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A CHIRAL SU(2), ®SU(2)r GAUGE MODEL ON THE LATTICE
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An explicitly chiral symmetric SU(2), ®SU (2)z model with a scalar doublet and a mirror pair of fermion doublets 1s investi-
gated 1n lattice perturbation theory

The basic matter fields 1n the standard SU(3)®SU(2)®U(1) theory of elementary particles are chiral quarks
and leptons The masses of these (and other) fields are produced by spontaneous symmetry breaking via the
Higgs mechanism A non-perturbattve investigation of the Higgs mechanism would obviously be important,
but the inclusion of chiral fermions 1n a non-perturbative lattice regularization scheme 1s notoriously difficult
(for an tncomplete list of recent attempts see ref [1])

A simple manifestation of the chiral fermion problem 1s species doubling putting the first-order Dirac equa-
tion on the lattice by a naive transcription of the derivative 1n lattice differences the propagator has 15 su-
perfluous poles at the corners of the Brillouin zone The general reason behind this 1s the cancellation of triangle
anomalies for finite lattice spacings [2] Moreover, a no-go theorem can also be proven [3], implying that
under some mild assumptions, for finite lattice spacings, there always has to be an equal number of left- and
right-handed particles In the continuum himit the superfluous lattice fermion states can be removed from the
spectrum following the prescription given by Wilson [4] after the introduction of an appropriate higher-di-
mensional term 1n the action the masses of the additional fermions become proportional to the cutoff The
Wilson term 1n the lattice fermion action, however, breaks chiral symmetry explicitly Nonetheless, the correct
current algebra and chiral Ward-Takahashi 1dentities seem to be reproduced in the continuum limit [S], there-
fore the Wilson fermions probably provide a correct lattice formulation of QCD

The chiral symmetry breaking of Wilson fermions is, however, an obstacle for a lattice formulation of chiral
gauge theories describing the electroweak interactions A first step for a lattice formulation of the standard
electroweak theory would be to find a chiral formulation of some prototype models In the present paper a
simple chiral model 1s defined on the lattice by an explicitly chiral symmetric extension of the Wilson fermion
method This model can be considered as a lattice version of the gauged SU(2) ®SU(2)-symmetric Gell-
Mann-Lévy o-model [6], which includes, besides the usual scalar- and fermion-doublet fields, also a “"mirror-
fermion™ doublet field with exchanged left-right transformation properties

Before considering the gauged version of the model, let us begin by investigating 1ts pure matter sector This
contains a doublet fermion field ¥, =y, +wg, and a doublet mirror-fermion field y, =y, .+ k.. Interacting
with a scalar doublet field ¢, (The left- and right-handed components of the fermion fields have an index L,
respectively R ) The transformation properties of the fields under SU(2), ® SU(2)y are

‘//1:\=LIL(//L\: l/7]/_\=‘/7L\ erl’ Wé\szRWR\ 1/7[/{\=‘/7R\L7§I’
Xl,‘\::URXL\a ZI,_\=ZL\LII:1a Xl,{\':ULXR\’ Zﬁ\ziR\UE]~ (ﬂ/\=Ul¢\UEI (1)
Instead of the scalar doublet ¢,. 1t 1s sometimes advantageous to consider the equivalent real O(4) fields ¢s,

(§=0, 1, 2, 3) defined by
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¢\E¢()\+1¢3\T\ (2)

Here 7, (s=1, 2, 3) denotes Pauli matrices (An automatic summation over the O(3) and O(4) indices will
be understood ) In terms of these fields let us consider the following euchdean lattice action

S=Z <ﬂ¢s\¢s\+l(¢s\¢x\)2-"< Z ¢S\+u¢8\ +,UW[()Z\‘//\)+ (IP\X\)] +1uy/(l/7\l//\)+:uy(2\1\)

-Z [Kw(lp\ sznl//\)+Ky(i~+/tyuX\)]+’ Z [(Z\W\)’(2\+/LV/\)+(V7\X\)“(W\#—;z%\)]

H

+GW¢S\(V~/\FS(//\)+Gy¢$\(Z\F¢X\)) (3)

Here 2., runs over the lattice points and 2, over eight directions of the neighbours u=*+1, +2, 3, +4 In
the Yukawa couplings the 8®8 matrices I' ¢ (S=0, , 3) are defined as I"(=(l, —1y57,) The normalization
of the fields 1s left free By rescaling 1t 1s possible to achieve some convenient normalization for the scalar field
¢, 1n perturbation theory 1t 1s convenient to choose the hopping parameter x = §, whereas for the limit of very
strong quartic scalar coupling A—-co the best choice 15 u=1-—24 Similarly, the fermion fields can be rescaled
according to

Vi=z,u. Vi=iplh. Xi=nxe Bi=7d (4)

In perturbation theory a convenient rescaling is defined by K,,=K,=14 For a numerical study one can choose
u,=u,=1, whereas for strong bare Yukawa couplings or small mass parameters #,. 4, ~0 1t 1s natural to put
G,=G,=1

According to eq (1), the above lattice action 1s chiral invanant if and only 1f 4, =u,=0 (the mass mixing
proportional to u,, ., however, does not break chiral symmetry) Let us now consider the general massive case
Wy, i, #0 1n perturbation theory For this we shall use the convenient normalization 2x =2K,=2K,=1 The
scalar lattice propagator 1s, as usual,

#,= 3 5 expl 1k x-)1] G, (5)
A

where N 1s the number of lattice points and the momentum sum 1s performed over the Brillouin zone cor-
responding to the periodic boundary conditions The momentum space propagator 1s given by

Go=(ui+k>) ", ui=2u-8, k?=4 Y sm’(Lk,) (6)

p>0

The fermion propagator 1s a block matrix in y —y

4 —-lZex[ 1k, x=y)1 G G—(Gl‘w GT}) (7)
“—N[\ pl - » X—=Y As A= G{w G"f/

The 1inverse fermion propagator in momentum space 18

G <u.,, +y kop, +rl€2_>

= 8
Ry K>, 41y k (8)

mmplying

90



Volume 199, number | PHYSICS LETTERS B 10 December 1987

GLY =y (3 +K2) =, +1k2)2 =1y K + K2+ (s, +rk?)1) Dy,
GY =, +rk?) (K2 +(u,, +rk>)2 =g u, +1y k(u, +u,)] D;.
D= 11K + (1K) =t 1, 12+ 02,)7) (9)

Here we also introduced the notation /\_',1 =sin k, The other matrix elements are obtained from these by ex-
changing ¥ <> ¥ As 1t can be seen, the fermion-doubling species at k,=n are removed here for >0 1n a similar
way to Wilson fermions

The eigenvalues of the fermion mass matrix (1¢, of the zero momentum inverse propagator G ') are in
general given by

.ul':% [/‘o/ +/l,——\ (ﬂu/"’ﬂ/)z+4,uu2/x]v ﬂlzé [ﬂ(d/ +/1),+V (/tu/_ﬂ/)2+4.u5/y] (IO)

The corresponding eigenvectors in the  — y basis are. respectively,

€]=< cosa>’ el:(sma)’ (1)
—sin ¢ COoS

where the mixing angle « 1s determined by
sin aziul//\ E [(.uu/ '”,u,()Z +4/l$,), - (.ul/l —ﬂ/) \/ (ﬂy/ —-,U},): +4/li/ ] - (12)

In the special case of u;,, =u,u, there 1s an exactly zero mass 4, =0, and the other mass 1s x> = (x, +x,) The
mixing angle becomes

sin g ="p,/ (Y, +1,) (13)

Therefore, 1f 1, << u, then the zero mass belongs to the dominantly ¢ component

The possibility of an exactly zero eigenvalue in the fermion mass matrix 1s an important property of the
model We shall see below, that the chiral symmetry breaking masses p,,, i, are produced 1n the chiral gauge
model by spontaneous symmetry breaking, hence they are tied up to the scale of the vacuum expectation value
The w—x mass mixing parameter u,,,, however, 1s a chiral symmetry conserving free parameter For given u,u,,
the deviation

L= Uy lt, — Uy, (14)

can have any scale In particular 1t can also be zero In other words, there 1s a possibility for an arbitrarily large
fermion mass hierarchy for one of the mirror-fermion states. downwards from the spontaneous symmetry
breaking scale In the case of a small deviation ;i the small mass eigenvalue 1s

my=fisim(2c) — (A7 /1, +1,)] cos*(2a) +O(12°) (15)

The consequence of this relation 1s that 1n the case of spontaneous symmetry breaking the rigid relation between
the small fermion masses and the corresponding Yukawa couplings 1s resolved The ratio of Yukawa couplings
G, and G, 1s, however, directly responsible for the value of the mixing angle <, 1n eq (13)

Using the propagators and the vertices in the action (3), 1t 1s straightforward to calculate, for instance, the
one-loop graphs 1n perturbation theory The fermion tadpole contributions to the expectation value of the scalar
field deserve special attention The one-loop contribution to the expectation value of ¢, 18

8  ~ - s
N; DA {(rqul/ +:u7G/) /\u—(ﬂ/Gl,/ +,uwG/) [(;u(,//-'_rk_)h_'/lwu/]} (16)

This vanishes for zero masses (1 e . for exact chiral symmetry) Therefore, a compensation in the action with
a counterterm linear 1n ¢, 1s not necessary This 1s different for Wilson fermions, where the fermion tadpole
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contribution 1s non-zero, and a tuning 1n the “external magnetic field” 1s necessary The critical set of bare
parameters, where the physical masses 1n lattice units vanish, can be determined order by order 1n perturbation
theory. For 1nstance. 1n the case of the fermion mass matrix the chiral symmetry point u,=x,=0 1s not re-
normalized. but there are non-zero loop contributions to the mixing parameter 4, The one-loop equation for
vanishing g 1s

— [ —
0=Vuwu,—uw+4rGWGXN; (K*+rk)y = uu, —u,, +G,G, 0121 (17)

The numerical value here corresponds to an infinite lattice and r=1 From the logarithmacally divergent con-
tributions to the renormalized couplings one can obtain the Callan-Symanzik S-functions In one-loop order
we have

1 2 ) 1 2 ) 1 ) 2 )
ﬂ<,W=EZ—4GW(G;, +G7j), ’8("=1-6—nE4G“(G;'+G;)’ BA=1—6-;(96/1“+16G;,/1+16G;/1—-4Gj,—4Gj)
(18)

After this preparation we can write down the lattice action for the chiral SU(2), ® SU(2)x gauge theory
S=S,+Sn (19)
The pure gauge piece with 8, x =4/gf g and U xeSU(2) g 1s the usual sum over plaquettes

Se=PL 2}: [1-3 Tr UL(P)] +Br 2,: [1—3 Tr Ur(P)] (20)

The piece containing the physical matter fields 1s, by using the doublet scalar field ¢, and writing out the L-
and R-components separately,

Su=y (%uTr(ww\H% ATr(pT o)) =3k Y Trlel, Ulx, u) 9, UL (x, 0)]
M

v

+.uu//[(X~R\(/IL\) + (X~L\ WR\) + (&R\XL\) + (&L\XR\)]

_Ku/ Z [(&L X+ i LTL(Xa lu) y;zWL\) +((;;R\+;ILIR(xs ,U) quR\)]
2
—Ky Z [(ZL\+u UR(xa /vL) ylLXL\) + (X~R\+,u UL(x~ ,u) yuXR\)]
1
+r z [(ZR\WL\) - (X~R\+u UL(x’ ,u) WL\) + (ZL\WR\) - (ZL\+,¢1 (JR(X, ,U) V/R\)
M

+ (V‘;R\XL\) _(!/7]{\+g1 UR(x' #)XL\)+ (&L\XR\)—(V;’L\-FN L’L(-xnu)XR\)]

+Gw[(l/‘;R\¢T WL\) +(U7L\¢\WR\)] +Gy[(X~R\¢\XL\)+ (ZL\‘OTXR\)]) (21)
The fermion masses are now provided by the vacuum expectation value of the scalar field
(p.r=Lpl)=v (22)
and by the Yukawa coupiings
1, = vG, 12K, 2. u,=vG, 12K, 2K (23)

It 1s assumed that in the continuum limit g, —»0 v—0 and therefore p,,. u,. pt1, p2—0
In general, the continuum limit can be defined at some critical point of the pure matter theory (1n thid limit
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the gauge couplings gi and gg tend to zero) However the mathematical continuum limit of the models defined
by the above actions 1s probably trivial (for a recent discussion see ref [7] and the references therein) In
order to have a non-trivial quasi-continuum theory the lattice spacing has to be kept finite (but small compared
to the physical distances) Thinking of a physical theory, the cut-off i1s naturally always finite

The two gauge group factors SU(2), and SU(2)g need not be treated symmetrically One can, for instance,
gauge only SU(2), (put gg=0 and Ur=1) When both group factors are gauged [as 1t stands in eq (21)] the
spontaneous symmetry breaking leaves the diagonal SU(2) subgroup unbroken For a complete symmetry
breaking one can introduce, for instance, two further scalar fields ¢, and ¢y which are doublets with respect
to one of the SU(2) subgroups, but are scalar with respect to the other, as 1s usually done 1n left-right sym-
metric models (For early references on SU(2), ® SU(2)g-models see ref [8] ) In this way 1t 1s possible to
split the gauge field masses independently of the value of g, and gg

The SU(2), ®SU(2), chiral model considered here 1s a representative for a large class of lattice chiral models
with mirror fermions The above discussion of small fermion masses shows that, by an appropriate extension,
models can also be constructed which look below ~ 100 GeV similar to the standard electroweak model by
chosing Yukawa couplings like G,, small one can make the mirror-fermton components of the light fermions
small (the mirror-fermion components have V+ A coupling to the W-boson) At higher energies there 1s, how-
ever. a marked difference due to the occurrence of the physical mirror-fermion states In simple models with
only one spontancous symmetry breaking scale the masses of the mirro fermions have to be roughly below
~ 500 GeV, corresponding to the unitarity mit for Yukawa couplings [9] In a more complicated model with
several spontaneous symmetry breaking scales this may, however, be different

The question naturally arises, whether 1t would be possible to arrange the bare parameters of the model 1n
such a way that the mirror-fermion partners get a mass proportional to the cut-off (and hence are removed
from the physical spectrum) In particular, one can try to define the continuum himit 1n some critical point
where only a subset of the masses 1n lattice units tends to zero The difficulty which occurred 1n this case in
all my attempts, also after the introduction of additional scalar fields. 1s that if the mirror partners are removed
then the gauge bosons go with them Apparently. one cannot arrange a spontaneous symmetry breaking pattern
with finite W-boson, Higgs-boson and fermion masses and a very large mirror-fermion mass A general reason
behind this 1s that in the unbroken phase the chiral symmetry has to be realized by a parity doublet pair of
degenerate fermion doublets Indeed, as one can see from the fermion mass matrix G5!, 1n the case of u, =y, =0
and u,,, # 0 there 1s a degenerate pair of fermion doublets, and the eigenvectors (y + x)/\, 2 have opposite parity

It would be 1nteresting to study the models defined by the above actions also non-perturbatively The first
question, which 1s important for the understanding of the physical content, would be to investigate the critical
set and the phase structure tn the space of bare parameters

I thank Martin Luscher for an enlightening discussion on the impossibility to remove the mirror fermions
from the spectrum
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