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Abstract. The values of the gluon and four-quark 
vacuum condensates are estimated using recent experi- 
mental data on the semileptonic z-lepton decays 
z~v~ + nn, which determine the vector and axial- 
vector hadronic spectral functions. An optimal esti- 
mate is achieved through a systematic combined use 
of Finite Energy, Laplace and Gaussian transform 
QCD sum rules. As a byproduct, the values of the 
dimension d = 8 vacuum condensates in the vector and 
axial-vector channels are also estimated. 

1 Introduction 

The method of QCD sum rules, first introduced by 
Shifman et al. [1], has become a popular and powerful 
technique to study hadronic physics in the low energy 
resonance region [2]. As is well known, this method 
relates through dispersion relations low energy para- 
meters, e.g. particle masses and coupling constants, to 
the Operator Product Expansion (OPE) of current 
correlators at short distances. The basic underlying 
assumption is that this OPE remains valid in the 
presence of non-perturbative effects which are para- 
metrized by a set of vacuum expectation values of 
quark and gluon fields. These vacuum condensates 
induce power corrections to asymptotic freedom and 
are supposed to be responsible for the rich resonance 
structure observed at low energies [3]. To be more 
specific let us consider the following two-point function 

H ( q  2) = iSd4xeiq~'(OI T(J(x)Jt(O))l O) (1) 

where J(x) stands for any local current built from the 
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quark and gluon fields appearing in the fundamental 
QCD Lagrangian. The corresponding OPE reads 

i S d 4 x e iqx T(J(x)J(O)) = C o'1 + ~ CN(q)O u (2) 
N 

where the Wilson coefficients in this expansion depend 
on the Lorentz indices and quantum numbers of J(x) 
and also of the local gauge invariant operators O N 
built from quark and gluon fields. These operators are 
ordered by increasing dimensionality and the Wilson 
coefficients, calculable in perturbation theory, fall off 
by corresponding powers of q2. The unit operator in 
(2) has dimension d = 0  and CoT stands for the 
purely perturbative contribution. Examples of d = 4 
operators are mqctq and G"u~G~.~. To use the OPE (2) 
in (1) one assumes that short and long distance effects 
factorize. The former are buried in the Wilson coeffi- 
cients and the later in the non-vanishing vacuum 
expectation values (0[ON[0). After this the rest follows 
from analiticity, viz. H(q) satisfies a dispersion relation 
and thus one relates the hadronic spectral function 
appearing there to the OPE. Different choices of the 
weight in the dispersion relation lead to different kinds 
of QCD sum rules, e.g. Hilbert, Laplace or Gaussian 
transforms, Finite Energy Sum Rules (FESR), etc. 

Concerning the actual numerical values of the 
various quark and gluon condensates, in general they 
cannot be computed from first principles as this would 
be tantamount to solving QCD exactly. Hence, the 
standard procedure has been to extract these conden- 
sates by using QCD sum rules in a few channels where 
experimental data on the hadronic spectral functions 
is available, e.g. the charmonium system [1, 4-7], e + e- 
cross sections [8-12] etc. Once the values of the 
various vacuum condensates are known one may 
proceed to apply the QCD sum rules to other channels 
and make predictions for particle masses, couplings 
constants, etc. Using experimental information on 
charmonium as well as on e + e- cross sections, some 
authors have found [1,4-5, 8-9] 
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3 ( • s G  2) 0 .04GeV 4 (3) 

which we shall refer to as the standard value of the 
gluon condensate. However, this result is somewhat 
controversial, to wit: it has been conjectured in the 
framework of potential models [13], as well as in 
two-dimensional QCD [14], that the value (1) may be 
an underestimate. Also, a value about 30% higher has 
been advocated in [2], and recent charmonium [6-7]  
and e+e - E11-12] analyses suggest even larger devia- 
tions. A separate controversy exists in connection with 
the vacuum saturation approximation Eli often used 
to estimate the magnitude of the dimension-six four- 
quark condensates, e.g. 

((qTu~'aq) 2 )]v.s = -- ~ (q~)2  (4) 

where 2 a are the Gell-Mann matrices in colour space. 
In fact, several authors have noticed that this approxi- 
mation leads to inconsistencies [9,15-17] a view 
supported by some e+e - analyses [11, 12]. 

Given the impact of the gluon and the four-quark 
condensates on current phenomenology it becomes 
quite important to attempt a resolution of the above 
discrepancies. This should be done e.g. by using 
as many independent sets of experimental data as 
possible and, at the same time, employing different 
kinds of sum rules in a systematic fashion. In fact, 
depending on the choice of kernel in the dispersion 
relations the extraction of the vacuum condensates 
may be more or less sensitive to a given parametriza- 
tion of the data, as well as to the influence of higher 
dimensional condensates. 

In this paper we wish to present an attempt in this 
direction by exploiting the unique opportunity being 
offered by the availability of z-lepton semileptonic 
decay data from the ARGUS collaboration at DORIS 
[18], namely z-~ v~2n and z-~ v~4n which determine, 
essentially, the vector isovector hadronic spectral func- 
tion, and z-~ v,pn which relates to the axial-vector 
isovector channel. These data have been used recently 
1-19] to study the saturation of the Weinberg sum rules 
and to estimate the rc + - n ~ mass difference in QCD. 
Here we shall consider the vector and the axial-vector 
channels separately and extract the vacuum con- 
densates from the corresponding sum rules. Since the 
gluon condensate contributes equally to both cases 
we shall be able to perform valuable consistency checks 
on our analysis. In order to optimize the determination 
of the vacuum condensates we shall make a systematic 
combined use of FESR, Laplace and Gaussian trans- 
form QCD sum rules. 

The paper is organized as follows. In Sect. 2 we 
define the two-point functions for the vector and axial- 
vector channels and give their QCD expressions. The 
various types of QCD sum rules are introduced in 
Sect. 3, where we also discuss briefly their advan- 
tages and shortcomings. In Sect. 4 we present the 

various numerical fits to the experimental data. Sec- 
tions 5, 6 and 7 contain the results obtained from the 
FESR, Laplace and Gaussian transforms, respectively. 
In Sect. 8 we discuss the impact of higher dimensional 
condensates concentrating on the dimension d = 8. 
Finally, in Sect. 9 we summarize our results. 

2 Two-point functions and the OPE in QCD 

We start by defining the two-point function 

H,~Vv (q 2 ) =  i ~ d4xeiqx ( O I T(Vu(x) V~)(O)IO ) (5) 

where the current Vu(x ) has the quantum numbers of 
the p-meson, i.e. 

V.(x) = �89 - d(x)7.d(x) ]. (6) 

From the conservation of the vector current one can 
write 

VV 2 Huv ( q )  = - (guvq 2 - quqv)Hv(q2). (7) 

The function Hv(q 2) in (7) has been calculated in per- 
turbation theory, in the M S  renormalization scheme 
[20], up to three loops [21], and including the leading 
non-perturbative corrections I-1], with the result 
(Q2 = _ q 2  >0)  

Q2 5 ~22 8~zE/Tv(q 2) = - In ~ -  + ~ - [mE(v 2) + mE(v2)] 

e~(v ) l n ~ +  

_ Q~ Q~ 
' [ ~ 1 n 2 7 -  F a l n T ]  

C 4 ( 0 4 ) v  C6(06>v  C8(08>v  
Q4 Q6 Q8 

m 4 ~ 3 

where fll = - 29/6 and F 3 = 1.756... for three colours 
and two flavours. 

The non-perturbative term of dimension d = 4 is 
given by 

7~ 2 
C 4 ( 0 4 5 v  =~(O~sG ) + 4n2Em.(au)  + ma(dd)]  

(9) 
In principle there are various operators contributing 
to C 6 ( 0  6),  namely the quark-gluon, the three gluon 
and the four-quark condensates. The first is suppressed 
by a factor of m 2 [1-2],  while the second gives no 
contribution in the case of light quarks [22 23], thus 
leaving only the four-quark condensate contribution 

C 6 ( 0 6 5  V = _ 87~3 0~sE ( (s q) 2 ) 
+ 2 ((~tt,~aq)2)] (10) 

There are quite a few quark and gluon condensates 



contributing to C8(O8) .  The Wilson coefficients of 
the various condensates for light quark currents have 
been computed in [24]. We defer a discussion on 
C s ( O 8 )  till Sect. 8 and proceed with our analysis 
neglecting this term. "We shall also neglect the quark 

2 in mass loop insertion term proportional to mq 
eq. (8) as it has no impact on our results. We shall 
retain, however, the second term in (9) which may be 
estimated using the well known current algebra low 
energy theorem [25] 

(mu+ma)(~u+~d) 2 2 - = 2fn#~(1 - fin) (11) 

where 6n stands for the (analytic) corrections to pion- 
PCAC. These corrections have been estimated through 
QCD sum rules in the pionic channel [26-27]: fin = 
(4 _ 1)%. Assuming ( t i u )  ~- ( d d )  one finds from (11) 

4n2[mu(~u) + ma(dd)] ~- - 0.0064 GeV 4. (12) 

In this way and with Aoc D fixed, e.g. AQCD = 100 MeV, 
(8) contains as free parameters the gluon condensate 
and the four-quark condensate (eventually also the 
d = 8 condensates) which we shall determine by con- 
fronting (8) with the z ~ v~2n and z-~ L4n data. The 
reference value for ( ~  G 2 ) was given in (3). In the case 
of C 6 (O 6) we could take as reference value the one 
following from the vacuum saturation approximation 
[1]. Making use of the relation [1] 

( ( ~ T u ] ~  5 2aq)2 )[V.S. ----- - -  ( ( q T u ~ a q )  2 )[V.S. (13) 

together with (4) in (10) one finds [1] 

C6(06)vlv.s. = - ~ 1 6 n 3 ~ ( 0 q )  2 __ - 0.06 GeV 6. 
(14) 

Turning to the axial-vector channel we define 

AA 2 i~d4xe iqX(O[  IIu~ (q )= T(Au(x)A~(O))IO) 
= -- guv[IA(q 2) + quq, Ha(q 2) (15) 

where the current Au(x ) has the quantum numbers of 
the A~-meson, i.e. 

Au(x) = �89 [u(x)T, ]:5 u(x) - d(x) 7uY5 d (x) ]. (16) 

Since Au(x ) is not conserved (15) contains two 
independent structure functions. However, at large 
Q2 _= _ q2 and to leading order in the quark masses 
one has the relation [1] 

Da(QZ) + Q2HA(Q2) (m, + ma)(Ou + dd) 
= Q 2  (17) 

Concentrating on e.g. /-/a(q2), its perturbative QCD 
expression is the same as that f o r / / v (q  2) in (8). How- 
ever, the non-perturbative coefficients are different, viz. 

7~ 2 C4(04)  A = ~ < ~ G  ) - 4rcZ[m,(tTu) + ma(dd)] 

(18) 

C 6 < 0 6 )  A : - -  ~-n3O~s( (q~ta~aq)2 ) .  ( 1 9 )  

Notice that C4 (04 )A should be larger than C4 ( 0 4 ) v  
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by precisely twice the value (12), i.e. 

C4 < 04 >A -- C4 < 04 > v ~ 0.013 G e W  (20) 

On the other hand, comparing eqs. (10) and (19) and 
using (13) one finds 

C 6 ( 0 6 > A  _ 11. (21) 
C 6 ( 0 6 > V  V.S. 7 

These two relations will become useful later on to 
perform valuable consistency checks on the results of 
our analysis. Concerning C8(O8)a ,  at least the 
contribution from the gluonic operators should be the 
same as in C8(08)v  as calculated in [24]. 

3 Q C D  s u m  rules 

3.1 Finite energy sum rules 

Finite Energy Sum Rules (FESR), including radiative 
corrections to order (9(~t2), have been derived in [10]. 
For  the vector or the axial-vector channel they read 

so 1 
C4N+2 ( 04n+ 2 )v,a = 8nz j" dssZN--ImHv,A(s) 

0 1~ 

$20 N + 1 
[1 +r4N+2(So) ] (22) 

2 N +  1 

so + 1 
- C4N+4(O4u+4)V,A = 8n 2 ~dss 2N 1--ImHv,a(S) 

0 7~ 

s2N + 2 

2N + 2 [1 + F4n+4(So) ] (23) 

where N = 0, 1, 2 . . . . .  and the radiative corrections 
Fp(so) , with p = 4N + 2 or p = 4N + 4, are given by 

Fv(so) ~As~4 )+[~(so}]2(F  3 flip fllfl21nlnA~cD) 

(24) 

where F 3 and fll were defined previously (8), 
f12 = - 115/12 for three colours and two flavours, and 

~(So) 2 
T - - fll In (so/A~cD)" (25) 

In the above equations So is the threshold for 
asymptotic freedom, i.e, for s > s o the spectral function 
behaves as predicted by perturbative QCD. Since the 
quark mass loop insertion term in eq. (8), formally 
equivalent to a C2 (O 2 )  effective contribution, is negli- 
gible one finds from (22) with N = 0 

8n2 so 1 
1 + F2(so) - Io(so)[v,a = S~o ! ds~ ImHv,a(S ). (26) 

Hence, in this case s o is not a free parameter to be 
determined from additional physical assumptions out- 
side the sum rule framework, but rather it is a solution 
of the above eigenvalue equation. Once So is deter- 
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mined from (26) one may proceed to determine the 
values of CN (ON > using the remaining (22)-(23). 

There is an important issue, often overlooked in 
past applications of these sum rules, which has to do 
with the stability of the eigenvalue solutions to the 
FESR. As first pointed out in [28] one should trust 
predictions from FESR provided they are stable 
against reasonable changes of So inside some duality 
region; only then there will be duality between the 
experimental data and a given set of QCD parameters. 
One expects that the more accurate the parametriza- 
tion of the data the wider this duality region where 
e.g. the rhs of (26) will be approximately equal to its 
lhs. A wide duality region seems to guarantee the 
stability of the vacuum condensates [10, 11, 27-29], at 
least for those of lowest dimension. Clearly, the power- 
like weight of the spectral function in the FESR will 
eventually be the cause of their failure in making reli- 
able predictions for high dimensional condensates. 
That this stability issue is not trivial may be seen by 
parametrizing e.g. the vector or the axial-vector 
spectral function with a delta function. In this case the 
slowly varying lhs of (26) will intercept the rapidly 
varying rhs at only one point. The duality region then 
reduces to a single value of s o and, furthermore, the 
vacuum condensates extracted from (22)-(23) turn out 
to be quite unstable against small changes around this 
eigenvalue. As shown in [11], in connection with the 
vector case, this instability problem does not get any 
better by attempting a finite-width single resonance 
parametrization of the spectral function. It is only 
when a fit to the actual e + e data is used in the FESR 
that one finds stable eigenvalue solutions. 

3.2 Laplace transform sum rules 

Another useful set of QCD sum rules is that based on 
the Laplace transform of the spectral function Eli 

L((7) = S ds e -~  1_ Im H(s) (27) 
0 7~ 

where the Laplace variable (7 plays now the role of 
the short distance expansion parameter analogous to 
1/Q 2 in e.g. (8). In the case of vector or axial-vector 
current correlators the QCD expression for L(o-) reads 
[30] 

"[Fa- �89  1 

"2V C4 < 04>V,A G2 ~'- C6<06>V,  A 

~3 (74 
2! F Cs<Os>F'a~. 

where ?E = 0.5772... is the Euler constant. 
Because of its exponential weight, the Laplace trans- 

form (27) places more emphasis on the low energy part 
of the hadronic spectral function, a clear advantage 
over e.g. the FESR. At the same time, however, the 
influence of So becomes exponentially suppressed and, 
hence, for all practical purposes So ends up as an 
adjustable parameter not fixed by the Laplace sum 
rules themselves. On the QCD side, higher dimensional 
condensates become factorially suppressed. Since our 
knowledge of the Wilson coefficients does not usually 
go beyond d = 8, this feature appears as an advantage. 
Nevertheless, notice from (28) that now all of the 
condensates appear in the sum rules; it might happen 
in some cases that the factorial suppression may not 
be enough to quench some of the higher dimensional 
condensates. As we shall discuss in more detail later 
(cf. Sect. 6) this fact can make it difficult to extract the 
values of CN(ON) in an unbiased way. In contrast, 
vacuum condensates of different dimensionality obey 
uncoupled FESR, at least when no radiative correc- 
tions are taken into account in the Wilson coefficients 
(for a generalization to higher orders in c~ see [31]). 

In practical applications of Laplace transform QCD 
sum rules it has been customary to consider the ratio 

1 
dse-S~s-ImH(s) 

I2(~) o 
R(a) - - (29) L(a) o~ 1 

S ds e -'~ Im H(s) 
0 7~ 

where E(a) stands for dL(a)/da. On the hadronic side 
the ratio (29) tends to minimize the experimental errors 
in the spectral function while on the QCD side it tends 
to emphasize the non-perturbative contributions over 
the purely perturbative ones, viz. 

(~ )  I+FL(a) C4(04>Iy2-C6<O6>173-1Cs(Os>ff44 -... 
R(~ IQCD = 1 

1 + FL(a ) + C , < 0 4 > a  2 + I C 6 < 0 6 > f f  3 § - - C  8 <08 >0 "4 § ... 
3t 

(30) 

where FL(a) stands for the perturbative t e rms  in 
eq. (28). We shall adhere to this established practice 
and use the ratio (29) in our analysis. 

3.3 Gaussian sum rules 

The final set of sum rules we will consider is that based 
on the Gaussian transform of the spectral function [ 10] 

1 | ~ _(s_g)2/4,c 1 1~  TTg.'~ G ( g , z ) - x ~ ! d ~  -~-,l~t~, (31) 

i.e. the convolution of the spectral function with a 
Gaussian kernel centered at an arbitrary point ~ with 
a finite-width resolution x / ~ .  The short distance 
expansion parameter in this case is 1/xfl~, while x / ~  
determines the resolution with which the physical 
spectrum is to be sampled at the various points L In 
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particular, for z = 0 one 
duality, i.e. 

would obtain strict local 

6(g, 0) = !Ira/-/(g) (32) 
TC 

However, this is only a hypothetical limit as it would 
imply a complete solution to the bound state problem 
in QCD. Therefore, in practice r must be kept finite, 
typically z-~0.5 1.5GeV 4 [10-11,27 29]. A very 
important property of G(g, z) is that it obeys the partial 
differential equation 

OZG(g,z) 8G(g,z) 
(33) 

which is nothing but the heat equation if one reinter- 
prets g as a 'position' variable and z as a 'time' variable. 
In this analogy the hadronic spectral function corres- 
ponds to the initial heat distribution in a semi-infinite 
rod 0 < g < oo and G(g, z) measures the evolution in 
time of the heat distribution in this rod. This provides 
a convenient framework to check the consistency 
between given data on the spectral function and a 
specific choice of QCD parameters, e.g. AQCD, So and 
the values of the vacuum condensates in the OPE. In 
fact, after a certain 'time' r sufficiently large so that 
the uncalculated QCD corrections become relatively 
small, the predicted QCD heat distribution should 
match the evolution of the data. This is the heat evolu- 
tion test first proposed in [10] and which serves as a 
quantitative formulation of the notion of local duality. 

The heat equation (33) for the semi-infinite rod 0 < 
g < oo admits two general solutions corresponding to 
the two possible choices of boundary conditions: 
vanishing function or vanishing first partial derivative 
with respect to g at the origin, both for z > 0, subject 
to the initial condition (32). Denoting these two solu- 
tions by U-(g, r) and U + (g, z), respectively, one has 

U + (g, z) = G(g, "r) + G( - g, "r) (34) 

u -  (g, = G(g,  T) - G(  - g, (35)  

The calculation of U+(g, z) in QCD has been dis- 
cussed in [10] and the result is 

8rt 2 UKA(g, ~) 

= 1 + e s ( x / ~ )  + F3  - In In 

2 _~2 

1 C6<06>V, A ] 
-F 2 (2w/~) 3 H2(x)+""  (36) 

8~ 2 U (,A(~, "C) 

�9 IF3 +~ln2- - �88  

fiE l n l n ~ ] ' ~  + [ ~ 1 2  
fll a ~ c D J ]  

"B~ I dzDer f(z)  + (9 
o 

2 [ C4<04>V, A 
+ - -  e-*2 H 1 (~) .,F 

C8 ~ V ' A  H3(.~ ) . . . .  ] (37) 

where 

g 
:~ - 2~-~' (38) 

, v  

erf(2) is the error function, H,(2) are Hermite 
polynomials, 

g 

D(z) = e-  z2 ~ dt e '2 (39) 
o 

is the Dawson function, 
g 

Der f (z)  = e-  z2 ~ dte t2 erf(t), (40) 
0 

and as(x/~) is given as in (25). 
Notice that U+(g, z) contains the dimension d = 6 

vacuum condensate (and eventually d = 10, etc. which 
we are not considering here), while U-(g, T) contains 
C4<04> and Cs<Os>. This will allow for two in- 
dependent heat evolution tests to be performed on the 
eigenvalue solutions to the FESR, as well as on the 
results from the Laplace transform analysis. 

3.4 Comparative discussion of the QCD sum rules 

It should be clear from our short review of the various 
QCD sum rules above that each one of them has 
advantages as well as shortcomings. A brief summary 
follows. 

(i) Because of their exponential kernel the Laplace 
transform QCD sum rules emphasize the low energy, 
ground state, part of the hadronic spectral function. 
Therefore, an accurate knowledge of the data in the 
intermediate and high energy region may not be 
necessary. In contrast, FESR are rather sensitive to 
this region and hence call for a much more accurate 
parametrization of the data. 

(ii) In spite of the Laplace factorial suppression of 
higher dimensional non-perturbative terms in the 
OPE, this might not be enough to avoid a biased 
determination of the lowest dimensional condensates 
through a confrontation between (29) and (30). To 
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elaborate on this point suppose we assume that 
C6(06>=C8(08> . . . . .  0 and then proceed to 
determine C4(O4)  by fitting R(a)lQc D in (30) to 
R(cr)lDm- * in (29). Let us call this result C4(04>[I. 
In a second step we take into account C4(O4> and 
C6 (O6 > but continue to neglect C8 ( 08 >, etc., and 
call these results C 4 ( O 4) [z and C 6 ( 06 > [ ~. If C 6 ( 06 > 
is not negligible we would expect in general 
C4 (O4 > i 1 :~ C4 ( O 4 )  I z. In fact, as will be shown in 
Sect. 6 even the sign of C4(O4>[z turns out to be 
different from that of C4 ( O4 > 11. The established 
practice has been to stop the analysis at this second 
stage, assuming the influence of C8 ( 08 ) on C4 ( 04 > 12 
and C6 (O6 >]a to be negligible. We shall argue later 
(cf. Sect. 8) that this may not be the case. At any rate, 
this Laplace correlation among the various vacuum 
condensates is absent in the FESR as they obey un- 
coupled eigenvalue equations, provided the corres- 
ponding Wilson coefficients are computed to lowest 
order in ~ (see [-31]). 

(iii) The value of the asymptotic freedom threshold 
s o is essentially a free parameter not fixed by the 
Laplace sum rules. In contrast, s o is one of the eigen- 
value solutions to the FESR. However, the dependence 
of the vacuum condensates on s o is power-like in the 
FESR while it is exponentially quenched in Laplace 
sum rules. 

(iv) Having fixed s o by means of some external argu- 
ments, predictions from Laplace sum rules follow from 
the criterion that there should exist some 'window' in 
cr such that perturbative QCD remains valid and, at 
the same time, only the leading power corrections are 
needed. This criterion should be thoroughly tested and 
checked by comparing with the results from the FESR. 
Nevertheless, the latter may only be trusted if the 
eigenvalue solutions are stable against changes in s o 
inside the duality window. The ultimate overall 
consistency check of whether the values of s o and of 
CN(ON) so determined are dual to the data or not, 
should be performed using the heat evolution tests 
which follow from the Gaussian sum rules. 

Our conclusion is that Laplace transform and Finite 
Energy QCD sum rules are complementary tools to be 
used in the determination of the vacuum condensates. 
A systematic and reliable analysis should be based on 
both approaches together with the heat evolution 
tests. This is, in fact, the procedure we follow in the 
sequel to extract the QCD vacuum condensates from 
the z-lepton decay data. 

4 Fits to the data 

The amplitude for the semileptonic decay of the z- 
lepton into a non-strange (S = 0) hadronic final state 
is given, in the four-Fermi approximation, by 

A(z -+ ~ v, + hadrons(S = 0)) 

= w/2Gv cos 0~(p~ )7~(1 - 75)u(pJ 
x (hadrons(S =0)]J~+~210>, (41) 
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where Ju= V u - A  u. If the hadronic final state 
consists of an even (odd) number of pions then only 
the vector (axial-vector) piece of J~ contributes to the 
matrix element in the rhs of (41)�9 Therefore, the 
differential transition probabilities per invariant mass 
squared dF/ds for the processes z --* v~ + nrc are related 
to the vector or axial-vector spectral functions, viz. 

ds 

Gv 2 cos z 0c 2 
- 8rc ~ (Me + 2s)(M2 - s)2 

l l m H v ( s )  (n =even) 

�9 ~ (42) 

LImHa(s) (n = odd). 
7[ 

In the axial-vector case the spectral function contains 
in addition the pion-pole which we treat separately�9 

Our analysis is based mainly on the recent data 
obtained by the ARGUS collaboration at DORIS 
[18]�9 The experimental invariant mass distributions 
for z+ ~ v~7[+ 7[ ~ and z+ -~ v~7[ + 7[ + 7[- ~ ~ are shown 
in Fig. la and b, respectively. We also show there (solid 
curves) the result of the fits done in [19] using the 
product of a Breit-Wigner function with a high order 
polynomial (Fig. la) and a single high order poly- 
nomial (Fig. lb). These fits were performed using the 
numerical program MINUIT and their quality is quite 
good as measured by the resulting values of the chi- 
squared per degree of freedom (X2), namely: ZF 2 = 
~(2/51 =0.89 for Fig. la and 22=X2/81 =0.76 for 
Fig. lb. Concerning the decay mode z ~ v~ 7[ -+ 7[ ~ 7[ ~ 7[ ~ 
we use the theoretical estimate of [32] based on CVC 

F(z  -+ ~ V~7[-+ 7z~176 ~ 1 
F(z  +- --* v~7[-+ re+ re- rc ~ = 5" (43) 

As to higher multiplicity final states, e.g. z--* v~ + 67[, 
although there is no precise data available their contri- 
bution is thought to be negligible [32-33]. 

Finally, in order to obtain the vector spectral func- 
tion through (42) we have used, as in [19], 

BR(z+ ~ v~7[_+ 7[0) ~ BR(z+ _~ v~p+) 

= (22.3 _ 0.6 + 1.4)~o (44) 

and 

BR(z + ~ v~z + n + re- 7[0) = (4.5 _+ 0.4 + 1.5)%. (45) 

The final result for (1/7[)ImHv(s) is shown in Fig. 2 
(curve a). We have found that the area under this 
spectral function is in excellent agreement with the 
area under the corresponding vector spectral function 
obtained from a fit to the e + e-  data [11], as expected 
from CVC considerations. This agreement holds over 
a wide region of s extending up to s ~- 2.5 GeV 2, which 
is quite enough for our purposes. 
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Turning to the axial-vector channel, the experi- 
mental invariant mass distribution for z -+ ~v~p~ + 
is shown in Fig. lc. The solid curve in this figure is 
the result of the best chisquared fit performed with a 
Breit-Wigner function times a high order polynomial 
[19]�9 The resulting value of Z 2 is Z 2 = Z2/69 = 0�9149 
There is no experimental information available in the 
channel z+~v~p+rc ~ However, given the rather 
strong Al-resonance dominance in z+-~v~p~ + (cf. 
[18,34]) we can safely estimate the contribution of 
the former using isospin symmetry which simply 
entails BR(z + ~v~p+rc ~ = BR(z -+ ~v~p~ As 
with z~v~6rc we shall neglect here the channel z ~  
V~ 572. 

A source of uncertainty in the extraction of Im H A 
from dF/ds is due to the wide spread of experimental 
values for the branching ratio BR(z-+--*v~p~ § 
[33, 35]. We shall use here the world average [33, 35] 

BR(z -+ ~ v~p~ +-) = (6.6 ___ 0.6)%. (46) 

In addition, there may be a non-negligible background 
contribution to the decay z--* v~ + 3re, i.e. [33-35] 

BR(z --. v, + 37[)INon-R~s. =< 1.4%. (47) 

We have used here a very simple parametrization 
of this background in terms of eT[ non-resonant phase 
space normalized to the value (47). The final result for 
the axial-vector spectral function is shown in Fig. 2 
(curve b). Not  shown there, of course, is the pion-pole 
contribution which in the chiral limit is given by 

1 
- I m  Ha(s)[ . = fZf(s), (48) 
7[ 

where f~ -~ 93�9 MeV. 
Before closing this section we point out that to the 

hadronic parametrizations of the spectral functions 
discussed above one should add the perturbative QCD 
piece starting at some threshold So, viz. 

1 1 
- Im H v,a (s) = - Im H V,A (S) lh,d. 
7[ 72 

+O(s-s~  1 + ~ +  ""1" (49) 

5 V a c u u m  condensates  from FESR 

Using the fit to the vector spectral function discussed 
in Sect. 4 we have solved first the eigenvalue equation 
(26) to find the duality region. In Fig. 3 we plot the 
behaviour of the lhs of (26) (curve (b)) versus s o. The 
solid curve (a) shows the corresponding behaviour of 
the rhs of (26). The duality region lies in the range 

1.44 GeV 2 < s o =< 1.75 GeV 2 (50) 

Solving next the FESR (22)-(23) for values of So inside 
this region we find for C 4 ( 0 4 ) v  and C 6 ( 0 6 )  v the 
results shown in Fig. 4 as curves (a) and (b), res- 
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Fig. 3. Behaviour of the hadronic integral in the rhs of the FESR 
(26) (curve a) together with the behaviour of the QCD lhs (curve b), 
in the vector channel 
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Fig. 5. Behaviour of the hadronic integral in the rhs of the FESR 
(26) (curve a) together with the behaviour of the QCD lhs (curve 
b), in the axial-vector channel 

pectively. Also shown there (curve (c)) is the calculated 
behaviour of C 8 ( O  8 ) ,  but we defer the discussion on 
this condensate till Sect. 8. As it may be appreciated 
from Fig. 4 the vacuum condensates are reasonably 
stable against changes in s o within the duality region. 
Numerically the results are 

C4 ( 04 ~ v = (0.025 - 0.11) GeV 4 (51) 

C6 ( O 6 )  v = - (0.16 - 0.32) GeV 6. (52) 

Using (9) and (12) the above value of C4(04)v trans- 

lates i n to  

2 ~ - ( ~ G  ) = (0.03 - 0.12)GeV 4. (53) 

This result is consistent with the standard value (3) as 
well as with higher values from other analysis [11-12]. 
However, it is barely consistent with a recent s-wave 
charmonium determination (cf. [7]) giving (~z/3). 
(~ ,  G 2 ) = (0.14-0.23) GeV 4. Concerning the dimen- 
sion d = 6 four-quark vacuum condensate our result 
(52) shows a clear deviation from the vacuum satura- 
tion approximation value (14), and is in agreement 
with e+e - results [9, 11-12]. 

Turning to the axial-vector channel and repeating 
the above analysis we find first that the duality region 
in this case is somewhat wider, as may be appreciated 
from Fig. 5, i.e. 

1.75 GeV 2 < So < 2.25 GeV 2 (54) 

One may understand the result s o In > So Iv on account 
of MA1 > Mp. With a wider and better duality region 
one would expect the vacuum condensates to be more 
stable in So, and thus to be affected by a lesser un- 
certainty. This is indeed the case as shown in Fig. 6. 
The numerical results now read 

C4 ( 04 ) a = (0.045 -- 0.10) GeV 4 (55) 

C6 ( 0 6  ) A  = (0.16 - 0.28) GeV 6 (56) 

and using (12) and (18) 

7~ 
~-( ~ G  z ) = (0.04 - 0.09) GeV 4. (57) 

It is rewarding that the use of two independent sets 
of experimental data lead to essentially the same value 
for the gluon condensate. This is due to the fact that 
the results we obtain for C 4 ( 0 4 )  V and C 4 ( 0 4 )  A 
satisfy (20). Notice furthermore that C 6 ( O 6 ) a  has the 
same sign as expected from theoretical considerations 
(V.S.), cf. (21), although its value is a factor 2-3 larger 
than expected from the vacuum saturation approxima- 
tion. 



6. Vacuum condensates from Laplace 
transform sum rules 
First of all we wish to elaborate on the point raised 
in Sect. 3.4, (ii), concerning the potential bias of Lap- 
lace transform determinations of vacuum condensates. 
Let us concentrate, for instance, on the vector channel 
and compute R(a) in (29) using the data on the spectral 
function complemented with the continuum contribu- 
tion starting at s o, (49). The result is shown in Fig. 7 
(solid curve) for values of a inside the sum rule window 
a - ~ ( 0 . 5 -  1.25) GeV -2. Suppose now that we were to 
set C 6 < 0 6 >  V = C 8 < 0 8 >  V . . . . .  0 and fit C4(04>v 
in (30) so that R(a)IQcD~'R(a)IDATA e.g.  in a chi- 
squared sense. A very reasonable fit would then be 
obtained with C 4 < 04 > v = - (0.02 - 0.04) GeV 4 as 
shown in Fig. 7 (broken curves). Since on very general 
grounds [1] C4<04> > 0 this result is meaningless, in 
spite of being the best fit to the Laplace ratio (29). 
Including next C6<06> V in the fit will change 
C4 < O4 >v and lead to a pair of 'effective' values for 
these two condensates. These 'effective' values could 
be the true values if and only if the additional presence 
of C s < 08 >v would induce no sizable changes. As we 
shall argue in Sect. 8 this may well not be the case 
here. A similar observation has been made recently in 
[12]. Therefore, in our opinion Laplace transform sum 
rules should not be used in isolation but rather, in 
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ratio R(a)IDATA" The upper  (lower) broken curves correspond to 
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0.1 GeV 4, C 8 < 08 >A = 0 and C 6 ( 06 >a = 0(0.1 GeV 6) 

conjunction with other methods (e.g. FESR) to search 
for overall consistency. In short: they are a necessary 
but in general not a sufficient condition for consistency. 

Following this philosophy, we have used the values 
of the condensates determined with FESR to compute 
R(a)IQCD, (30), and confronted it to R(a) obtained from 
the data through (29). In Fig. 8 we show R(a)[Qc D in 
the vector channel for C4 < 0 4 )  r = 0.025 GeV r 
C6 < 06 ) v = - 0.16 GeV 6 (upper broken curve), and 
C4<04>v=O.11GeV 4, C6<06>v = -- 0.16 GeV 6 
(lower broken curve), both for C 8 ( 08 >v . . . . .  0. The 
solid curve in this figure corresponds to R(0-)IDATA. 
For s o we have used values inside the duality region 
(50). Other combinations of eigenvalue solutions to 
the FESR lead to equally acceptable results for 
R ( O - ) [ Q C D  with the exception of C 0 ( 0 6  > V values near 
the high end of (52). In view of our previous discussion, 
and since we are neglecting Cs<Os> v, we do not 
ascribe much significance to this discrepancy. 

In Fig. 9a we show R(a)lQC D in the axial-vector 
channel for C4(04>A=O.O45GeV 4, C6<06>A = 
0.1GeV 6 (upper broken curve) and C 6 ( 0 6 > A  = 

0.2 GeV 6 (lower broken curve) together with R(a) IDATA 
(solid curve). Using the higher value in (55), i.e. 
C4 < 04 > A = 0.1 GeV 4, would require that C6 ( 06 > A -~ 
(0 -- 0.1) GeV 6 in order to get agreement with 
R(a)IDATA, as shown in Fig. 9b. In fact, an almost 
perfect fit would be obtained if C 6 < 06 )A = 0.05 GeV 6. 
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However ,  such a value is well outs ide the dual i ty  range 
(56). 

In  summary ,  with some exceptions the eigenvalue 
solut ions  to the F E S R  satisfy also the Laplace  t rans-  
form Q C D  sum rules. As no ted  above,  these except ions 
cor respond  to values of C6 ( O 6 ) v  near  the high end 
of (52), and  to the value C 4 ( 0 4 )  A -~0.1 GeV 4 which 
appears  to require  a C 6 ( 0 6 )  A outside the dual i ty  
range (56). If  one had  sound  theoret ical  a rguments  to 
suppor t  the a s sumpt ion  that  C8 (08)V,A is negligible, 
then this conf ron ta t ion  between F E S R  and Laplace  
t ransform results  could  be useful to na r row down the 
range of the predict ions.  However ,  we shall  argue in 
Sect. 8 tha t  this does not  seem to be the case and,  
fur thermore,  that  the above  discrepancies  d i sappea r  
a lmost  ent irely o n c e  C 8 ( 0 8 > v ,  A is included in 
R(O')IQCD. 

7 Heat evolution tests 

In this sect ion we perform the heat  evolut ion  tests 
[10] in o rder  to check if there is dual i ty  between the 
hadron ic  da t a  and the set of Q C D  paramete r s  deter-  
mined previously  from the sum rules. To this end we 
have computed ,  from (31), (34)-(35) and (49), the 
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Gauss ian  t ransforms + Uf,A(S, Z)IDATA using the pa ra -  
met r iza t ion  of the vector  and  axial -vector  spectral  
functions discussed in Sect. 4, as well as UV,A(g, Z)]QCD, 
(36) (37), for values of So inside the duali ty regions 
(50), (54), and vacuum condensates  as in (51), (52), (55) 

Uf(s, ~)IDATA and (56). In Fig. 10a and b we show + ^ 
(solid curves) together  with U~(g,r)lQCO (broken 
curves) for C 4 ~ 0 4 )  V =0.11 GeV 4 and C 6 ~ 0 6 )  V = 
- - 0 . 1 6 G e V  6, at the two different ' t imes'  r = 0.5 GeV 4 
and T = 1.5 GeV 4, respectively. As it may  be appreci-  
ated from these figures, with increasing ' t ime'  the heat  



distribution of the data matches the theoretical heat 
distribution computed with the above values of the 
QCD parameters. For later 'times', i.e. z > 1.5GeV 4, 
this matching improves to the point that the two curves 
cannot be distinguished. As an example of a set of 
QCD parameters which do not pass this test we show 
in Fig. 11 the function U+(~,Z)IQCD for C6~06~v~-0 
at z = 1.5 GeV 4. Recall that this case gave a good fit 
to the Laplace ratio (29) with a negative value of 
C4(04) v (cf. Sect. 6). Repeating the procedure for 
other values of the vacuum condensates inside the 
duality region we find equally good heat evolutions 
with the exception of C 6 ( O 6 ) v  values near the high 
end of (52). A relative qualitative comparison among 
all possibilities confirms the result (51) but narrows 
down the range (52) to 

C6 ( 0 6  ) V = - -  (0 .16 - 0.24) GeV 6. (58) 

Notice that for 2 - g / 2 x / ~  large, the vacuum 
condensates have no practical impact on U+(g, z) due 
to their exponential suppression (cf. eqs. (36)-(37)). In 
this region of large 2 one is then testing duality bet- 
ween s o and perturbative QCD. The rate of approach 
to the asymptotic limit 

1 
lim U • (~, z) - (59) 
:~oo 8~2 

depends, of course, on the value of z as may be 
appreciated e.g. from Fig. 10a and b. 

Turning to the axial-vector channel, we show in 
Fig. 12a and b U+(~, Z)IDATA together with the corres- 
ponding QCD transforms for C4 ( O 4 )  A = 0.045 GeV 4 
and C o ( O  6 )A = 0.16 GeV ~ at the 'times' z = 0.5 GeV 4 
and z = 1.5GeV 4, respectively. Heat  evolutions for 
other values of the condensates in the duality range 
(55)-(56) were also carried out. They are of comparable 
good quality and thus confirm the sum rule results. 

8 On the value of C a ( O a )  

In principle the FESR (23) with N = 1 may be used 
to determine the numerical value of C 8 (O  8 )V,A- How- 
ever, given the rather high weight of the spectral func- 
tion in this case one would expect the accuracy of the 
results to be somewhat limited. With this due reserva- 
tion in mind we have solved eq. (23) in the vector and 
axial-vector channels for values of s o inside the duality 
regions (50) and (54). The results for Cs(Os)v  and 
C 8 ( 0 8 )  A are exhibited in Figs. 4 and 6 (curve (c)), 
respectively. Numerically they read 

C8 ( O 8 )  v = (0.28 - 0.55) GeV 8 (60) 

C8 ( 08 ) a  = - (0.36 - 0.54) GeV 8. (61) 

As with C4(04> and C6~06), the result for C 8 ( 0 8 )  
in the axial-vector channel is more stable and less 
inaccurate than that in the vector channel. This is a 
reflection of the quality of the corresponding duality 
regions as may be appreciated from Figs. 3 and 5. To 

73 

L- 
>.2 
( . 9  

2 

re 1 

0 i i i i [ i i i i ] i i t i 

0.5 0.75 1 1.25 

O" (GeV -2) 

Fig. 13. The Laplace ratio R ( g ) I D A T A  in the vector channel (solid 
curve) compared to R(a)[QCD for C 4 ( O 4 ) v = 0 . 0 2 5 G e V  4, 
C 6 ( 0 6 )  v = - 0.16 GeV 6, C 8 ( 08 )v  = 0 (upper broken curve) and 
C8 ( O a ) v  = 0.25 GeV s (lower broken curve) 

0.015 . . . .  ~ . . . .  J . . . .  

> 0,010 

0.005 
= 05 GeV L' 

0 I ~ i I I i i L I I I I I I 

0 1 2 

(GeV 2) 

Fig. 14. The Gaussian transform U -  (g, z)[DATA in the vector channel 
(solid curve) and U-(~,z)[Qc D for C 4 ( 0 4 ) v = O . O 2 5 G e V  4 and 
C8 ( 08 )v  = 0.28 GeV 8, at z = 0.5 GeV 4 

3.00 

2.25 
> 

~: 1.50 

w 0.75 

, r , , l ' ' l ' l ' ' ' ' l ' ' , ' l T ' ' '  

0 , , , , I L i i i I f i i , I i i i i I i i I 

Q5 0.65 08  095  14 1.25 

o-{OeV -2) 
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remain on the safe side we proceed with our discussion 
choosing the lowest eigenvalue in (60)-(61). 

In order to show the influence of Ca(Oa) on the 
Laplace analysis we plot in Fig. 13 R(a)[DATA (solid 
curve) and R(a)IQCD for C4(04)v=O.O25GeV 4, 
C6(06)v  = - 0.16GeV 6, C s ( 0 8 ) v = O  (upper 
broken curve), and Cs(Os)v=O.28GeV 8 (lower 
broken curve). The agreement between the theoretical 
and the experimental Laplace ratios is clearly im- 
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C8 (O8)A  = - 0.36 GeV 8, at z = 0,5 GeV ~ 

proved by the presence of Cs(O8)  v. Concerning the 
heat evolution tests, a remarkable amelioration of the 
matching between Uv(g,Z)IQcD and UV(~,r)[OATA 
is achieved, already at early 'times', when one includes 
the contribution from C8 (O8)v,  as seen from Fig. 14 
for z = 0.5 GeV 4. The good agreement found earlier 
between Uv (~, Z) IDATA and Uv (~, r) lQCD (with 
Cs ( O s ) v  = 0) at later 'times', e.g. r = 1.5 GeV ~, is less 
affected by C 8 ( O s ) v  on account of the r-suppression 
(see (37)). 

Similar improvements take place in the axial-vector 
channel as may be appreciated from Fig. 15 where 
R(a)IocD has been computed using C4(04)A~-'-- 
0.045 GeV 4, C6(06~  A = 0.28 GeV 6, C 8 ( 0 8 )  A -~0 
(lower broken curve) and C 8 ( 0 8 ) A = - - 0 , 3 6 G e V  8 
(upper broken curve). In Fig. 16 we show U~ (~, T)JvATA 
at r = 0 , S G e V  4 (solid curve) compared with 
UA(~,z)JQcD for C 4 ( 0 4 )  a as above and C 8 ( 0 8 )  a = 
- 0.36 GeV 8. This overall improvement caused by the 
inclusion of C 8 ( 08 ), as calculated from FESR, in the 
Laplace and Gaussian transforms should not come as a 
surprise if one keeps in mind that FESR follow from the 
latter, 

In addition to what has just been pointed out, the 
rather large values of Cs(Os)v ,A  derived through 
FESR may have important phenomenological conse- 
quences in applications of QCD sum rules to other 
channels. To see how much the results (60) (61) deviate 
from current theoretical estimates let us concentrate 
first on the vector channel. The pure gluonic piece of 
C s ( O s )  v, as calculated in [24], can be casted as 
follows 

C8(O8)v1~1 . . . .  =3@4[- -4 (01)  -- 196(02)  
- 2 9 2 ( 0 s )  + 540(04)  ] (62) 

where 

O 1 = 94 Yr(duv G.~ G~p G~p) (63) 

Oz = f~Tr(G.~ G,p Gu~ G~0 ) (64) 

0 3 = 94Tr(G.~G~G~Go.) (65) 

O4 = g4 Tr(G.~ G~p G~ Gp.) (66) 

with 

2a 
Guy - G~ ~-. (67) 

A reference estimate of (62) may be obtained using the 
vacuum saturation approximation [1, 36] in which 
c a s e  

C 8 ( 0  8 v.s. )vlgl~o.~- -(9( 10-3 10-z) GeV8 (68) 

where (53), (57) were used. However, it should be kept 
in mind that there are no theoretical arguments to 
support this approximation [37-38] and, in fact, some 
authors have claimed deviations of up to factors of 
ten [37, 39]. In any case, notice that even the sign of 
(68) disagrees with the FESR result (60). The huge 
factor needed to reconcile (68) with (60), though, does 
not necessarily translate into huge deviations from 
vacuum saturation for the individual matrix elements 
( 0 1 - 4 )  as these appear in the combination (62). As 
easily checked, it would be enough to admit e.g. 
individual mild deviations, but with appropriate signs, 
to recover (60). 

The most serious problem lies in the relative sign 
difference between (60) and (61), as the pure gluonic 
contributions to Cs ( Oa )  should be the same in the 
vector and axial-vector channels. This may be an 
indication that the contribution from the other 
operators which appear in the complete expression for 
C8 (O8) ,  usually assumed to be non-leading, might be 
important. There are, in fact, three additional 
operators involving gluon fields together with the 

- a  _ a source current ) . = D . G ~ . ,  as well as ten quark 
operators. Although the Wilson coefficients for the 
vector case have been computed in [24] this is not 
enough as there are not even theoretical estimates for 
many of these matrix elements. 

The values of the d = 8 vacuum condensates (60)- 
(61) are, of course, meant to be the complete result, 
i.e. they include the contribution from all possible 17 
operators. In view of their stability in so and of the 
improvement achieved in the Laplace sum rules as 
well as in the heat evolution tests, both for the vector 
and axial-vector channels, we feel that these results 
should be reliable to some reasonable extent. 

9 Conclusions 

Available experimental data on semileptonic decays 
of the z-lepton, z ~ v~ + me, allows for a determination 
of the vector and axial-vector spectral functions (cf. 
Sect. 4). This information has been used here in order 
to extract the values of the leading vacuum conden- 
sates appearing in the Operator Product Expansion 
of current correlators. Our technical procedure was 
based on a combined use of FESR, Laplace and 
Gaussian transform QCD sum rules. In this fashion 
we have been able to perform valuable consistency 
checks and verify explicitly the duality interplay 



Table 1. Results of our combined analysis using FESR Laplace and 
Gaussian transform QCD sum rules 

Axial- 
QCD Vector vector Standard 
parameter channel channel value 

so(GeV 2) 1.44 1 .71  1.75-2.25 - -  

C, ( O , )  (GeV 4) 0.025-0.11 0.045-0.10 0.03 

(n/3) (~sG2) 
(GeV 4) 0.03 0.12 0.04-0.09 

C6(06) (GeV 6) -(0.16-0.24) 0.16 0.28 

C8 ( Os ) (GeV s) 0.28-0.55 -- (0.36-0.54) 

0.04 

- 0.06 (vector) lv.s. 
0.09 (axial)[v.s. 

between the hadronic data and the QCD parameters 
so determined. In Table 1 we collect our results and 
show the standard values (3), (14) and (21) for 
comparison. It is rewarding to find that the use of two 
independent sets of experimental data lead to essential- 
ly the same result for the gluon condensate. The latter 
is consistent with the standard value (3) as well as with 
higher values derived from e+e - data [11-12] and 
other sources [2, 6, 13 14], but it is barely consistent 
with a recent s-wave charmonium determination [7]. 
Our value for the dimension d = 6  four-quark 
condensate C6~06~v, though, indicates a clear 
deviation from the standard vacuum saturation 
approximation, in agreement with earlier claims 
[9, 11-12, 15-17]. On the other hand, our result for 
C 6 ~ 0 6 )  A has the same sign as expected from 
theoretical considerations (V.S.), cf. (21), but its value 
shows also a sizable deviation from vacuum saturation 
(for a lucid and detailed presentation of the vacuum 
saturation approximation see [-40]). 

We have also determined C 8 dO s )V,A using FESR 
and found that its inclusion in the Laplace and 
Gaussian transforms leads to an improved duality 
between QCD and the data. However, in view of the 
rather high weight of the spectral function one should 
not expect the same level of accuracy as for lower 
dimensional condensates. In any case, we find a clear 
sign difference between C 8 ( 0 8 )  v and C s ( 0 8 )  A, 
which is also supported by the stability of the results. 
This could be an indication that the pure four-gluon 
operator contributions to C8(O8)  may not be 
leading. In view of its potential phenomenological 
consequences, this possibility deserves a separate 
theoretical study which is, however, beyond the scope 
of this paper. 
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