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Abstract. The optimized perturbation theory proposed 
by Stevenson to deal with coupling constant scheme 
dependence is applied to the calculation of O-to t and jet 
multiplicities in e+e - annihilation. The results are 
compared with those of simple perturbation theory 
and with recent experimental cluster multiplicities. 

1 Introduction 

Physical quantities, for example cross sections, calcu- 
lated in QCD are independent of the particular scale 
# used to renormalize the theory. However, this is true 
only for the infinite perturbative series. Any expansion 
truncated at some finite order (in practice at the second 
order) does depend on the renormalization scale #. 
Then the question arises what scale should be used in 
these truncated series. This is a well-known problem, 
which cannot be solved in mathematical terms, since 
perturbation theory at some finite order does not 
specify, which is the right scale to produce the best 
approximation to the complete series. Some years ago, 
Stevenson proposed the following solution to this 
dilemma: Since the true result is completely indepen- 
dent of the scale #, the best approximation is the one 
which is least sensitive to small changes in # [1]. This 
leads to the requirement that for the best scale the nth 
order (in practice the second order) result o-~") for a 
cross section obeys 

do-(n) 
- o .  (1.1) 

d In #2 

This equation yields the optimal scale # = #opt, which, 
if introduced in the nth order result, gives the optimized 
prediction for o-~"). That (1.1) is the best approximation 

to the true result, is of course impossible to prove. But 
Stevenson has tested his procedure with examples and 
found it :successful. 

This principle of minimal sensitivity or scale 
optimization procedure has been applied recently with 
sensible results to massive lepton pair production 
[2]* and to processes involving photons in hard 
collisions [3]*. So far it has not been applied to e + e-  
annihilation cross sections, although second order 
results are available for several of these cross sections. 
In this paper we want to fill this gap and wish to see, 
whether optimized perturbation theory yields reason- 
able results. We use our recently calculated O (e z) cross 
sections for the production of 2 and 3 jets as a function 
of the resolution cut y [4], to obtain the perturbative 
2- and 3-jet multiplicities up to O(e~ 2) by dividing by 
O-to t whose expansion up to O((Zs 2) has been known for 
some time [5]. We apply the optimization procedure 
to the three physical quantities atot, o-2_jet(Y)/ftot and 
a3_jet(y)/atot, with y values ranging between 0.01 and 
0.05. o-4_jot(~)/o-tot is obtained from the rule that 2-, 3- 
and 4-jet multiplicity sum up to 1. In principle the 
predictions for the jet multiplicities could be compared 
to experimental data and the value of the QCD scale 
A ~  could be derived. However, these experimental jet 
multiplicities are not available yet. The JADE-collabo- 
ration at PETRA has published cluster multiplicities 
as a function of y [6]. The cluster multiplicities still 
contain flragmentation effects. We expect these frag- 
mentation corrections to be moderate. Therefore we 
feel free to compare our results with the cluster data, 
to see whether they are approximately consistent with 
our results. In particular it is of interest whether the 
4-jet rate as a result of the optimization procedure is 
higher than the lowest order prediction based on the 
coupling ~x s with scale q2. In [6] it was found that the 

* Supported by Bundesministerium ffir Forschung und Tech- * In these processes one has the additional problem that the finite 
nologie, 05 4HH 92P, Bonn, FRG order predictions also depend on the factorization scale. 
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4-jet cluster rate is much larger than the prediction 
based on lowest order perturbation theory including 
fragmentation effects. 

In Sect. 2 we present the results of the perturbative 
expansion up to  O(~s 2) for ato~, 62-jet(Y), ~ and 
O'4.jet(Y ) and collect the numerical second order coeffi- 
cients of a2_jet(y), %_j,~(y) and a4.jr ) for various 
y values in several tables. This is based on our earlier 
work I-4-1. Section 3 contains a short review of the 
optimization procedure. Here we derive the equations 
from which the optimized scale is determined. In Sect. 4 
we present our results and conclusions. 

2 Cross sections up to O(m~ 2) 

In this section we collect the information on the 
perturbative calculation of O'tot, O'2.jet, O'3.je t and O'n_je t 
in the MS renormalization scheme and with p 2 =  q2 
(qZ is the total c.m. energy squared) as the scale in a~. 

The total inclusive e § e -  annihilation cross section 
o-to t up to  O (as 2) has been calculated from the imaginary 
part  of the vacuum polarization by several groups 
already some time ago. In the MS renormalization 
scheme the result is [5] 

atot = ao { 1 + ~CFA(q z) + C F [ -- 3C r + Q23 _ 1 l~3)N ~ 

+ (4~ 3 -- ~t) TR] 22 (q2) }. (2.1) 

Here and also for the other cross sections we write 
the second order term as a sum of the three colour 
factors CF 2, CFNc and CrTR(CF=~,  No= 3, TR = 
Nj-/2, N s = number of flavours). (; are the usual zeta 
functions, ao is the zero-order cross section for 
the production of five flavours. We have introduced 
2 = ~/2n.  In the MS scheme with scale q2 the second 
order term proportional  to 22 is small, the coefficient 
is equal to 5.66 for five flavours. ~ is typically of order 
0.02 at the highest PETRA energies, so that the second 
order term is a very small correction. 

In our earlier work we have calculated the cross 
sections for the production of 2, 3 and 4 jets in e + e -  
annihilation up to ~2 [4]. These cross sections depend 
on a resolution parameter  which was chosen to be the 
scaled invariant mass Yij = (& + pj)2/q2. These resolu- 
tion parameters are needed to define infrared finite jet 
cross sections in perturbative QCD. In our definition 
two partons i a n d j  were considered to be irresolvable 
if Yu < Y with some fixed chosen resolution parameter  
y. So, for example, if in the four-parton cross section 
all possible yij > y the contribution is considered to 
be 4-jet. Similarly one defines 2- and 3-jet cross 
sections. For  more details we refer to [4]. Unfortu- 
nately the theoretical predictions for the jet cross 
section are not unique. Of course, cr4.jo t, which 
has been calculated in lowest order proportional  to 
~2, is given uniquely. But a3j~t and cq_j, t, since 
O'2_je t = O-to t - -  O'3_je t - -  O-4.jet, depend how the 3-jet 
variables are defined in terms of the original four- 
parton variables. In our previous work we studied two 

schemes, the K L  and the K E  scheme. Here we shall 
make use only of the results in the K L' scheme, where 
the higher order corrections to 0"2.je t and O'3_je t a r e  

more moderate and therefore lead to a more consistent 
result if combined with experimental data on O-to t . The 
K E  scheme is characterized by the fact that in the 
configuration e+e - ~q(1)fl(2)g(3)g(4) with gluon 3 
considered soft or collinear with the quark the 3-jet 
variables are "Y13" = Y134, "Ya3" = Y24-  Y13 and 
"Yl z" = Y l 23, where Yijk = (Pi + Pj + Pk)Z/q a" The choice 
of " Y 2 3 "  in this form has bearing on the separation of 
2 jets from 3 jets and 4 jets [4, 7]. Our  numerical 
results for O'z_jet(Y), a3_jet(y) and aa_j~t(y ) are repre- 
sented in the form 

0 " 2 . j e t ( f l ) / 0 "  0 = 1 4 -  CFZI(Z)2(q 2) 

"~- C F( C FZc  (2) ~- NcZN (2) 3- TRZT(Z)),~Z(q 2) (2.2) 

O'3_jet(y)/O" 0 = CFZI(3)~(q 2) 
3- C F( C FZc  (3) 2ff NcZN(3) 3- TRZT(3)),,~2(q 2) (2.3) 

Table 1. 0(22)  coefficients for  2-, 3- a n d  4-jet  c ross  sec t ions  as 
def ined in (2.2), (2.3) a n d  (2.4) for  y = 0.05 

ZC (I) ZN (i) ZT (1) 

i = 2 34.71 - 102.13 30.03 
i = 3 - 4 1 . 4 4  103.94 - 3 0 . 9 8  
i = 4  6.36 0.34 0.26 

Table 2. S a m e  as T a b l e  1 for  y = 0.04 

ZC (i) ZN (i) ZT (1) 

i = 2 53.96 - 131.61 38.87 
i = 3 - - 66 .60  133.15 - 4 0 . 0 4  
i = 4 12.26 0.62 0.48 

Tab le  3. S a m e  as T a b l e  1 for  y = 0.03 

Zc (~) ZN (i) ZT( ~ 

i = 2  88.9 - -175 .0  51.5 
i = 3  - -112 .2  175.8 - -53 .2  
i = 4 22.9 1.2 1.0 

Tab le  4. S a m e  as  T a b l e  1 for  y = 0.02 

ZC (i) ZN (i) ZT (i) 

i = 2 161.05 - -253 .81  75.85 
i = 3 - -217 .23  253.21 - -78 .47  
i = 4 55.80 2.75 1.93 

Tab le  5. S a m e  as T a b l e  1 for  y = 0.01 

ZC (i) ZN (i) ZT (i) 

i = 2 377.39 - 4 2 7 . 1 7  129.39 
i = 3 - -538 .25  421.22 - -134 .92  
i = 4 160.49 8.10 4.83 



O'4_jet (y)/0"0 

= C F ( C F Z c  (4) "[- N c Z N  (4) "[- TRZT(4)),~2(q2). (2.4) 

Complete formulas for Z1 ~2) and Z1 ~3) are found in 
[4]. The higher order coefficients Z c  ~i), ZN ~i) and ZT ~) 
are tabulated in Tables 1-5 for y = 0.05, 0.04, 0.03, 0.02 
and 0.01 and were taken from our work [4]. 

Actually the calculations in [4] were done only for 
y = 0.05, 0.04 and 0.02. Therefore the values in table 
3 had to be obtained by interpolation. The values for 
the Zc  ~i), Z n  ti) and Z T  (i) (i = 2, 3, 4) fulfil the relations 
Zc(2) dv Zc(3) .~_ Zc(4) = _ 3 ZN (2) -t- ZN (3) 3i- ZN (4) = 
123 11~3 a n d  -Jr- Z T  (3) Z T  (4) S - -  Z T  (2) + ---- 4(3  - - ~ ,  i.e. 
the contributions of 2, 3 and 4 jets sum up to the 
higher order correction term in atot. 

We observe from Tables 1-4 that the 2 2 correction 
term for O'2_je t is negative and for O'3jet is positive. 
Both increase in absolute value wi th  decreasing y. 
Then there exists a small y for which az_j~ t reaches 
the unitarity limit zero and O'3.je t reaches the unitarity 
limit O-tot, respectively, the actual value depends for 
fixed y on the value of 2. Therefore it is clear that we 
can apply the perturbative results only down to some 
finite y value which is near 0.02. The coefficient of 
O'4_je t is rather small compared to the coefficients in 
a2_j~ t and 0"3_je t and it increases only moderately with 
decreasing y. a4jet is determined approximately by 
Zc  ~'*), the contrii~utions of ZN (4) and ZT ~'*) are small. 
Therefore in an abelean theory the y dependence of 
O'4ie t remains unchanged as compared to QCD, 
w~ereas the behaviour of the 22 coefficients in aE_jo t 
a n d  0"3jet are completely different. In the abelean 
theory the  coefficient in O'2_je t is positive (ZN(2)= 0) 
and increases with decreasing y, whereas the coefficient 
in O'3_je t is negative and decreases with decreasing y. 

3 Review of the optimization procedure 

The prototype problem to explain Stevenson's optimi- 
zation procedure [1] is the total annihilation cross 
section 0"tot(q 2) a t  total c.m. energy q = v/q 2 in QCD 
with massless quarks. We write this cross section in 
terms of R = O'tot(qZ)/tTo where ao is the zero-order 
annihilation cross section. In QCD perturbation 
theory R has the following expansion in 2 

R =  1 + A R  (3.1) 

A R  = 2(r 1 + r2).  -t- r3J. 2 -}- "- ' )  (3.2) 

where 2 is 2(#2), i.e. the coupling in some renormaliz- 
ation scheme is renormalized at scale #. The expansion 
coefficients r~(i = 2 . . . .  ) depend on # and q and are also 
renormalization scheme (RS) dependent, r~ = 3 C  v is 
a constant. The # dependence of 2 satisfies the well- 
known differential equation (0 := Off? In #2) 

0)~ = - bo22(1 + b~2 + b2,~ 2 + . . . )  (3.3) 

in which b o and bl are scheme independent while the 
b2, b3 etc. are not. The constants bo and bl are 
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bo = ~ N c  - 2 TR (3.4) 

bl = (~- NI~ - ~- Nc T R - 2C v TR)/2b o. (3.5) 

Since we :intend to consider all possible schemes by 
varying # it is not useful to present results in terms of 
the coupling 2. Instead we introduce the scale A, the 
theory's one free physical parameter by 

1 
2(# 2) = (3.6) 

f12 f12 
bo l n ~  + bl l n l n ~  

A will be held fixed when varying over all possible 
schemes. Equation (3.6) is a solution of (3.3) up to 
terms O()~ 3) with the usual boundary conditions. The 
definition of A through (3.6) is RS-dependent, since 2 
and the right-hand side is R S  dependent through b2, b 3 
etc. However, A's in different RS's  can be related 
exactly by a one-loop calculation as shown by 
Celmaster and Gonsalves [8]. 

Since the expansion of A R  has been calculated only 
up to terms 0(2 2 ) [5] we consider the optimization 
only for 

A R  2 = r 1J~. + r2)], 2 (3.7) 

and require the # optimization condition on AR E to 
be satisfied exactly 

OAR2 li,=,,.p, = 0. (3.8) 

This gives a transcendental equation for the optimum 
#, denoted by ]-/opt. The value of ]-/opt depends on q, A 
and the scheme originally used to calculate r 2. The 
value of R 2 at #opt for a given q2 and A is scheme 
independent. 

r 2 has been calculated for the MS renormalization 
scheme at the scale q2. The explicit value was given 
in the last section in (2.1). Let us denote it by f2. Then 
r 2 at the scale #2 is related to f2 by 

r2 = r2 -t- b o In r l  (3.9) 

and we have the following equation for A R  2 at scale 
#2 in terms of rl  and ~2 

#2 

This form for A R  2 serves for determining 2 #opt- Indeed 
from 

and 

02 = - bo22(1 + b12 ) (3.12) 

which is the truncation of (3.3) to two-loop terms, we 
obtain 
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b, + 2(1 +b,2opt)bolnf#2pt']'~r, \7,/ /  
+ 2(1 + b,2opt) r  2 = 0 

with 

( __ {#O2t'~ ( 2 ) ) - 1  
bl In In ~ z  t 2 ~  b~ A 2 )  + Z 

(3.13) 

(3.14) 

From (3.13) with (3.14) ,/./2pt/q2 i s  calculated numeri- 
cally for a fixed A. The corresponding optimal ZIR 2 is 

(A R2)opt = r l "~opt + r2 opt 2o2t (3.15) 

r2opt follows from (3.13) 

b l r l  (3.16) 
rz~ = 2(1 + bl 2opt) 

so that 

1 + b 12opt/2 (3.17) 
(AR2)~ = rl~'~ 1 + bl2op t 

Equation (3.17) is the result for the optimal R2 which 
can be calculated as soon a s  2op t is known from (3.14) 
and (3.13). 

The optimization of 0"2_jet/O-to t and O'3_jet/O'to t is 
performed in an analogous way. We start from 

a2.jet/a o = 1 + rsw2(q 2) + rKL22(q 2) (3.18) 

where fsw and frL are given in Sect. 2. They are the 
expansion coefficients of the 2-jet cross section with 
scale q2 in the MS scheme. From this we calculate the 
expansion terms for a2_jet/ato t by dividing (3.18) by 
R in (3.1). Then 

O'2.jet/Gto t : 1 + (rsw - r l ) 2 ( q  2) 

-~- (~KL -- r t  (rsw -- r , )  --/72)22(q2 ) (3.19) 

so that o'2jet/O-to t - 1 has a similar expansion as AR2. 
Therefore-the equation for determining #2pt/q2 is the 
same as (3.13) if we substitute r~ -+rsw - rl and rz-* 
~ r z - r l ( f s y - r l ) - f : .  The optimized value for 
a2_idato t - 1 follows from (3.17) with the replacement 
r l  ~ ~SW --  r l .  

The expansion of O'3_jet/O" o s t a r t s  with a term 0(2). In 
the MS-Scheme and with scale q2 we have 

O'3.jet/O" 0 = SSW 2(q 2) q- grL 2 2(q 2) (3.20) 

and 

O'3-jet/O-tot = Ssw2(q 2) + (grL - rl gsw)22(q2). (3.21) 

T h e n  po2pt/q 2 for the 3-jet multiplicity follows from 
(3.13) if r l ~ g s w  and f2~gKL--r lgsw and the 
optimized 3-jet multiplicity is calculated from (3.17) 
with rl replaced by Ssw. We have Ssw = - ( r s w -  r,) 
as it should be b e c a u s e  (O'3.jet-[-O'2.jet)/O'tot = 1 in 
0(2). 

In our earlier work [4] we found that rKL contains 
the term 2Crbo In 3 y. This term proportional to lnay 

has a rather large numerical coefficient and is in leading 
order of lny equal to ( -bo lny~sw) .  This term can 
easily be absorbed into 2(q 2) by changing the scale of 
2 into yq2 since op to 0(22) we have 

2(q 2) = 2(yq2)(1 + b o In y 2(yq2)). (3.22) 

Then instead of (3.19) we get for the 2-jet multi- 
plicity: 

O'2_jet/O'to t - -  1 = (Fsw - rO2(yq 2) 

+ (eKL - -  r , ( e s w  - -  r l )  - -  ~2 

+ (~sw - rObo In y)22(yq2). (3.23) 

The same term with opposite sign appears in the 
0(22) term gxL of the 3-jet cross section, where it can 
be absorbed into 2 as well. If we do this we have 
instead of (3.21): 

O'3.jet/O'tot = gsw 2(y q z) 
+ (grL-- rlgsw + gswbolny)Ae(yq2). (3.24) 

The formula (3.7) for O'tot/fr o = R, the excess of the 
total annihilation cross section over the lowest order 
point cross section (with r 2---,f2) and the formulas 
(3.23) and{3.24) for the two- and three-jet multiplicities 
respectively are the formulas on which our optimiz- 
ation procedure as described in detail above for R is 
based. The results of the optimization will be described 
in the next section. 

4 Results and conclusions 

In this section we present the results of the optimiz- 
ation of O'tot, O'2.jet/O'to t and O'3.jet/O'tot. Then O'4.jet/O'to t 
is calculated from 

O'4_jet/O'to t = 1 - -  O'2_jet/Gto t - -  O'3_jet/O'to t. (4.1) 

All four quantities are compared to experimental data. 
The total annihilation cross section O-to t has been 
measured by the PETRA and PEP experiments. The 
CELLO collaboration at PETRA has made a fit to 
all these data [9]. In the fitting procedure they took 
the correlations between measurements into account 
and determined the electroweak mixing angle sin 2 0 w  
and the strong coupling constant es(q z) using the 
second order formula (2.1). The fit to the combined 
data yielded ~s((34GeV) 2) = 0.145 + 0.019 [9].* 
From this value of cq we infer atot/ao = 1.049 + 0.007, 
which we take as the experimental value of ato t at 
q2= (34 GeV) 2 in our comparison. 

The results for a,_jet/atot (n = 2, 3,4) are compared 
with the n-cluster event rates measured by the JADE 
collaboration at PETRA [6]. These cluster event rates 
for up to 5 clusters were obtained as a function of 

* A more recent analysis which includes data from TRISTAN and 
data below x / ~ =  10GeV gives cq((34GeV) z) = 0.145 + 0.019 (W. 
de Boer, private communication). We use this new value instead of 
the published value cq((34 GeV) 2) = 0.165 + 0.030 
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Fig. 1. Jet multiplicit ies as a funct ion of A for y = 0.04 with scale 
q2 compared  to cluster multiplicities of [6] 

invariant mass cut y between y = 0.015 and y- -0 .08  
for qZ=(34GeV)2. Unfortunately these n-cluster 
multiplicities are not equal to the n-jet multiplicities 
as calculated from QCD perturbation theory. Due 
to fragmentation effects of quarks and gluons into 
hadrons not all events with n clusters with a fixed y 
cut originate from a perturbative n-jet production with 
the same y cut. The fragmentation produces fluc- 
tuations which might for example cause a primary 
2-jet process to be classified as a 3-cluster event. To 
unfold these effects from the measured cluster event 
rates one must do calculations with fragmentation 
models on top of the perturbative QCD predictions 
which have not been done yet. In an earlier study of 
3-jet production at y = 0.04 it was found that these 
corrections are fairly small for the invariant mass 
method [10]. For  4-jet production and for 2- and 3-jet 
production at small y's we must expect larger correc- 
tions [6]. As long as these corrections are not known 
we shall not draw any conclusion concerning A ~  
from a comparison of optimized n-jet rates with 
the empirical n-cluster rates from JADE. But the 
comparison with the cluster rates will help us to see 
more clearly the change of the jet multiplicities due 
to optimization as compared to the non-optimized 
values. 

In Fig. 1 we show the 2- and 3-jet multiplicities as 
a function of A~s for y = 0.04 calculated directly 
from the expansion of O - 2 - j e t / o - t o t  and O - 3 _ j e t / o - t o  t 

obtained from (2.1), (2.2) and (2.3) with 2((34GeV) 2) 
due to (3.6) and compared to the 2- and 3-cluster 

' I , , ' ' 

007 - - - ' y : 0 0 i  . . . . . . .  .~Cq~l 
. . . . . . . .  a s  (yq2) | 

0.06 opt t 

0.05 

0,03 

0.02 

oo, . . . . . . . . . . . . . .  

. - - l .  I I t ] I I r 

0 0.1 'O2 
A [GeV] 

Fig. 2. 4-jet fract ion as a funct ion of A for y = 0.04 for the three 
cases: scale q2, scale yq2 and  optimized scale 

multiplicities of [6]. Of course, the 2-jet multiplicity 
decreases and the 3-jet multiplicity increases as 
a function of A. The theoretical curves cross the 
empirical bands for 2- and 3-cluster rates at two 
different A's, 0.18 GeV and 0.14GeV, which need not 
disturb us, since the cluster rates have corrections if 
compared to QCD jet rates. For  later comparison we 
note that the A values to fit the cluster rates are around 
0.15 GeV. The corresponding 4-jet rate, i.e. calculated 
from (2.4)with 2(q 2) = as(qZ)/2n, q2=  (34GeV)/, i.e. 
for non-optimized ~s can be seen in Fig. 2 as a function 
of A. Up to A = 0.2GeV the 4-jet multiplicity is 
small, approximately 1%, and is roughly a factor 4 
smaller than the measured 4-cluster rate at the same 
energy and the same y. This means that the 4-cluster 
rate is larger as one expects from lowest order QCD 
with a s evaluated at scale q2. Since we do not expect 
that the fragmentation corrections for 4 clusters are 
so large, as to cause a change of a factor of 4 compared 
to the 4-jet rate, we conclude that the 4-jet rate comes 
out too small in lowest order QCD and scale qZ in 
a s. This agrees with the conclusion of [6]. In [6] the 
cluster rates were calculated from a model based on 
perturbatiLon theory up to O(~s 2) and the hadroniz- 
ation of 2-, 3- and 4-jets built in. The scale of cq was 
equal to q2. as was determined in such a way that the 
2- and 3-cluster rate was in agreement with the data. 

Since the higher order coefficients in aZqet and 
O-3-jet (see (2.2) and (2.3) together with Tables 1 5) 
are large we expect appreciable changes in our pre- 
dictions by changing the scale of a s. As was mentioned 
in the last section the analytical calculations of the 
higher order terms of O ' Z _ j e  t suggest to absorb large 
terms ~ l n a y  into the coupling constant as. This 
brings us to the scale yq2 instead of q2. The results 
for jet multiplicities based on o~s(yq 2) are shown 
in Fig. 3 for y = 0.04. Comparing these predictions 
with the results in Fig. 1 we notice some change. 
Now O-2-j,.-t/o-tot decreases and O-3_jet/Gtot increases 
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Fig. 3. Same as Fig. 1 with scale yq2 

stronger  with increasing A. They fit the exper imental  
2- and 3-cluster rates for A ~-0.1 GeV. a4_jet/ato t (see 
Fig. 2) changes roughly by a factor  of 2, since es is 
now evaluated at a much  smaller scale. It  is still smaller 
than the exper imental  4-cluster rate for the A's of 
interest. Results for y = 0.05 are exhibited in Fig. 4. 
The  curves fit the experimental  2- and  3-cluster rates 
also for A ~ 0.1 GeV and the 4-jet rate is still smaller 
than the 4-cluster rate. We also show atot/ao as a 
function of A together  with the exper imental  da ta  f rom 
the C E L L O  analysis [9]. atot is calculated with cq(q a) 
f rom (2.1). The C E L L O  data  require 

a = (0 .24  0.24"~ 
-t- 0 .13)  GeV. 

The  same calculations for y = 0.03 and  0.02 give similar 
results, except that  the A values obta ined  f rom fitting 
2- and 3ojets to the corresponding cluster rates are 
different which indicates either a b r eakdown  of 
per turba t ion  theory or  different f ragmenta t ion  correc- 
tions than  for y = 0.05 and y = 0.04. Fo r  y = 0.01 the 
higher order  correct ions are so large that  a2-j~t becomes 
unphysical  for A > 0.08 GeV. One should note  tha t  the 
2- and  3-jet rates are much  more  suitable to determine 
A since the var ia t ion with A is much  larger than  in the 
case of ato t and the 4-jet rate. 

The  results with opt imizat ion are shown in Figs. 5, 
6 and 7. In  Fig. 5 the opt imized curve for crtot/a o is 
very similar to the non-opt imized  result in Fig. 4. This 
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Fig. 4. Jet multiplicities as a function of A for y = 0.05 with scale 
yq2 and atot/a o as a function of A with scale q2 compared to cluster 
multiplicities of [-6] and atot data from [-9] 

is to be expected since the higher order  coefficient in 
Crto t is small so that  the opt imized scale is near  the 
original scale. The scale comes out  as #oZpt/q 2 =  
0.3509 for A- -0 .1  GeV. Fo r  the other  A's /~opt is 
roughly the same. Fu r the rmore  in Fig. 5 we see the 
opt imized curves for the 2-, 3- and 4-jet multiplicities 
with y = 0.05, where the 4-jet multiplicity is calculated 
f rom (4.1). Since a4.j~ t is available only in lowest order  
it cannot  be optimized. We see that  the theoretical  
curves fit the exper imental  cluster multiplicities for 
A = 0.08 G e V  which is somewhat  smaller  than  the A 
in Fig. 4. We also observe that  a4-jet is now even 
larger than  with o~s(yq 2) in Fig. 4. I t  a lmost  fits the 
4-cluster rate for A = 0.08 GeV. The  lower bound  on 
the exper imental  atot/ao crosses the opt imized curve 
approx imate ly  at the same A value. The values for 
#opt for 2- and 3-jet rates are collected in Table  6, 
always for A = 0.1 GeV. The  results for y = 0.04 are in 
Fig. 6. The  conclusions are similar as for y = 0.05. The  
A value which fits the cluster rates is a little smaller 
than  for y = 0 05 ~4 et is increased compared  to the 
result in Fig. 3. In Fig. 2 we have the compar i son  of 
a4:et with y = 0.04 for the three cases (i) coupling 
cqlq2), (ii) coupling ~s(yq2) and (iii) opt imized coupling. 
In  case (iii) the 4-jet rate is the largest. The  values for 
#opt are again in Table  6. Finally in Fig. 7 the results 
for y - 0.03 are shown. Here  2- and 3-jet rates cannot  
be fitted to the corresponding cluster rates with the 
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Fig. 5. Jet multiplicities for y - 0.05 and O-tot/O" 0 a s  a function of A 
with optimized scale compared to cluster multiplicities from I-6] 
and ato t data from I-9] 

same A and the 4-cluster rate is still larger than the 
4-jet multiplicity. Whether  this can be improved  after 
correcting the cluster rates due to f ragmenta t ion  will 
be seen in the future. 

The  opt imizat ion  scales #opt for 2- and  3-jet multi-  
plicities for y = 0.05 to 0.01 are all collected in Table  6. 
They are not  equal  for 2- and 3-jet cross sections, 
since they have appreciable  different higher order  
corrections. Therefore  they differ more  for y = 0.01 
than  for y = 0 . 0 5 .  Fo r  y = 0 . 0 2  and y = 0 . 0 1  the 
opt imizat ion  scale #opt is approx imate ly  equal  to yq2. 
Therefore  the opt imizat ion  does not  change the 2-, 3- 
and 4-jet rates as compa red  to the predict ion with 
coupling as(yqZ). The values of the opt imizat ion  scale 
#opt for q 2 =  (34 GeV) 2 and y = 0.04 is equal  to 2.28 
GeV for the 2-jet multiplicity and equal  to 2.90 GeV 
for the 3-jet multiplicity. These values are still much  
larger than  the confinement  scale where per turba t ion  
theory definitely breaks  down. 

By compar ing  the results in Fig. 1 with those in 
Fig. 3 and Fig. 6 we get an overview abou t  the effect 
of changing as(q 2) into ~(yq2)  and into 2 ~ ( ~ o p , ) .  
Whereas  in Fig. 1 the 2- and 3-jet rates are equal  for 
A = 0 . 2 8 G e V  they cross in Fig. 3 for A = 0 . 1 6 G e V  
and in Fig. 6 for A = 0.13 GeV. So the dependence on 
the scale changes appreciably  through the optimiz- 
at ion as compa r ed  to simple per turba t ion  theory with 
coupling a~(q2). In a first approx imat ion  the curves in 
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Fig. 6. Jet :multiplicities for y = 0.04 as a function of A compared 
to cluster data from [6] 
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Table 6. Optimization scales #opt for 2- and 3@t cross sections for 
y = 0.05, 0.04, 0.03, 0.02 and 0.01 

2 2 2 2 12opt/Yq I2opt/Yq 
2-jet 3-jet 

0.05 0.08250 0.1121 
0.04 0.1121 0.1814 
0.03 0.1866 0.3730 
0.02 0.3618 1.254 
0.01 1.706 17.59 

Fig. 6 are similar to those in Fig. 3. Therefore a first 
step would be to use the scale yq2 instead of q Z , .  This 
improves already the 4-jet rate to a large extent. This 
procedure could also easily be incorporated into 
models based on perturbation theory up to O(cq 2) 
augmented with hadronization of quarks and gluons. 
Of course, it would also be no problem to introduce 
one of the optimized scales from Table 6, i.e. either 
the 2-jet or the 3-jet scale #opt into these models with 
the effect that the 4-cluster rate might be described 
even better. 

We emphasize that the 4-jet rate has not been 
optimized. This is not possible since it has been 
calculated only in lowest order. But we have optimized 
the scales of the 2-jet and the 3-jet multiplicity and 
have determined the 4-jet multiplicity from (4.1). 
According to (3.17) the procedure of optimization has 
the effect that in our case the 2- and 3-jet rate is 
replaced by an infinite series with coefficients given by 
powers of bl, which is the second coefficient of the 
//-function. By calculating 0"4.jet/O'to t from (4.1) we 
derive it from a similar series with the only difference, 
that the coupling "~opt is not determined from the higher 
order calculation of 0"4jet , which is not available, but 
instead from higher o~der calculations of o-2_j~ t and 
O'3_je t. We expect that this way we should come near 
to the result of what an optimization of 0"4.je t would 
give. Another way to justify that we get a better result 

f o r  o'4_je t than in lowest order, is to say the following. 
The optimization has quite generally the effect that 
higher order contributions are reduced by changing 
the coupling constant. #opt gives the scale where this 
happens in the most reasonable way. If the scale 
determined in O'Z_je t and O'3_je t reduces the higher 
order terms in 0"4_je t by the same amount as in o-2_je t 
a n d  0"3.je t we can approximately neglect the higher 
order terms in 0"4_je t. But then we must evaluate O'4.je t 
at a scale as determined in a 2 ot and a 3 jet" 

In conclusion we state that t-~e optimization of scale 
yields different predictions for 2- and 3-jet multi- 
plicities as a function of the mass cut y as compared 
to simple perturbation theory with scale q2. This will 
give a different A ~  parameter than the usual perturb- 
ation prediction with scale q2 if a comparison with 
experimental jet multiplicities becomes available. The 
4-jet multiplicity determined from the fact that the 
sum of all jet rates is equal to one comes out much 
larger than from lowest order perturbation theory in 
es(q 2) and A ~  determined from 3 jets. 
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