elsewhere. 

The momentum integrations in (14) are of Gaussian form and we get the follow- 
ing Lagrangian path integral on the pseudosphere, 

zP’)({W}, (O’};T)=~{De}(t)exp ii)~U[~c,({e,~})-Av({e})]dt , (18) 
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where the classical Lagrangian and the integration measure are given by (with the 
“product form” to be used on the lattice) 

&({f3, e})=T R2[i2 + sinh2rb$-, + . . + (sinh*t . . .sin28,) 4’1, (19) 

{De}(t) + (g)N’de1”2 k’ sinh”-27(/‘~7(iI dQ(/I. (20) 
. j= 1 

Here &?(j’ denotes the (d- 2)-dimensional surface element on the unit sphere SdP ‘: 

d-2 

&?(iJ = n (sin (j$j))k ~ ’ &y). 

k=l 
(21) 

It is worthwhile to note that the normalisation C together with the determinant 
expressions (see (1.9)) has been exactly cancelled, and that the path integral (18) 
has the standard canonical measure (20), which can be directly derived by a trans- 
formation from Minkowskian to pseudospherical polar coordinates. 

In Appendix C we show that from the short-time kernel of Eq. (18) the 
Schrodinger equation (1) can be deduced, so that the path integral (18) is indeed 
the correct path integral on Ad- ‘. Some details concerning the equivalence of our 
lattice formulation to the midpoint procedure can be found in Appendix B. We 
emphasize that this equivalence is a special feature of the pseudosphere (and, of 
course, the sphere, too; see [IS]). 

The path integral (18) with the Lagrangian given by (19) is too complicated for 
explicit calculations. We therefore try to replace (19) by the following expression 
(this replacement is motivated by the fact that an analogous trick has been 
successfully employed in the case of the sphere SdP ’ [ 183) 

where I’, must be determined and u denotes the d-dimensional unit vector on the 
Ad-’ sphere. With u2 = - 1 (Ad-’ is a space of constant negative curvature!), 

(U (‘1 - u(2’)2 = - 3 1 - co& z’1,2’). (23) 

We note that 1”,” ’ is nothing but the hyperbolic distance between the points (Q(“} 
and {0@‘} measured in units of R. Using the addition theorem 

cash I”.2’ = cash r(” cash 712’ - sinh 7(l) sinh 712’ 

( 

d-- 3 d-2 

x cos SyL, cos f3L2!, + C cos $2) cos 6:) n sin %yJ sin eL*’ 
m=l n=m+l 

d-2 

+ JJ sin 8:” sin ok*’ 
> 

(24) 
n=l 

595/182/l-9 
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we can show (see Appendix B) that the following identity holds:2 

exp{isP&(((P}, {tY-” 

Here 

Y&( {8(j)}, (P “>) 

mR2 =- 
2E2 

(,(A - z (j- 1))2 + sinh z(j) sinh 7(j- l)(f&jL 2 _ (3jj-il))z + . 

+ (sinh T(j). . . sin ey- 11)(4(j) - d(j- I))2 1 (26) 

denotes the “classical Lagrangian” (19) on the lattice and 

w~i)=~[ -I+&+ ... +sinh2r ’ . . . sin’ e2 1. 

From (13) and (27) we obtain the important relation 

v +,&d-l)(d-3) 
c 8mR2 ’ 

With (22) and (28) the path integral (18) can be rewritten as 

)I. 
(25) 

(27) 

(28) 

(29) 

Equation (29) is our final expression for the path integral on the pseudosphere Ad- ‘. 
Its lattice definition is given by 

P)({e’y, {efj; 7-j 

=e -iT(d- I)(d~ 3)/8mR2 lim N-m (g).,i”2 j ;j( du”’ 

imR2 N 
x exp -T 1 

j= 1 
(30) 

(du”‘= sinhd-2r”’ dr(j’dQ”‘). The path integral (29) is, of course, equivalent to 
the path integral (18), but (29) is much simpler. In Appendix D it is shown that 
from its short-time kernel the Schrodinger equation (1) can be derived. 

z We use the symbol * (following Dewitt [S]) to denote “equivalence as far as use in the path 
integral is concerned.” 
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In order to evaluate the path integral (30) we need an expansion for emZcosh’. We 
have (Re(z) > 0, Re(d) > 1) 

e -zcosh/ _ - sinh /)‘3 -d)/2 T(ip+(d-2)/2) ’ 

r(ip) 
P;:$12(cosh I) K,(z) dp, 

(31) 

where S; denotes the associated Legendre function of the first kind (see Appen- 
dix A) and K, a modified Bessel function. Equation (31) can be derived from the 
integral representation ([ZO, p. 8043, Re(z) > 0, Re(,h) < 1) 

s 
m 

I 
e-““(y’- l)-“” P;- ii2(y) dy = 

J- 
L zpK,,(z) 
7TZ 

(32) 

and the completeness relation (see also Eqs. (9) and (A. 11)) 

r(ip-p+ l/2) 2PP 

T(ip) 
rp- ,/2(x) g$- ,,AY) 4 = atx - Y). (33) 

Next we must expand (31) into the spherical harmonics on Ad- ‘. This is done with 
the help of the relation [2] 

(sinh /(‘J))(3--d)i2 r(@ + (d- 2)/2) 2 9;;y;‘:i2(cosh /“.2’) 
r(b) 

= (2n)‘d- IV2 c Hj$yu”‘) H$!,(u’“‘). 
14 

Inserting (34) into (31) yields (Re(z) > 0, d = 2, 3, . ..) 

(34) 

e (35) 

For the functions Hrl, we have the orthogonality relation (see Eq. (8)) 

I /Id- I 
du HF,,+.(u) H?],*(u) = S(p - p’) 6,,r 6,,.. , . . , (36) 

Therefore we get for the jth term (j= 1, . . . . N) in the path integral (30) (for a direct 
use of Eq. (35) we lirst must perform a Feynman-Wick rotation (E -+ -is)) 

i(mR*/c)( 1 - coshNJ- I)) 
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Using (37) and the orthogonality relation (36) the integrations in (30) can be easily 
carried out with the result 

K’d’( {P}, {e’]; T) 

= exp -& (d- l)(d- 3)) irn dp~,(T) 1 ff;;!,*(a’) ffbf’:,(a”) (38) 
0 1.P 

with 

p,(T) := lim N-~ [(~)“2exp(~)K,(~)]N. (39) 

To perform the limit we use the asymptotic expansion of the K,-Bessel function 
PO, P. 9631, 

K,(z) N , (40) 

and get 

p,(T) = exp 
p2 + l/4 

-iTw 
> 

. (41) 

We thus infer that the Feynman kernel for the d-dimensional psuedosphere A”- ’ 
reads [we set Kld)(r; T) - KCd’( {Of’>, (O’}; T), b ecause the Feynman kernel at fixed 
time T is only a function of the hyperbolic distance I”.“‘- r] 

K(d)(r;T)=~~~dp~ex,(-(~)[p2+~])~~!~(u’)~~~!~(u”) (42) 

f(ip+(d-2)/2) 2#-d,,2(COShr) 
ip - l/2 

(43) 

We immediately read off the normalised wavefunctions 

and the energy spectrum 

E’“’ = 
P &[p2+yq (P>O) (45) 
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with largest lower bound 

E(J) = (d-2J2 
0 

8mR2’ 
(46) 

These results coincide, of course, with the one obtained from the operator 
approach; see, e.g., [2]. 

It is a very interesting feature that Ea’ increases with increasing dimension. 
Gutzwiller [21] noted this for E, t4) = 1/2mR2 in a semiclassical path integral 
calculation. In Ref. [4] this increasing lower bound does not appear. There the 
largest lower bound is constant for all d reading &“) = 1/8mR2. However, in our 
calculation this energy shift arises very naturally. Note that it is indispensible in the 
derivation of the Schrodinger equation from the short-time kernel of the path 
integral (30). 

By a Fourier transformation we obtain the energy-dependent Feynmann kernel 
G(E) (Green’s function): 

G’“‘( r; E) = 6 dp 
1 

1 fqp”) fq/!,*b’). 
( 1/2mR2)[p2 + (d- 2)*/4] -E (.,, (47) 

G(E) has a cut in the complex E-plane with branch point at the value (46)-in 
agreement with the continuous spectrum (45). 

We close this section by explicitly stating the normalised wavefunctions and the 
energy spectrum for dimensions d= 2, 3,4 (for d= 2 see, e.g., [20, p. 10081: 
9;” ,,,(cosh r) = dn 7~ sm z cash vt; for d= 4 see Section III): 

2 

(PER) 

GL:) p’ip’,,,(cosh z) e’“, 

(48) 

(49) 

(P>O,lEZ) 

Ejp) = &(p2+ lh (p>O, ItsNo, p= -f, . . . . 0, . . . . I). 
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III. THE FEYNMAN KERNEL IN EVEN DIMENSIONS 

In even dimensions it is possible to express Eq. (11.43) in closed form, yielding 
simple expressions for d = 2,4 and finite sums for d = 6, 8, . . . . We start with 

P”(r; T) = & (2~ sinh r)(3-d”2 

(1) 

We first rewrite the Legendre functions in terms of Gegenbauer functions. With (see 
W, P. 2~1) 

(sinh r)-“P;_“,,,(cosh r) = 
r(2cr+ 1) f(v--a+ l/2) 
zar(a + 1) T(v + c1+ l/2) 

U;‘;? ,,,(cosh r) 

and using properties of the r-function we get for d even 

Pd’( r; T) = ~(--l)‘d-2”2r((d-2)/2)e_(insmR2,(d-2,2 
21tdi2 

X 
I 

O” dp p%?j$-:J/22,,2(cosh r) e-(iT’2mR2’P. 
0 

(2) 

(3) 

We can now reduce the d-dimensional problem to the case d= 2. This is done with 
the help of the following property of the Gegenbauer functions: 

This relation can be deduced from [20, p. 10303 

cqtf(z) = r(n) dkG9;(z) 
2kT(1 + k) dzk 

and liml,, r(A) Vi(cosh r) = (2/v) cash vr. Inserting (4) into (3) we obtain 

eipre - (iT/2mR2)p2 dp 

1 d 1 
Cd- 230 

~ (iT/8mR2)(d ~ 2J2 --- 

2n d cash r 
e(imR2/2T)rz 7 

(4) 

(5) 

(6) 
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which yields the recursion formula 

K(d+2)(r; T)= -&exp( -&(d- l))&P)(r: T) 

=(~)(~)e~~( 
-& (d- 1)) $ P(r; T) (7) 

(z = i(mR*/2T) r2). For the first three cases we explicitly obtain 

(8) 

(10) 
These are the Feynman kernels of the “hyperbolic circle,” the /i3-pseudosphere (see 
Gutzwiller [21]) and the A5-pseudosphere, respectively. It is remarkable that the 
kernel for d= 2 is identical to the free particle kernel in R, if the euclidean distance 
is replaced by the hyperbolic distance R . r. This is quite different from the euclidean 
circle where the Feynman kernel can be expressed in terms of a Jacobi O,-function, 
which is an infinite sum over free particle kernels. 

We can also calculate the Fourier transform of K’“‘(T), the Green’s function 
Gtd’(E). We get 

’ d ](dM2”2 
271 d cash r 

X 
I 

K T- ‘I2 exp 
0 

-$f++i[E-s] TldT 

c 

1 d 

I 

(d- 2bl2 

=mR2[2mR2E- (d-2)2/4]p’J4 --- 
2n d cash r 

x 2i 

II-- 
- 
71 

r K,,2(ir ,,/2mR2E - (d- 2)2/4) 

mR2 1 d 1 
Id-2V2 

= J2mR2E - (d - 2)2/4 
--- 

2n d cash Y 

xexp -iir ( ,/2mR2E-(d-2)‘/4) 

=$(2n;;;h y)‘d-3”2dj~‘2:‘;‘,,~(d~2ik~In(coshy)- (11) 
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The last equation is proved in Appendix A. Further we have used the integral 
[20, p. 3401 

v-l e ~ 81-y - 7.x dx = 2 B VI2 
X 

0 
_ 

Y  
Kv(qh) (12) 

and K,&z) = Jrc/2z e-‘. The first three cases read 

Gf2)(r; E) = 

Al-- 

$ e-irJ%%% (13) 

(14) 

mR2 ,/m- icoth r ePirJm 
Gc6)(r; E) = -4n2. 

sinh2r 
(15) 

IV. THE FEYNMAN KERNEL IN ODD DIMENSIONS 

Unfortunately there is no explicit expression for the Legendre functions 9; in 
terms of elementary functions when p is an integer. However, we can express the 
Green’s function G(E) in a simple way in terms of Legendre functions of the second 
kind. Using the property (A.5) of the Legendre functions we get for d odd 

r(ip + (d- 2)/2) ’ 

r(Q)) 
9$y,d:‘(cosh r) = (- 1)‘“P3’21p tanh ?r@Pj::$*(cosh r). (1) 

Inserting into the Feynman kernel yields with 9;(z) = (z’ - l),‘* dm~v(z)/dz” 

Kcd’(r; T) = & (2n P~p31 $i2 (cash r) 

x exp 

p tanh ~p9$- ,&cosh r) 

(2) 
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We now perform a Fourier transformation, 

135 

G““(r; E) 

4 

cc 
=I eirEK’“‘(r; T) dT 

0 

3)/Z Islj 
I dp p tanh np9$ _ r,,(cosh r) 

0 

X Jo= dTenp( -iT{&[p’+q]-E}) 

mR2 

[ 

1 d (d-3)/2 m 
=- --___ 

II 2n d cash r 1 1 
4 

p tanh II~ 

0 
p2 _ [2mR2E- (d- 2)2/4] $p- If2 (cash r, 

(3) 

1 
(d 3)/2 

2iJ2mER2-(d-2)2/4- ,p(cosh r), (4) 

where we have used the integral [20, p. 8191 

I 
a x tanh xx 

a2 + x2 %r- ,p(cosh Y) dx = %- ,,,(cosh Y). 
0 

(5) 

Differentiating 2” (d- 3)/2 times and using 97(z) = (z’ - l)“~2(dm~v(z)/dz”) we get 
for the Green’s function on the d-dimensional pseudosphere 

(d- 3V2 yd- 3’1.2 
r,/2mtR2- (d- 212/4- ,,2(cosh r)’ (6) 

A comparison of Eq. (6) with Eq. (111.11) shows that the representation (6) is 
generally true-up to a phase factor-irrespective whether the dimension is even or 
odd. 

V. THE PSEUDOSPHERE A2 

The pseudosphere A2 has some special properties which make it the most 
interesting one among all the others3) LI* is analytically equivalent to three further 
Riemannian spaces: 

(1) The Poincare disc D := (z =x1 + ix, = re@) r < 1,4 E [0,27r]}, 

(2) the Poincare upper half plane U := { [ = x + iy 1 x E R, y > 0}, and 

(3) the hyperbolic strip S:={~=X+~YIXER, YE(-n/2,42)}. 

3 Throughout this section we put R = 1; i.e., we consider the pseudosphere AZ with Gaussian curvature 
K=-1. 
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The study of compact domains in these spaces is of great interest in string 
theories and quantum chaos (as already mentioned in the Introduction). 

1. The PoincarP Disc 

Let us consider the stereographic projection of ,42 onto the (xi, x,)-plane with 
projection center y = (0, 0, - 1) (y,, = cash r, y, = sinh T sinh 4, y, = sinh r cos 4): 

y1 + iy2 z=x, +ix,=re@=-= 
1 +yo 

tanh i (sin C$ + i cos 4). (1) 

The boundary r = 1 of the disc D corresponds to the points at infinity of the hyper- 
boloid (i.e., the pseudosphere A’). The pseudosphere itself is represented by the 
interior of the disc. The classical Lagrangian and Hamiltonian are, respectively, 

i2 + r2d2 s =(l-r2J2 
=%=2m (1-r2)2’ Cl gm -(P:+IP$ 

and the quantum Hamiltonian reads (see Eqs. (II.3 and 11.4)) 

H= -(l-r2)2 - 
8m 

The geodesic distance d between two points z and z’ is given by 

2/z-2’12 
Gosh d(z, z’)= 1 + (1 _ \zlz)(l _ lzr12)’ 

(2) 

(3) 

The metric reads g,, = [2/( 1 - r’)]’ diag (1, r’). 
Let us construct the path integral on D. Following our prescription outlined in 

the Introduction, we get 

rr=a,(lnJ;;)=f+& 

r+=a,(lnJg)=O 

ia 1 2r 
pr=7 I 5+%+1-r’ ( > 

and the quantum correction AV reads 

AV(r)=& l+r2-v]=&--&+&r2. 

(5) 

(6) 
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Therefore we get for the path integral on D (see (1.9)) 

KD(r”, r’, fj”, f&4’; T) 

16r’r” = [ (1 - p)*( 1 - y*)* ]-‘I’ ?‘_“, (&)N Tjll f dr(,) jin d4tj)!, (*~~~~))2 

2im (r(j)-r(,-1))2+T:j)(~(j)-~(j-1))2 

xexp E [ (1 - ‘fj,)2 
- i.8 A V(f(j)) . 

1 
(7) 

This path integral looks rather complicated, but nevertheless it can be explicitly 
computed as will be shown in a forthcoming publication. Here we go back to the 
solution derived in Section II. From Eqs. (11.42) and (11.49) we obtain 

KC3’(T”, T’, qY’, f/4’, T) 

Xp sithnp Ir(i+ ip+l)l* e”(“~-~“~P_:,z+,p(cosh 5’) YE{,2+ip(cosh r”). (8) 

Using for the Legendre functions the representation [20, p, 1010, l(z - l)/(z + 1)1 
cl) 

L!?!(z)= l ~(~)-p’2(~)v,+v, -v-p;l-p;s) (9) 

and introducing, following Helgason [22], 

Qp,,(r) = (1 - r*)l/*+@+‘l r(lZl + l/2 + ip) 
11,!rt1,2+ipJ ~F,(~$~P,I~I+~+~P;I~I+~;~*), (10) 

we can express Eq. (7) with the help of (1) and (10) in terms of the variables of the 
Poincare disc D: 

KD(r”, r’, #‘I, 4’; T) 

Thus the wavefunctions and the energy spectrum on the Poincarb disc are given by 

(12) 
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(p > 0, I E Z) satisfying the orthogonality relation 

i s 
l dr 2n db 

0 0 

2. The PoincarP I’pper Half Plane 

The Poincare disc D can be mapped onto the Poincare upper half plane U by the 
transformation 

-i+i 

z=i+i. 

The classical Lagrangian and Hamiltonian read, respectively, 

y;.,=‘Mqi2+j2), 
2 Y2 

83 = & Y2(Pf. + P,‘t). 

(14) 

The metric is g,, = (l/y’) hah. The Laplace-Beltrami operator or quantum 
Hamiltonian reads 

H= -ky’($+-$). (16) 

In a previous paper we have presented a complete path integral treatment on U 
[ 191, including its connection to Liouville quantum mechanics. So we state just the 
result for the path integral on ~7:~ 

P(x”, y”, x’, y’; T) 

1 

-xci-1))2+(y(j)- yCl-1))2 

yWy(j- 1) 1 

p2 + 114 
2m 

> 
m K,(Ikl y’) K,(Ikl y”) ei“(-“‘--“). (17) 

4 Application of the Weyl-correspondence yields AV= 1/4m. But using the “product rule” 

Z,, -t y(,,y,,- 1) in the lattice formulation of the path integral cancels A V, such that Eq. (17) is obtained. 
From its short-time kernel the correct Schriidinger equation can be deduced; see [ I93 for details. 
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The wavefunctions and the energy spectrum on U read 

y) (xER, y>()) 

(18) 

(p > 0, k E R\ (0) ) satisfying the orthogonality relation 

3 ‘b:k*bt Y) ti;:‘.,,(x, y) = 6(k - k’) S(p - p’). 

The spectral representations (8) and (17) can be transformed into each other. In 
order to achieve this we use the integral [20, p. 7321 

K,(ax) K,(bx) cos cx d.x = 
d 

4&cos WC 
B’,2+(a2+~;c2), (20) 

Eq. (11.33) for the case d= 3, and the addition theorem for the associated Legendre 
functions [20, p. 10141, 

This enables us to derive the identity, 

dpp sinh zp exp 
p2 + l/4 

-iT7 m Kjp( jkl y’) Klp( Ik( y”) ei“(r”p”) 

=$,=!, ]rJpexp[ -irp~]psinhirp(riJ+rp-i)!’ 

x e”o” -  4’,p/ 

-  1,2 + ,,(cosh 7’) 9’: , , 2  + rp (ah ~“1, 

where use has been made of the identity 

y”2 + y’2 + (x”  -  y)2 

2y’y” 

(2-J) 

= 1 + Ii” - [‘I2 212” - z’l 2 

2 Im([‘) Im([“) = l+ (1 - ]z’12)( 1 - Iz”J2) 

= cash d(z”, z’ ) = cash z” cash 7’ - sinh 7” sinh 7’ cos(qY’ - 4’). 

3. The Hyperbolic Strip 

(23) 

With the help of the transformation 

q=X+iY= -ln(-ii) ( = 2 artanh z) (24) 
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we can transform the Poincare upper half plane (the Poincare disc) onto the hyper- 
bolic strip S. The classical Lagrangian and Hamiltonian read 

mk2+ I’* 
Lit& =-- 

2 cos2Y ’ 
&&=- cy;y (P’, + P$>F (25) 

respectively. The quantum Hamiltonian reads 

Hz -g(.$+-$). (26) 

The metric is g,, = (l/cos’Y) Jab. Therefore we get the quantum correction AV, 

AV=-&, (27) 

and the effective Lagrangian to be used in the path integral defined on midpoints 
reads 

m.l?‘+ F* 1 
=%r=TCos2--;I;;;. (28) 

. 
In a forthcoming paper we shall give a detailed path integral treatment on S, 
yielding the wavefunctions and the energy spectrum 

4z( sinh’np + cosh2 zk) 1 “’ Jcsv P$ _ ,,*(sin Y) eikX 

(29) 

(PER, kER). 

VI. SUMMARY 

In this paper we have presented a complete path integral treatment on the 
pseudosphere A . d-’ The correct treatment of this Riemannian space is based on the 
Weyl-ordering rule for the quantum Hamiltonian which yields the well-defined 
quantum correction 

AV({tl})=&[(d-2)2--r&- ... - 
1 

sinh2z...sin29, 1 (1) 
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to be used in the (Hamiltonian or Lagrangian) path integral. A crucial point in 
using the Weyl-ordering rule is that it leads in an unambiguous way to the prescrip- 
tion that all coordinate-dependent expressions in the path integrals must be taken 
at the midpoints. However, in our path integral formulation, we use a product form 
instead of the midpoints, because it simplifies our formulas considerably. Having 
the correct path integral on the pseudosphere, it turns out, however, that it is too 
complicated for explicit calculations. We can use, however, an identity in the 
path integral to cast it in a much simpler form, yielding the (constant!) quantum 
correction 

v +,,Jd-l)(d-3) 
c 8mR2 (2) 

The resulting path integral can be exactly calculated yielding the spectral represen- 
tation of the Feynman kernel K(T). From K(T) we have obtained the normalised 
wavefunctions and the energy spectrum 

E&-&2+(~)‘] (~>O,d=2, 3,4 ,... ), (3) 

showing a characteristic dependence on the dimension d. 
We have discussed in some detail the even- and odd-dimensional cases. In even 

dimensions the Feynman kernel could be expressed in closed form, yielding simple 
expressions for d = 2,4 and finite sums for d = 6, 8, . . . . 

1 d 1 
Cd- 2112 

2n d cash 
e(imR2/2T)r2 

r (4) 

This, of course, is quite similar to the d-dimensional rotator, where in even dimen- 
sions the Feynman kernel can be expressed in terms of a f3,-function and its 
derivatives. 

To establish the connection of the exact expression (4) with the semiclassical 
approximation to the path integral, we reinsert fi to obtain 

K(“‘( r; T) = (~T)‘1-“‘2flexp[~(S-h2$-$$T)] [l+O(ti)]. (5) 

Here S denotes the “classical action” S=mR2r2/2T and DCd) the van 
Vleck-Pauli-Morette determinant which in our case is explicitly given by 
(r/sinh r)d-2. Note again the additional time-dependent phase factor which is due 
to the quantum correction (2). We have thus derived Gutzwiller’s “mysterious 
phase factor” [21]. 



142 GROSCHE AND STEINER 

The Green’s function G(E) can be expressed in terms of an associated Legendre 
function of the second kind in all dimensions, 

(yd= 1; d, odd; yd= i, d, even). 
The hyperboloid A2 is of special interest, because it is analytically equivalent to 

three further Riemannian spaces, the Poincare disc D, the Poincare upper half 
plane U, and the hyperbolic strip S. The path integral solution on D can be found, 
once the solution for /i2 is known. One has only to perform a transformation of the 
variables z, 4 of A2 to r, 4 of D. The path integral solution on U has been presented 
in an earlier paper [ 193. We have shown that the Feynman kernels on A and U can 
be transformed into each other. In all these cases the energy spectrum reads 

(P’O). 

We have thus added further examples to the short list of exactly solvable path 
integrals. The examples demonstrate once more the consistency as well as the 
universal utility and feasibility of our general method developed in [18]. 

APPENDIX A: THE ASXXIATED LEGENDRE FUNCTIONS 9Pf AND 2: 

The functions .cY’; and J?{ are linearly independent solutions of the differential 
equation 

(1 -z’)$)-2r$)+[v(v+l)-& 1 u(z) = 0 
and are defined by means of the hypergeometric function >F, : 

x F v+p+2 v+p+l 3.1 
2 1 ( 

2 
’ 

2 
;v+-,, > 

2 z 

(2) 

They are called associated Legendre functions (or spherical functions) of the first 
and second kind, respectively.5 They are uniquely defined in the intervals ( 1 - ZI < 2 

5 We use SC(:). 2;(z) for ZG C\[ - 1, l] and P:(x), Q:(x) for XE (- 1, 1) for the Legendre functions of 
the first and second kind, respectively. 
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and JzI > 1, respectively. They can be extended to the entire z-plane where a cut 
along the real axis from - 00 to + 1 must be made. 

The so-called conical functions 95 ,,z + iP have the special property 

P -1,*+ip(‘)=~pY~1/*-jip(‘?) 

which is due to the general property 9; = Pm ,,~ , . If p = m E Z, 

(4) 

,!q(z) = 
I-(v+m+ 1) 
r(v--m+ l)~3Z). (5) 

The functions .P - ,,,+in form a complete set; that means a function g can be expan- 
ded (see [28, p. 202]), 

with 

f(P) = 
p sinh np 

71 

Also, 

with 

These properties follow from the orthogonality relation (p, p’ E R+, p E R) 

= 
~!,,,+&) P ,,2-ip4cOdy=~(p-p’) 

and, vice versa, from the completeness relation 

T(1/2+ip-p) lPP 

r(Q) 
,,2 + ;&4 95 ,/2+ip(Y)dP=6(Z-Y). 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

These two relations are well known as generahsed Mehler transformations. 
The proof of the orthogonality relation is relatively easy. We use the general 

integral theorem (see [28, p. 191 I), 

(v-rJ)(v+o+ I)+$$ I WC(Z) w”,(z) dz 

= {JI-Z’[w!‘~ (z) w:(z) - w;(z) wfr’” b)l + (P-P) W(z) wtxz) II:, (12) 

595/182/l-IO 
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where wt denotes any of the associated Legendre functions. Let us set p = p, 
v = ip - 1, 0 = - ip’ - f, a = 1 + E, and b = l/z. Then we get 

With the expansion for z -+ 1 

2”l’ 

93z) = (z _ 1yPq 1 _ p)’ (14) 

we find, at z= 1 +E and p#O, 1, 2, 3 in the limit c-+0, 

At z= l/c we have the expansion [20, p. loll] 

(z-+ co). (16) 

Inserting into Eqs. (13) yields 

Jl-22 
(P’- p)(p’+ P) 

[.!3yY12(--) P-ip,- *,2(z) -P&- ,,2(4 ~L$t 1,*(41L I/E 

[ 

ZJip) f( -ip’) r(ip) r( -ip’) 

’ T(ip-1/2-p)~(--ip’+1/2--p)-~(ip+1/2-p)~(-ipr-l/2-~) 1 
+ h.c. + w.P+P’) 

p’2 - p2 

r(Q) r(ip’) r(Q) r(V) 
r(ip- l/2-p)T(ip’+ l/2-,u)-T(ip+ l/2-,u)r(ip’- 1/2--p) 1 I + h.c. . 

(17) 
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The term (2/~)‘(~--~‘) /(p - p’) yields, in the limit e + 0, 

lim w4i’p- p’) = lim 

c-0 p-p! 
cosC(P - P’) ln(2/&)1+ i sinC(p - P’) lnW)l= i716(p _ p,j 

Ed0 P-P’ 
(18) 

So we can conclude 

1 2 i(p- P’J 

270’ - PW -t P) 0 8 

[ 

f(ip) I-( - ip’) T(ip) r( - ip’) 

’ T(ip-1/2-~)r(-ip’+1/2-11)-r(ip+1/2--)r(-ip’-l/2--) I 

1 If(i 
=z II-(@+ 1/2-p)\” 

(VP’ - P) (19) 

and similarly for the term proportional to (2/~)~(~+ p” and the h.c. terms. The con- 
tributions proportional to S(p + p’) actually are of the form (p + p’) S(p + p’) and 
therefore vanish. Thus the orthogonality relation is proved. For the completeness 
relation see, e.g., [2]. 

In Section III we have used the relation (v = 2mR*E - ((d- 2)/2)2, r > 0) 

for n = (d- 2)/2 = 0, 1,2, . . . Equation (20) states that the function Qf, where p is a 
half integer and AcC, can be expressed by combinations of hyperbohcs and an 
exponential, i.e., by elementary functions. We want to prove Eq. (20) by induction. 

(i) Let n=O. With the help of [12, p. 150-j Q;1’2(z)=-i(1/(2A+ 1)) 
~(z’-l)-~‘4.[z+(z*- 1)‘12] -‘-‘I2 we see immediately that Eq. (20) holds for 
n = 0. 

(ii) Let n E No such that Eq. (20) is true. We consider the right-hand side of 
(20) for n + n + 1. In order to reduce the upper index of Q:,r:/:, by one unit we 
combine the relations (z2 - ~)(~/~~)Q~(z)=(~-~+~,Q~+,(z)-(~+~)zQ~(~) 
and(I+~+l)zQ~(z)+~~Q~+‘(~)=(~-~+1)Q~+~(~)[28,p.1005]toget 

(21) 

595/1X2/1-10* 
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This gives 

1 d -iivr 1 
n+l 

e ’ (22) 

where we have used in the last step Eq. (20). 

APPENDIX B: PROOF OF EQ. (11.25) 

We shall derive the identity 

exp{i&~,N,({W}, (e(j~l’})} A exp {-y P(I -cash I(j,‘-“)- icV,((S’j’})}. 

(1) 

%‘:, denotes the Lagrangian defined in Eq. (11.25). We start with the kinetic term 
(,(A _ $- I))2 expressed in the pseudospherical polar coordinates (11.2) and 
expand it in terms of A@ and de:’ (v = 1, . . . . d- 1). In this procedure we follow 
the reasoning of Pak and Sijkmen .6 [33]). If one has an expression like 
dfj” :=f,(uI” . . . @) -f,(q 1’ . . . &- I’), one gets the following for the expansion 
about the midpoint i(j) := &(&‘+ r&-i’): 

(2) 

Here f I" = xij' (I = 1, . . . . d), u, = { ud = r, uk = 8, (k = 1, . . . . d- 1) >. Calculating the 
various derivatives and inserting into Eq. (2) yield [Gab is the metric tensor 

6This method goes back to Dewitt [S], McLaughlin and Schulman [29], and Gervais and Jevicki 
[ 161; we prefer the formulation of Ref. [33] because it seems more explicit to us. 
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in x-space, gub =diag(l, r2, r2 sinh2z, . . . . r2 ... sin26,) the metric tensor for the 
pseudospherical polar coordinates] 

(Ax’q2 

+ [f(j)12 A*r(j) + . . . + [F(j) sinh F(J) . sin ey)]2 A24(1)] (4) 

A(?(‘), f(i), {#(A) ) 

= A2#j) A2t(j) + sinh2$J Azr(jl A24$iLz + . . . 

+ [sinh i(j) . , . sin &j)]’ A2,-(J) A2d(j) 

+ [f(j)]* A22(j) A2(jo2 + [i(j) sinh f(i)]2 A2z(.” A2()yL, + . . 

+ [r(J) sinh f(j). . . sin e$l)]2 A2~(J) A2q$“) + . . . 

+ [f(j) sinh f(j). . . sin &)I2 A2B~J) A’d’J’ 

qf(jl, f(i), (&J)) ) 

= _ [p]2 A4sW + [f(j) sinh f(j)]* A4e(~L 
d 2 

+ . . . 

+ [f(j) sinh -f(J) _ . . sin ($J)]* A44(j). 

In the next step we must change the integration measure. We get 
N-l 

n &(l/J . . .&j’ 
j= 1 

= [ g’Wg’N’] - ‘14 n &‘J’ &(J) . _ . &“’ 

j= 1 > 

(5) 

(6) 

x n [,.(i+.(j- 11]Id-~1)/2[sinh TW sinh T(i- l)](d-2)/2 . . . [sin fiyl sin fjy- II l/2 
’ I 

(7) 
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k’“‘, gCN’, and g(j) denote the determinant of the metric tensor taken at j = 0, j = N, 
j= 1, . . . . N - 1, respectively). Furthermore we have 

[/.q.(r - I’] Cd- 1’12 

[sinh r(i) sinh t(i- I)](d-212) N sinhd-zf(/J d-2 427”’ 
1 

8 sinh* fci’ > 
(9) 

[sinh 0l!‘sin 8 t/~Z)]v-l,sin"-lBt/) 1 '-' A2ea' 

8 sin2&’ > 
(v = 2, . ..) ;- 2). (10) 

Combining Eqs. (7) to (10) we get for the measure 

N-I 

n &l”...dx$i’=(g’g”)-‘/4 

j=l 

(h’d~“‘d~(j’...d~“‘)( i &j&-C) (11) 

j= I j= I 

with 

A$.“’ 43”’ A *($A 
(d- ‘) [,-Cj)lZ+ tdB2) sinh2ztjj+ ... +q I ; (12) 

g’, g”, and g”’ denote the determinant of the metric tensor taken at the points 
j= 0, N and the midpoint values for j = 1, . . . . N, respectively. Therefore we get for 
the jth (j= 1, . . . . N) integrand in the path integral (11.18) (without AV) 

@exp{jc[gg,(Gj’, +‘, {et”>)- Q(+‘, (B’j’J)]), (13) 

where 

(14) 

We want to transform the. various A u 2 “‘-terms into potential-like terms. Follow- 
ing the general approach (see Feynman and Hibbs [14], McLaughlin and 
Schulman [29], or Pak and Sokmen [33]) we get the equivalence relations: 

&(A & iE 
d-2 ,[,di) sinh f(i)]2' **" 
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i.5 ( ) 
2 

447(j) . = 3---- m[fXj)]2 

Inserting into (14) yields 

P(jAil, {@A)) 

1 

[ 

d-l d-2 2 
= 8m[f(j’12 -d’~inh2~(j)fsinh2~(j)sin2#~~,’ ‘.. 'sinh2i(j)...sin2BVl I 

d-2 
+(d-Wn- 

d-3 1 
sinh2f(j) sinh2(j(/) 

- . . . - 
d-2 

sinh*$j) . _ . sin*olj) 
2 I 

1 1 1 1 
= 8m[~‘“]’ - 1 ’ sinh2fff) + sjn@$f) sin2d$iL 2 ’ . . . + sinh’f(jI, . . sin2Q$jI 1 

(16) 
which leads for [J(j)]* = R2 to 

@R, {#“}) k V,( {B”‘}). 

We emphasize that V, is the same whether or not Ar(j’=O. 
In order to prove Eq. (1) we consider now on one hand 

b’@.exp {k f .Y~,({tP’, fY-“))I 
j= 1 /=I 

g (g’gf’)P1’4,fil @.exp{ieP~,(R, f(j), {0(j)>)). 

On the other hand we have with Eqs. (3), (13), and (17) 

(17) 

(18) 

imcR2 -f (1 -cosh~“~~f-” 
,= I 

= ’ (g’g”)-lj4,fi, @.exp{ic[P’&(R, f(j), {8(j)})+ V,({fP})]}. (19) 

Finally putting (18) and (19) together (the change from midpoints to postpoints 
in V, does not matter, because it is of O(E~) in the action) we get 

exp{i&2’&({@i’}, {@-“})} G exp R2(1 -cash l(jJ- l) ) - icV,( {W’})} 

(20) 
and Eq. (1) is proved. 
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APPENDIX C: DERIVATION OF THE SCHR~DINGER EQUATION FROM EQ.(II. 18) 

The derivation given below is similar to the d-dimensional rotator case which can 
be found in [IS]. 

We want to prove that from the short-time kernel 

pl((@i+ I)}, {gi)}; E) 

x (ey?,’ ’ - (jyL2)2 + . . . + (sinh T(i+ 1). . .sin ep)(~(i+ 1) -dU’)2] 

1 -~[(d-2)z-sinhr(j+~lsjnhr(j~- .” -sinhr”ilf...sine(~‘lj (‘I 
2 

and the time-evolution equation 

lj({e(‘+” ), t + E) = lAdm, ddWdJ((e(j+ 1’1, {e(j)); &) t+q(e(q, t) (2) 

the Schrodinger equation 

a j-l)= - 
at &2 Go* (3) 

can be derived. For this purpose, a Taylor expansion must be performed in (2) 
yielding (0; := 9y’ and Q; := 8 ptl’ ) 

~~~~~~ - epov - e:‘B,@ + e;e:,B,) 

We have used the abbreviations 

BgZ = 1 du’qf2eic”~l rr. qV2Bo + sinh22,, .‘. _ Sin2e,, --& B, 
7 
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c0t e; - lE B, 
mR2 (5) 

4~ cot e: - lE B,, 
mR2 

+’ 
[ 

d-v-l 

2 sinh2T” . ..sin*O.-, 
cot e:: + 

d-p-l 

sinh2T”~~~sin28~-, 
cot e; 1 i.5 

mR2 BO 

Bn; = 1 du’8;2e’“yg = 8r2B,+ ‘,:,;;j “.,;jz;,p” & B,. 
Y I 

Here the equations are valid up to terms of O(&‘+ ‘)I*), and 

.eww, uw 

mR2 
=Q [(T'-TV)*+ . . . + (sinh T' sinh T” . ..s.in S; sin e;)(#‘--&‘)*I (6) 

denotes the “classical Lagrangian” on the lattice-see Eq. (11.26). In order to make 
the calculation manageable, we have taken the dV-term at the argument {O”j and 
have factored out this term in Eq. (4). This is legitimate, because changing sin 8: (0; 
is an integration variable) to sin 0: in AV gives a correction of O(E), hence of order 
E’ in the short-time kernel and, therefore, can be omitted. 

We shall only illustrate how to calculate the integral B, in Eq. (5). Ail other 
integrals containing powers of e:(T') are of similar type bacause they are of 
Gaussian form. For simplification we use the abbreviations (v = 1, . . . . d - 1) 

E(e,)=exp(-a[(T’-T”)‘+ ... +(sinhT’sinhT”...sine>-,-,sine;-,P,) 

x (e:, - ey] 1 (7) 

and a = mR2/2itz. 
We consider the integral 

B, = 
I 

X dz’ sinhde2 T’ . . . 
0 s 

n de; sin 0; 1 **d&,5(8,) 
0 0 

2: 5 m dT’ sinhd-2T’ . . . * & ,-?(sinhr’...slnBi’)x*, (8) 
0 

lo de; sin (j;lT(e,) [I 
--Ix, 
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where we have set x := 4’ - 4” which varies from - CQ to + ~0, and N denotes that 
this is correct in the limit E + 0. The x-integration is of Gaussian form, and we get 

where we have performed a Taylor expansion around 0; in the last step. The 
integral is Gaussian again,, the term linear in x vanishes,’ and we get 

sinhdP ‘z’ 
de’ (sinh z’ sinh T”)~ ’ ’ s 

‘de; . 
sin38; 

He,) 0 (sin e; sin e:)2 

x-y--& (1 +&) j”,, dx ~-a(sinhr’...sine4’)-~2 

and so on up to the kth step, 

Bo=(j$r jo~d~~,sin~i~,hs~~~~,,)k,2...j~de;+~ (sine~~~~~l+,)*“E(Bk+,) 

1 

sinh 7’ . . . sin B;+ , (k-1)2+~+sin2e,,.~.sin2e; ’ 
k k 11 

(11) 

’ The linear term will become important in the calculation of the other integrals, e.g., in B,,, where it 
generates the term proportional to cot Q,,. 
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and finally after d - 1 steps, 

Bo~(-$.)li-~1’2{l+&[(d-2)2-&- ... - ’ 
sinh*Y . . . sin28q 

][, 

(12) 

which gives in the required approximation the result quoted in (5). Note that in the 
last step several minus signs appear, which are due to the hyperbolics of r. As a 
simple example, consider the case d = 3, then 

Substituting the expressions (5) in the Taylor expansion (4), one obtains in the 
limit E --* 0 the correct Schrodinger equation (3). 

APPENDIX D: DERIVATION OF THE SCHR~DINGER EQUATION FROM E~.(I1.29) 

We must consider the short-time kernel (see Eq. (11.30)): 

e(mR2/ie)(1 -cc~sh/(l./~‘))~ (i@nR*)(d- l)(d-3) 
(1) 

In order to derive the Schrodinger equation one must perform a Taylor expansion 
in the time evolution equation (C.2) once again, but now with the short-time kernel 
(1 ), yielding 

e-(i~/SmR2)(d~ l)(d-3) 

The abbreviations in (2) are the same as those in (C.5) except for B, which reads 
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(3) 

We shall illustrate how to calculate the integrals B, and B, in Eq. (2). AII the others 
are calculated in a manner similar to that of B,, 

= emR2/ic 

s 

m  sinhdp2rf &t ,~ImR2/ic)coshi’coshr” 
sin ‘- ‘0; de’ 0 Io2’ dqY 

imR2 
x exp -- sinh r(l) sinh rC2) 

& 

[ 

d-2 

x *s2 
cos e:i 1 cos tlzi 1 fj sin 8:‘) sin 19:~) + jj’ sin 13:‘) sin 13:~) 

n=2 n==2 I) 

X 
s 

p’ @- l)(d--3Wp 
-‘mRZ’i”‘coshr”~~~~d~3~,2 

mR2 
E sinh Tar. Jzq , t4) 

where we have used in the last step the integral 

de;- 2 sinde2f?;- 2 . . . jn d0; sin 6; j 2n d@ 
0 0 

d-3 

x exp cos ep z cos ei2! 2 + C cos 8:) cos e!,‘) 
m=l 

d-2 d-2 

x fl sin 13:‘) sin 0L2) + n sin 0i2’sin B$*’ 
n=m+l n-l 

(d-3)‘2 J(d&3),2(*) (5) 

which we have calculated in [18]. To perform the integral in (4) we use [20, 
p. 7211 

s 1 
Oc (x2 - 1)“12 eC”JJP J,=) dx 

= 
J 1 /?(a2 + /?‘) - “‘2)(v + “2’K” + ,,2 (J2-p) (6) 
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and the asymptotic expansion (11.40) of the J&-Bessel functions to get 

(7) 

This proves B,. In order to calculate B, we consider 

X 
s 

r. d7’(t” _ 7’) sinh(dp I)/2 7’ exp mR2 _- 
0 iE 

cash r’ cash r” 

x I+ 3J,2 
mR2 
iE sinh 7’ sinh 7” 

sinhc3 - N2 7” exp mR2 - - ic (d- 3)2- 1 
i& 8mR2 sinh2z” 1 

d7’(7” _ 7’) sinh(dp2)‘27’ exp 

where we have used the asymptotic expansion of the modified Bessel function in the 
limit E -+ 0 (after having performed a Wick rotation) and neglect all terms which are 
of higher order in E. With B, = 7”Bo + 8, Eq. (CSd) for v = d- 1 is proven. 
Substituting the expression B, as well as the other expressions of (B.5) in the Taylor 
expansion (2), one obtains the Schriidinger equation (II.1 ). 

REFERENCES 

1. N. L. BALAZS AND A. VOROS, Phys. Rep. 143 (1986), 109. 
2. M. BANDER AND C. ITZYKSON, Rev. Mod. Phys. 38 (1968), 330. 346. 
3. L. BERS, Bull. Amer. Math. Sot. 5 (1981). 131. 
4. M. BOHM AND G. JUNKER, J. Math. Phys. 28 (1987), 1978. 
5. B. S. DEWITT, Rev. Mod. Phys. 29 (1957), 377. 



156 GROSCHE AND STEINER 

6. I. H. DURU, Phys. Rev. D 28 (1983), 2689. 
7. I. H. DURU AND H. KLEINERT, Whys. Lefr. B 84 (1979). 185; Fartschr. phy.~. 30 (1982). 401. 
8. R. FENN, Amer. Math. Monthly 90 (1983), 87. 
9. R. FRICKE AND F. KLEIN, “Vorlesungen iiher die Theorie der automorphen Funktionen I. II,” 

Teubner, Leipzig, 1897 and 1912. 
10. E. D’HOKER AND D. H. PHONG, Nucl. Phys. B 269 (1986), 205. 
11. E. D’HOKER AND D. H. PHONG, NucI. Phys. B 278 (1986). 225. 
12. A. ERDELYI, W. MAGNUS, F. OBERHETTINGER, AND F. G. TRICOMI, “Higher Transcendental 

Functions,” Vol. I, McGraw-Hill, New York, 1985. 
13. R. P. FEYNMAN, Rev. Mod. Phys. 20 (1948), 367. 
14. R. FEYNMAN AND A. HIBBS, “Quantum Mechanics and Path Integrals,” McGraw-Hill, New York, 

1965. 
15. C. C. GERRY AND A. INOMATA, Phys. Letf. A 84 (1981), 172. 
16. J. L. GERVAIS AND A. JEVICKI, Nucl. Phys. B 110 (1976), 93. 
17. G. GILBERT, Nucl. Phys. B 277 (1986). 102. 
18. C. GROSCHE AND F. STEINER. Zeitschr. Phys. C 36 (1987). 699. 
19. C. GROSCHE AND F. STEINER, Phys. Letr. A 123 (1987), 319. 
20. I. S. GRADS-EYN AND I. M. RYZHIK, “Table of Integrals, Series and Products,” Academic Press, 

New York, 1980. 
21. M. C. GUTZWILLER, Phys. Ser. 9 (1985). 184. 
22. S. HELGASON, “Topics in Harmonic Analysis on Homogeneous Spaces,” Chap. 4, BirkhCuser, Basel, 

1981. 
23. R. Ho AND A. INOMATA, Phys. Rev. Leu. 48 (1982), 231. 
24. A. INOMATA, Phys. Lett. A 87 (1982). 387. 
25. A. INOMATA, Phvs. Le!t. A 101 (1984), 253. 
26. D. C. KHANDEKAR AND S. V. LAWANDE, Phys. Rep. 137 (1986), 115. 
27. T. D. LEE, “Particle Physics and Introduction to Field Theory,” Harwood Academic Press, 

New York, 1981. 
28. W. MAGNUS, F. OBERHETTINGER, AND R. P. SONI, “Formulas and Theorems for the Special 

Functions of Theoretical Physics,” Springer-Verlag, Berlin/New York, 1966. 
29. D. C. MCLAUGHLIN AND L. S. SCHULMAN, J. Math. Phys. 12 (1971), 2520. 
30. M. MIZRAHI, J. Math. Phys. 16 (1975). 2201. 
31. M. A. NAMAZIE AND S. RAJJEV, Nucl. Phys. 3 277 (1986), 332. 
32. M. OMO~, Nucl. Phys. B 120 (1977), 325. 
33. K. PAK AND I. SBKMEN, Phys. Left. A 103 (1984), 298. 
34. H. POINCAR& “Thtorie des Groupes Fuchsiens; (Euvres Complttes,” Vol. II, pp. 108-170, Gauthiers- 

Villars, Paris, 1908. 
35. A. M. POLYAKOV, Phys. Lett. B 103 (1981), 207,211. 
36. F. STEINER, “Bielefeld Encounters in Physics and Mathematics VII; Path Integrals from meV to 

MeV,” (M. C. Gutzwiller, A. Inomata, J. R. Klauder, and L. Streit, Eds.), p. 335, World Scientific, 
Singapore, 1986. 

37. F. STEINER, Phys. Lett. A 106 (1984). 356. 
38. F. STEINER, Phys. Lett. A 106 (1984). 363. 
39. F. STEINER, DESY Preprint 87-022; “Springer Proceedings in Physics” (H. Mitter, Ed.), in press. 
40. A. TERRAS, SIAM Rev. 24 (1982), 159. 
41. H. A. VILENKIN, “Special Functions and the Theory of Group Representations,” Amer. Math. Sot., 

Providence, RI, 1968. 


