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This paper contains the first part of a systematic semiclassical analysis of the weak-coupling limit
of lattice gauge theories, using the Hamiltonian formulation. The model consists of an N cubic lat-
tice of pure SU(2) Yang-Mills theory, and in this first part we limit ourselves to the subspace of con-
stant field configurations. We investigate the flow of classical trajectories, with a particular em-
phasis on the existence and location of caustics. There the ground-state wave function is expected
to peak. It is found that regions densely filled with caustics are very close to the origin, i.e., in the
domain of weak field configurations. This strongly supports the expectation that caustics are essen-

tial for quantities of physical interest.

I. INTRODUCTION

In a previous paper1 we proposed to perform a sys-
tematic investigation of the weak-coupling limit of non-
Abelian lattice gauge theories with the help of the semi-
classical approximation. In a formal sense the weak-
coupling limit g?—0 of the lattice Hamiltonian?

2
H=8T1, 2y (1.1)
2 g2

(the electric part T is a second-order differential operator,
the magnetic part V plays the role of the potential) is
analogous to the #—0 limit of the Schrodinger Hamil-
tonian in ordinary quantum mechanics. This suggests us-
ing a suitable generalization of the WKB approximation
for investigating the g2— 0 limit of (1.1). One is thus led
to study classical nonlinear Hamiltonian systems with a
larger number of variables.

There is overwhelming evidence that the classical
Yang-Mills equations are not integrable.® One therefore
has to face the possibility that many aspects of modern
nonlinear mechanics and their relation to the semiclassi-
cal approximation of quantum-mechanical systems will
play an important role.* One of the peculiarities that one
encounters even in very simple non-Abelian lattice mod-
els is the appearance of a rich structure of caustics.
These are regions in configuration space ( =the space of
the lattice field variables) where neighboring classical tra-
Jectories intersect: in the path-integral representation of
the wave function the action integral does not have a
minimum on the classical path but is flat along certain
directions away from the classical trajectory. As a result,
the integral over the Gaussian fluctuations diverges, and
it is necessary to retain terms higher than the second
derivative of the action integral. A systematic
classification of caustics in terms of singularities of
smooth mappings can be found in the literature.’ It is
also possible to construct the wave function in the vicini-
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ty of caustics.!"® The reason why caustics are potentially
important for confinement dynamics (in the limit g>—0)
lies in the behavior of the ground-state wave function on
the caustics. In general, the semiclassical wave function
¥(x) has the form

Y(x)= A(x)exp (1.2)

~Lstx)+o?)
g

with 4 (x) and S(x) being smooth functions independent
of g% Fora point X on a caustic, however, the gZ—0 be-
havior of the wave function is

1
——S(x)
g’

P(X) ~ constXg Pexp (1.3)

g2—>0

Here p is a positive fractional number which is deter-
mined by the shape of the caustic. In a problem with a
very large number of dimensions the power p can become
big. If, moreover, the point X is close to the origin such
that the semiclassical factor exp[—(1/g2)S] is not too
small yet, there may be some competition between the
prefactor (representing quantum fluctuations) and the
semiclassical factor.

In Ref. 1 we studied two extremely simple models of
SU(2) lattice gauge theories: we have shown that caustics
exist, and we have located and analyzed in some detail
the parts of them which are closest to the origin. For the
most singular pieces of the caustics (Whitney tuck and
hyperbolic umbilic) we have explicitly shown how the
singular behavior (1.3) arises. The models were too sim-
ple to go further: in particular, there were no exponen-
tially small quantities whose computation could have
proven the relevance of caustics.

In this paper we turn to the more realistic case of a
large cubic SU(2) lattice (without fermions). Continuing
along the line of argument that we have described before
(for further details see also Ref. 1) we are first faced with
the task of studying the flow of classical trajectories and
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their caustics. In a system with such a large number of
variables this first step is already rather complicated and
has to be organized in several parts. We choose to work
with periodic boundary conditions; it is then possible (as
we will show below) to single out a lower-dimensional
subspace and to study classical trajectories that stay in
this subspace. It is the (nine-dimensional) space of con-
stant (with respect to lattice sites) field configurations,
i.e., of fields with zero momentum k. This subspace al-
ready shows such a rich structure that this paper will be
entirely devoted to its presentation. We see two reasons
why it makes sense to start with this subspace. From a
more technical point of view the analysis of classical tra-
jectories is somewhat simpler since they stay in this sub-
space. In a subsequent step we will then investigate paths
which are no longer confined to the k=0 subspace but lie
still close to it. Such a strategy is supported also by the
physical argument that we expect long-distance phenom-
ena to be described primarily by field configurations that
are close to the k=0 subspace. It is, therefore, desirable
to have as much information as possible on these field
configurations. ’

Interest in a semiclassical analysis of this subspace also
arises from another side. A few years ago Liischer’ sug-
gested studying Yang-Mills theories in a small spatial
volume V=L3. Because of asymptotic freedom, the re-
gion of small L can be studied through (renormalized)
perturbation theory, and it was hoped that knowledge of
the system at moderately small values of L would already
give a reasonable approximation of the large-L behavior.
However, numerical calculations® have shown that non-
perturbative effects (e.g., tunneling between the origin
and its conjugate points) are, even for small L, more im-
portant than expected and hence should be taken into ac-
count. For such an analysis one may also try to use the
semiclassical approximation, and part of this would be a
careful study of classical trajectories. In Refs. 9 and 10
van Baal et al. have studied tunneling effects between
stable toron points, but this tunneling is confined to the
space of toron configurations. For a complete analysis
one has also to consider tunneling contributions which
leave this subspace. In keeping with Liischer’s perturba-
tion expansion one first would look in the space of con-
stant field configuration. It is for these purposes that our
results may be useful too.

Returning to our goal of locating caustics we briefly
sketch our main results. In the vicinity of the origin (all
field variables << 1) our Hamiltonian is invariant under
rotations in both ordinary and group space and, there-
fore, has two sets of conserved angular momenta. Since
we are interested in classical solutions with both angular
momenta being zero, our originally nine-variable problem
reduces to one with only three degrees of freedom. The
pattern of caustics in the neighborhood of the origin is il-
lustrated in Fig. 1. The origin sits at the top of “squeezed
cones,” and each of them represents a two-dimensional
caustic. There are infinitely many of these ‘“‘cones,” one
inside the other (Fig. 1 shows only two of them), and they
become flatter and flatter. Their common symmetry axis
is the ray r, =r, >0, r;=0, and they all meet on the two
rays ry=r,=r3>0 and r,=r,=—r3;>0. A similar set
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of cones connects any pair of diagonal rays, e.g.,
ry=r,=r3>0 with r, =—r,=r;>0 (not shown in Fig.
1), etc. As a result, each of these diagonal rays is com-
mon to three sets of cones. Physically this “most singu-
lar” line corresponds to the following field configuration:
all x-link variables point, in group space, in the one-
direction, all y links in the two-direction and all z links in
the three-direction.

For the ground-state wave function of the correspond-
ing Hamiltonian operator this analysis leads to the fol-
lowing qualitative picture. Very close to the origin the
wave function is perfectly regular—this follows from the
fact that the kinetic differential operator is elliptic. Fur-
ther away from the origin (‘“asymptotic” behavior sets in
for field variables >>g?2/3) the behavior of the wave func-
tion will be very different, depending upon whether we
are outside all “cones” in Fig. 1, between the first and
second, and so on. On the caustics, which are just the
boundary surfaces of these regions of phase space, we
have behavior like (1.3). Still further away from the ori-
gin the caustics shown on Fig. 1 will be slightly bent, but
the general pattern remains. Further details will be given
below.

The organization of this paper is the following. First,
in Sec. II, we introduce notations and present the setup of
the classical mechanics problem. In Sec. III we investi-
gate the vicinity of the origin: there the Hamiltonian
greatly simplifies due to an extra symmetry. Most of the
results are obtained by analytic methods, but a few quan-
tities have to be calculated on the computer. Section IV
contains computer results on the full Hamiltonian of the
k=0 subspace. In particular, we search for solutions
with finite action. In the final section we summarize and
give a brief outlook.

II. DEFINITIONS AND STRATEGY

The lattice Hamiltonian for pure SU(2) Yang-Mills
theory is taken from Kogut and Susskind:?

&)

n

f=fh=-f

FIG. 1. Caustics in the vicinity of the origin. ry, r;, r;
denote the three variables of the reduced Hamiltonian (3.9).
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g S gx)+> 3 T1-UGP)]. @1 ®
H= g(xy )+ Tr[1—- . . _ . i .
- i 2 acaes D;=exp 103——N , 0<@; <2, i=1,2,3. (2.9)

We use the following notations: our cubic lattice has
length L =N with N >>1 but fixed, and the unit lattice
spacing is set equal to 1. 1 denotes the site on the lattice, i
the spatial direction. For each link variables we use the
parametrization U=x,+iox (x3+x>=1). Our
configuration space then consists of the points {x,;}.
The kinetic term has the form

F(x)=3(xop—L), p=%V, L=xXp, 2.2)

FHx)mark = H —A+x,x,V,V, +3x,V,)
=—g®%x)V,V,—T%V,) (2.3)
with the metric
gx)=18, —x,x,) 2.4)

and its Christoffel symbols I';, =x_g,,. For computa-
tional purposes it is useful to have, instead of this “Carte-
sian” parametrization of the group manifold, “angular”
variables 0, 3, ¢:

= sin@(sind cosg, sind sing, cosd) . (2.5)
Then the kinetic part of (2.1) reads
21|93 9
& 4 | 392 +2cotf 30
1 9* G 1 9
——+ cotd — 11,
sin0 | 097 | 0089 T sin® o ’

(2.6)

which is the four-dimensional Laplacian restricted to the
unit sphere S;. Throughout this paper we will use
periodic boundary conditions:

XLi =XitLe,i - (2.7)

We are primarily interested in the Schrodinger equation
for the ground-state wave function ¥({x,;}), which we
write as

4
A )

5 Uiz, ) =g E((x,;]) . 2.8)

This form clearly exhibits the formal analogy with ordi-
nary quantum mechanics: g? plays the same role as #.
When applying the semiclassical approximation to (2.8)
we first divide the configuration space into classically al-
lowed and classically forbidden regions. Under the as-
sumption that g’E —0 when g2—0 (which is correct in
perturbation theory) the allowed region consists of nar-
row “valleys” around those points for which the potential
V is zero (for g>—0, the width of these “valleys” shrinks
to zero). These “toron” points!' are those field
configurations where all i links are equal (up to gauge
transformations) to a constant SU(2)-matrix D,
(i=1,2,3), such that [D,.,Dj]=0. A convenient choice is

Configurations of the same form but with ¢; €[2m,47],
@, E[4m,67], ... are gauge equivalent to (2.9). It may
be useful to illustrate this situation in Fig. 2: the toron
manifold is drawn as a cube with the axes ¥, =¢, /N.
When ¢; ranges from O to 7, the SU(2) element D; moves,
in group space, on S; from the north pole to the south
pole. The value y; =7 /2 denotes the equator. Gauge in-
variance now implies that any point in this cube can be
mapped into the (bigger) cube at the lower left corner.
We illustrate this for two points on the three-axis: a’, b’
are the gauge images of @ and b. It is therefore sufficient
to study the “elementary cell” of toron points. In addi-
tion to gauge invariance, the Hamiltonian has a discrete
group of symmetry transformations, the central conjuga-
tions.” Locally they are gauge transformations, but
closed Wilson loops that wind around the torus pick up a
phase factor (—1). Under these transformations toron
points in Fig. 2 are shifted by units of 7/N in the one-,
two-, or three-direction (i.e., point ¢ is mapped into c’).
In particular, the eight “corner” points of the “elementa-
ry cell” (the smaller cube) are mapped onto each other:
so in the vicinity of any of those eight points the Hamil-
tonian looks identical.

Information on the quantum system in the classically
allowed region (in the limit g2—0) has been obtained in
Refs. 7 and 8. The toron valleys are widest at the eight
corner points, and these points are stable in the following
sense: the wave-function peaks at the corner point and
then falls off sufficiently rapidly along the valley direc-
tions. As a result, the energy spectrum is discrete.!*> The

d=g/N
E
1
T :
1
]
]
]
1
i
]
!
H
!
21Nt ,
. P pd=9,IN
/N @ "//k— ________________________
ay -
gz - o 1=
0 mwN 2n/N - b=9)/N

FIG. 2. The three-dimensional toron manifold: each toron
point is parametrized by three angles ¥,, 0<y, <7 (i =1,2,3).
Connection with Eq. (2.9) is made via ¢, =¢,/N. By gauge in-
variance, each toron point in the cube is equivalent to some
point inside the small cube at the lower left corner (‘“‘elementary
cube”). For example, the points a, b are gauge equivalent to a’,
b’, respectively. The points ¢ and ¢’ are central conjugates of
each other.
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central conjugations then play a role analogous to that of
reflection symmetry in a left-right-symmetric double-well
potential: eigenstates of the Hamiltonian are labeled by a
discrete quantum number (“‘electric flux”’), and the degen-
eracy between these states will be broken only at the non-
perturbative level. In the context of Lueschers approach,
tunneling from one corner point to a neighboring one
along the connecting (narrow) toron valley has been stud-
ied in Refs. 9 and 10. The level splitting is of the order
exp(—1/g Xconst).

Away from the toron points we are in the classically
forbidden region. For the ground-state wave function we
make the ansatz

Vi{x;})=A4({x;})exp . Q.10

2

~ & stmuD
g

In order to obtain the functions 4 and S we have to solve
the equations of motion of the classical Hamiltonian:

oS aS
H=1S40%(x, . )—>—.
: % g m) 9%y OXy;,

+1V. (2.11)
The trajectories we are interested in have zero energy and
live in Euclidean time: this is conveniently taken into ac-
count by changing in (2.11) the sign of the potential term
and then using real time again. On the torons we have
S =const; without loss of generality we choose S =0. All
trajectories then start from toron points, and in order to
calculate the wave function (2.10) at some point {x,;}
away from the torons we have to know all classical trajec-
tories which connect {x,;} with some point on the toron.
As we have said before, for the moment we are mainly in-
terested in caustics, i.e., in regions of configuration space
where neighboring trajectories intersect with each other.

For a semiclassical analysis we have to solve the equa-
tions of motion which follow from (2.11):

xl,i=pl,i_xl,i(XL,"p],i) » 212
1 oV )

8 ox;;

—P1,i = —P1,i (X, P )+

For practical purposes it is important to note that the
“Cartesian” parametrization of the group manifold is
singular on the equator of S; where | x| =1. In order to
cross this line we have to switch to the “angular” vari-
ables. The corresponding equations of motion follow
from (2.6).

Now it is easy to see that for constant fields, x,; =y;,
the equations of motion become much simpler:

yi=pi—(y;"p;)y; »

. 2.13)
Pi=(y;' PP + [y (yi +¥3+¥3) —yi(y;-y))

—¥2(y2 ¥ ) —ys(ysy;)] .

The rotation symmetry (in group space) is the leftover of
gauge invariance. It is this set of equations of motion
that we shall discuss in the rest of this paper. The Hamil-
tonian which belongs to it is

J.BARTELS AND T. T. WU 37

Hz%z [P%-(Yi'Pi)Z]

1l

+Lylyi—(y; -y +yiyi—(y,°y3)?

+y3yi—(y>y3)] . 2.14)

III. VICINITY OF THE ORIGIN

It is natural to start the investigation in the region of
small fields |y, | <7/N <<1, i.e., in the vicinity of the
toron point (2.9) with ¢, =¢,=¢;=0, the origin. In this
region we can neglect the nontrivial piece of the metric
tensor (2.4), and our problem simplifies,

H=3(pi+p3+p)+ ¥y — v,y +y2yi—(y,-y5)?

+y3yi—(y,y3)1, 3.1)

leading to the equations of motion:

Vi=y: (i +¥3+¥) —vi(yry) = ¥aly2 ¥y ) —yalysy:)
(3.2)

[For the equations of motion (3.2) we have already taken
into account that we are looking for solutions with imagi-
nary time: when deriving (3.2) from (3.1), we first change
the sign of the potential.] The Hamiltonian (3.1) has been
studied before!*~!° and we can be brief in stating the
main results.

The Hamiltonian has two kinds of rotation sym-
metries: rotations in group space which correspond to
gauge transformations in the k=0 subspace and, in addi-
tion, rotations in ordinary space. This second symmetry
can most easily be seen if we write the potential as

Leabeedt’ ey, y ViV Let Y denote the 3X 3 matrix
Ju Ya Ya
Y=(y,y»y¥3)= [y12 VY2 Yn (3.3)
Yi3 Va3 Va3

Rotation in group space then corresponds to multiplica-
tion by an orthogonal matrix from the left, whereas rota-
tion in ordinary space is obtained by matrix multiplica-
tion from the right. A general field configuration Y is
conveniently parametrized by

Y=0,RO!, (3.4)

where the diagonal matrix R has three independent enti-
ties, and O; and Oy depend upon three Euler angles
each. Each rotation symmetry has its own conserved an-
gular momenta:

M, =€3YjaVia » (3.5)

Ny =€4cYinYic - (3.6)
They have vanishing Poisson brackets:

[M;,N,]pg=0. (3.7

Since we want gauge-invariant quantities, we always re-
quires N=0. Classical solutions to (3.2) with energy zero
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which leave from a toron point require also M=0. We
therefore can restrict ourselves to matrices Y [Eq. (3.3)]
and P:

P=(py,ppp3) (3.8)

which are diagonal. Our nine-dimensional Hamiltonian
system thus reduces to a three-dimensional ‘“‘reduced”
Hamiltonian:

H=1p}+pi+p ) +1024ri4r¥d) . (3.9
Despite its simple-looking form, this Hamiltonian is
nonintegrable.®1>161° There are no integrals of motion
other than the energy, and the system is stochastic!’
(Kolmogorov K system). All these results initially only
apply to the classical allowed region, but they can be
translated into the classically forbidden region.

Before we discuss in detail classical trajectories of the
Hamiltonian (3.9), a few words should be said about the
quantum mechanics of (3.1) (with the factor g?/4, 4/g*
reinserted in front of the kinetic part and the potential,
respectively). The symmetries can be used® to reduce,
for the ground-state wave function, the Hamiltonian to
(3.9) (with appropriate factors of g2). It is known”!? that
this Hamiltonian has a discrete energy spectrum, but so
far no analytic solution for the wave function is known.
For small ; it is a regular function (because of the elliptic
nature of the differential operator). The semiclassical
analysis in the classically forbidden region will be valid as
long as we stay sufficiently far away from the boundary
between the allowed and forbidden zone:

[ri| >>g*". (3.10)

(We could also have eliminated the g2 dependence alto-
gether by rescaling r,—r; =r,g ~2/3; then our analysis ap-
plies to the “asymptotic” region |7/ | >>1).

Let us now turn to a study of classical trajectories of
the Hamiltonian (3.9). Once again, since we are interest-
ed in the classically forbidden region, we simply change
the sign of the potential. The equations of motion to be
solved are

. 2 2 .. 2 2 ) 2 2
Fi=ri(rs4r3), Fy=ry(ri+r3), Fy=ri(ri+rs).

(3.11)

Toron points lie on the r; or r, or rj axis. We first ask
for solutions which stay in the r -r, plane [r;=0is a
solution to (3.11)]. It is easy to see that the only way to
leave the origin is along the 45° lines ry=r, or r{=—r,:
ri=r,=V2/(—t) is an exact solution. By linearizing
the equations of motion around this solution one finds
that neighboring solutions come closer if one moves away
from the origin but diverge if one moves towards the ori-
gin. To lowest order we have

Fia ~ ﬁ{liA\/—_t3sin[%\/7ln(—t)]} .

t—-0- —t

(3.12)

These solutions oscillate around the ray r,=r, >0, and
the amplitude of oscillations decreases for t -0~ (i.e.,
ry=r,— ). Following one of the paths backwards in

2311

time (i.e., towards the origin), the oscillations become
stronger until finally the perturbative treatment becomes
invalid. On the other hand we know that paths depart
from the r, axis (or r, axis) at 90°: there are no forces
parallel to the axis. These two pieces of information are
sufficient to understand the qualitative form of classical
trajectories; more detailed properties are obtained from a
computer analysis. Results are shown in Fig. 3. Figure
3(a) gives a schematic illustration of a few classical trajec-

R

(a)

]

n2

(b)
3 -
2+
1k
I L r1
1 2 3
]
(c)
15+
101
s
1 1 1 1 r‘
5 10 15 20

FIG. 3. (a) Schematic pattern of classical trajectories in the
ry-r, plane. (b) A classical trajectory of (3.9) in the r,-7, plane.
(c) The same as (b), but a different scale in 7, and r,.
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tories: each of them departs from the r; axis at 90°
moves upwards towards the 45° line r;=r,, crosses it,
reaches a maximal distance from it, returns, and then fol-
lows the oscillations described by (3.12). In Figs. 3(b) and
3(c) we present the computer analysis of a single path
which leaves from the toron point (r,,r,)=(1,0). In Fig.
3(c) already the second oscillation is too small to be visi-
ble. The next ingredient to note is that a common scaling
of r; and r, can be compensated by a rescaling of time ¢:
therefore all trajectories which leave the 7, axis have the
same form [Fig. 3(a)], and it suffices to compute only one
single path. Maxima of oscillations of all trajectories lie
on rays which intersect at the origin. Because of symme-
try under r|<—r, these rays come in pairs. Below we shall
see that each pair of rays represents the section of a cone
with the r,-r, plane. From (3.12) it follows that there are
infinitely many of such pairs, with opening angles tending
to zero very rapidly. In Table I (last column) we give the
angles of the eight largest ones.

Because of the scaling property mentioned before there
is really only one trajectory to be calculated; i.e., all infor-
mation is contained in one function. A convenient way
of defining this function is the following. From the two
equations of motion it is possible to eliminate, by using
conservation of energy, the variable time and to consider
one of the r’s as function of the other one. More con-
veniently, put r;=efcosp, r,=e?t sing and consider
f1=sing as function of £&. The differential equation for
/1 becomes

—fl 2 ,12
II= ’ _3 ’ 1+
IR LAl (A
1-2f? 2 ]
+ 1+ , (3.13)
[ 1—f3

where f]=df,/d§. As an initial point we choose r, =1,
r;=0, i.e., £=0, f,=0. For large £, f, then approaches
the limiting value V2 (Fig. 4). The analogue of (3.12) is
1 . =
~ —=4A’e B VEGin(LVTE—g,) . 3.14
f‘gam 5 e sin(3V' 76 — @) (3.14)
Table I contains the values of f, at the first eight ex-
tremal points; in Fig. 4 we also indicate that the asymp-
totic form (3.14) fits the function f; extremely well: devi-
ations become visible only at the first maximum.

L6°t

L5°t

0 5 3

FIG. 4. A classical trajectory of (3.9) in the r,-r, plane [same
as Fig. 3(b) and 3(c)]: we use the parametrization r, =e®cosg,
r,=e*sing, and we plot @ as a function of £. Oscillations to the
right of £=5 are too small to be visible. For £> 2 the curve is
well approximated by (3.13) with A4'=0.34027193526,
@0=12.617 681 54062. The small dots drawn in Fig. 4 illustrate
how this approximation starts to deviate for £ < 2.

From our discussion it follows that the rays in Fig. 3(a)
are lines of caustics. They are envelopes to the maxima
of oscillations of neighboring trajectories. A point which
lies outside of all pairs of rays can be connected by exact-
ly one trajectory with a toron point, either on the r, or 7,
axis. For points between the first and the second pair
there are already three such paths, between the second
and third pair there are five paths, and so on. Each of the
caustic lines has the characteristic of the fold.> It is pos-
sible to construct the wave function in the vicinity of
each caustic, but this will not be discussed here in further
detail. The main features that we want to stress here are
the following. (i) There is a denumerable set of infinitely

TABLE I. Opening angles for the eight largest cones of caustics. We use r, =e*cosg, r, =e’sing and follow the oscillations of a
single trajectory around the ray ¢ =45°. The first column contains the values of £ for which the first, second, . . . oscillation reaches
its maximum. In the other columns we give the corresponding ¢ value. The opening angles of the cones 2 | 45°—¢@ | are contained in

the last column.

I3 sing @ 29 2|45°—¢|
1.3435 0.736485201263 47.432 863097 567 94.865736 195134 4.9°
3.7165 0.706 253 330875 44.930 887 894 296 89.861 775788 591 1.4x 107"
6.0915 0.707 130983 228 45.001961087 887 90.003922 175773 3.9%x10°%
8.4660 0.707 106094 431 44.999 944 353247 89.999 888 706 494 1.1x10=%

10.8410 0.707 106 800 674 45.000001 579 000 90.000 003 158 000 3.1x10°¢
13.2160 0.707 106 780 634 44.999 999 955 194 89.999999910 389 9.0x10°¥
15.5910 0.707 106 781 202 45.000000001 271 90.000 000 002 541 2.5x10~%
17.9585 0.707 106 781 186 44.999 999 999 963 89.999 999 999 926 7.4x 107"
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many caustic lines which accumulate on the ray r, =r,.
(ii) Caustics do not start at some finite distance away
from the origin (as it was the case in the simple models of
Ref. 1) but begin right at the origin [note, however, the
condition (3.10) and the discussion before]. All this
makes it likely that these caustics will play an important
role in the dynamics of lattice gauge theories.

Next we leave the r;-r, plane. In particular, we want
to know how the caustic lines in the r,-r, plane become
part of surfaces intersecting the r,-r, plane. Again we
begin by asking which trajectories come out of the origin.
The only directions are the line r, =r, =r; (by symmetry,
also the lines r,=r, = —rj3, etc.), the line r,=r, in the
r,-r, plane which we have studied before, and paths in
the plane r, =r, which leave the origin infinitesimally
close to the direction r; =0 but then deviate from it. As
to the first possibility, r,=r,=r;=1/(—1t) is an exact
solution. Linearization of the equations of motion
around this path shows that all solutions in the vicinity
approach the ray r,=r,=r; in the direction away from
the origin but deviate from it when moving towards the
origin. In contrast with (3.12), there are no oscillations:

) ~ ——(14ati4er®), (3.15)

t—0" —

a1+a2+a3:0 .
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FIG. 5. Classical trajectories of (3.9) in the plane r;=r, >0,
r3>0. The straight line is the solution r\=r,=r;=1/(—1).

ray ry=r,, r;=0; for t —0 it moves upwards and eventu-
ally approaches the line r, =r,=r; according to (3.15).
A computer result for such a path is shown in Fig. 5
(lower curve).
out of the origin, and further details are gained only with

This exhausts the trajectories which come

the help of the computer.

In the half-plane r;=r, >0 we have, close to the ray
r,=r,, r3=0 the perturbative solution
V2
ry=r,= :‘,

const
(_t)(\/ﬁ—n/z )

ry= (3.16)

For t — — « (i.e., towards the origin) it approaches the

J

Instead of integrating the equations of motion (3.11) it

is again more convenient to first eliminate time ¢, using
energy conservation, then to express two variables as
functions of the third one. We choose r; =e*sind cosg,
r,=efsindsing, r;=efcosd and express f,= sing,

, = cost as function of §&. The resulting equations are

s SE ¢ /2
"_ 3
Al g Y I [P
2 , S [10=fH—2£3) (3.17)
1+ T (l—fz)l_ 2 ) 1— 2) 1— 2) 20 .
1} ST f0=fD=f3)+13
_fz '2 2 '2
v_ 2_3f1 1 (1— —fo(1—
£ i 5|1+ —f2+ —f3) 1—f1] fo(1=f3) 1—f2
. 2 ca 2 ; 20—fHf1a—fH+2f3-1 (3.18)
2 T T BaC a1
1
After linearization near the line r;=r,=r;, ie,  where orientation is given by the choice of a;, a,.

fi1=sing=1/V?2, f,=cosd=1/V3, we find

1 - -
fi= V5 Tee £4+Bie
(3.19)
V3
with some constants a,, a,, B, B,. From (3.19) one sees,

in particular, that for £— o« the classical path ap-
proaches the ray r,=r,=r;>0 inside a certain plane

fr=—=+ae 4B %

As a result of a computer analysis of Eq. (3.17) and
(3.18) we first discuss what the caustics look like. In Fig.
6 we show, for two examples, how the angles ¢ of the
rays of Fig. 3(a) vary when we leave the plane r;=0
(#=90°): they start with the values given in Table I.
When we turn on r; (¢ <90°), the angles @ start to move
towards 45°. This limiting value is reached when
cos’@=1/V'3 or $=54.73...°. The limiting slope of
He) is finite. It then follows (Fig. 1) that the caustics
have the form of *“squeezed” cones, with the top at the
origin. They all meet at the two rays r; =r,=r; >0 and
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FIG. 6. Cross sections of the two largest cones of caustics
(cf. Fig. 1). Using the parametrization r, =e*sindcos@, r,
=efsindsing we plot ¢ vs @. For the smaller cone we have
used a different scale (inside the box).

r,=r,=—r3>0, and their common symmetry axis is the
ray ry=r, >0, r;=0. There are infinitely many of them,
one inside the other, and asymptotically they become flat,
converging towards the plane r,=r,>0, —r, <r;<r;.
By symmetry, similar sets of cones connect the ray
ri=r,=r3>0 also with the rays r,=—r,=r;>0 and
—ry=r,=r;>0, and similarly for all the other diagonal
rays. As a result, each of these rays is common to three
sets of caustic cones, and in this sense these directions
away from the origin are the most singular ones.

We finally discuss, qualitatively, the behavior of trajec-
tories which leave a toron point, say on the positive 7,
axis. If the trajectory leaves exactly inside the plane
ry=0, it will stay there forever, and its shape has been
discussed before [Figs. 3(a) and 3(b)]. Whenever it starts
to return towards the asymptotic direction r; =r,, it hits
one of the caustic cones. If our trajectory starts with a
very small angle in the positive r; direction, it will follow,
for a long time, the motion inside the plane r; =0. Even-
tually it will be very close to the plane r; =r, and then
follow the motion inside this plane (Fig. 5): it rises up-
wards and eventually approaches the ray r,=r,=r;>0.
The larger the initial angle was, the faster will the trajec-
tory rise in r; direction, and, in the asymptotic form
(3.19), a, grows compared to a,. A look at Fig. 6 shows
that our trajectory will, asymptotically, run between two
caustics: it has not performed enough oscillations in or-
der to reach the inner caustics. By further increasing the
initial angle, we eventually reach the situation that our
trajectory runs in the plane r, =r;: here it has the same
form as the upper curve in Fig. 5. There are no oscilla-
tions at all. Figure 6 has been obtained by following,
while increasing the initial angle, the oscillations around
the direction r; =r, which we had found first in the plane
ry=0.

IV. FURTHER AWAY FROM THE ORIGIN

So far our analysis has been restricted to the vicinity of
the origin: |y, | <7/N <<1. Because of the scaling
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properties of the reduced Hamiltonian (3.9) the structure
of caustics starts right at the origin on an infinitesimally
small scale. In this section we want to consider trajec-
tories further away from the origin.

First we comment on classical trajectories which leave
from toron points outside the “elementary cell” in Fig. 2
[but still inside that region where the reduced Hamiltoni-
an (3.9) is a valid approximation]. As we have said be-
fore, such toron points can always be mapped onto the
interior of the elementary cell, either by gauge transfor-
mations or by conjugacy transformations. To be more
specific, consider points on the three-axis in Fig. 2. A
conjugation which maps the interval [7/N,2(7/N)]
onto [0,7 /N ] has the form

C,=exp i03l3% . 4.1)

Similarly, a gauge transformation, which transforms the
interval [27/N,3(w/N)] onto [0,7 /N ], is given by

UI = exp 4.2)

. 2T
10'3137 l .

Both (4.1) and (4.2) are /; dependent and, hence, map
constant field configurations (with k=0) onto those with
some k=£0. In the case of (4.1), fields with k=0 acquire
components with k=(0,0,+27/N). In particular, a tra-
jectory which leaves a toron point sinm/N <r;
< sin27 /N in the k=0 subspace (and then stays there
forever) is mapped onto a trajectory which leaves from a
toron point inside the elementary cell in the direction of
fields with k=(0,0,+27/N). The same holds for (4.2),
but now k=(0,0,+47/N). So our analysis of trajectories
in the k=0 subspace, when extended to starting points
outside the elementary cell, gives information on trajec-
tories close to the origin which leave in the direction
k=£0. A detailed analysis of these trajectories will not be
given here. We only note one important feature. Fig.
3(a) shows that a trajectory in the r;-r, plane which
leaves from the r| axis somewhat away from the origin,
say from r, = siny; with 27 /N <y, <37 /N, will always
intersect with any trajectory on the r,-r, plane which
starts closer to the origin. [Note the slight change in no-
tation: according to Eq. (2.9) and the discussion in Sec.
II, on a toron point field variables point in the three-
direction. In the previous Sec. III, however, we have, for
simplicity, considered toron points on the r, axis which
corresponds to the one-direction in group space.] In par-
ticular, this applies to that trajectory which leaves from
ri = siny} with Y=, —27/N: this is the image point of
ry under the gauge transformation analogous to (4.2).
This implies that the two trajectories which leave from
ry, one in the direction of k=0, the other one
k=(0,0,+47/N), initially move in different directions
and separate from each other. After a while, they inter-
sect again, if we identify points which are connected via
gauge transformations. This clearly indicates that there
are more caustics intersecting with the k=0 subspace
than we have located in the previous section, and some of
them start at finite distances away from the origin.



37 SEMICLASSICAL ANALYSIS OF THE WEAK-COUPLING . ..

Next we leave the region of small fields |y, | <<1 and
return to the full Hamiltonian (2.14). Because of the
second part of the metric tensor we no longer have the
symmetry of rotations in ordinary space, and also the
scaling symmetry is lost. So the caustics will be slightly
deformed when the |y; | come close to unity, and these
deformations will depend upon the direction in which we
go away from the origin. Rather than discussing this in
much detail we will concentrate on another aspect which
is of strongest interest in connection with our semiclassi-
cal analysis of a quantum system: the search for classical
solutions with finite action. From Refs. 5 and 21 we
know, for the reduced Hamiltonian (3.9) in the classically
allowed region, that classical motion is ergodic. In par-
ticular, trajectories are very sensitive to a change in the
initial conditions. Two trajectories which initially are
very close may, after some time, depart very far from
each other. One expects that these properties also apply
to the full Hamiltonian (2.14) in the forbidden region.
Therefore, a trajectory which at time = — o« departs
from some toron point almost certainly will not end at
some other toron point, but it will wander around
without ever coming to rest. Only a very small subset of
these trajectories has a chance to end on some toron
point and, hence, to have a finite action integral. In the
following we shall search for a few such solutions. For
simplicity, we restrict ourselves to the vicinity of those
two “obvious” solutions which already in the previous
section have played an important role. These are the dis-
tinctive solutions which come out of the origin and then
run along one of the rays ry=r,=r;>0 or r;=r,>0,
ry=0. It is easily seen that they remain exact solutions
also of the full Hamiltonian (2.14). We shall see that
there are solutions with finite action close to the ray
r,=r,>0, r;=0, and our discussion will be limited to
them. In particular, we demand also that the action in-
tegral will be close to that taken along this ray.

Let us start with the classical trajectories which come
out of the origin. The most symmetric one runs along the
ray ry =r,=ry >0 (in the language of the reduced Hamil-
tonian) or, in the y; variables (3.3):

r 00
Y=10r 0 (4.3)
00 r
For the function r(¢) and its action integral we find
1
rit)=———5=7, (4.4)
(1+t2)1/2
S=N3[~ 2(p,wy,-)dt=3N2% . 4.5)

For t — « the path ends at the corner point opposite to
the origin (Fig. 2), namely, ¢, =¢,=v;=m. It is gauge
equivalent either to the origin itself or the corner point
(m/N,m/N,mN) of the elementary cube. A computer
analysis shows that in the vicinity of this path there are
no solutions with finite action close to (4.5). From the
discussion in Sec. III we know that the path (4.3) is at-
tractive: all solutions which start at some toron point in
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the vicinity of the origin (with the exception of those
which stay in the planes r; =0 or r,=0 or r;=0) ap-
proach this line. But before they can reach it, the non-
trivial part of the metric [which makes the difference be-
tween (3.9) and (2.14)] becomes important and forces the
solution (4.3) back towards r —0. Trajectories which ini-
tially are very close to (4.3) follow this general behavior,
but, shortly before (4.3) reaches its end point, they
diverge away from it and miss the toron subspace.

The other “obvious” solution runs along the diagonal
ray in the plane, say the r,-r, plane:

r 00
Y=10 r 0 (4.6)
000
with
()= L 7
[14+(e/V2)2])12 ’
and
S=N3[" z(p,--'y,.)dzzNWE% : 4.8)

This trajectory ends at the corner point (,7,0) in Fig. 2.
Now consider a solution which leaves a toron point on
the r, axis close to the origin:

r) 0 0
Y=| 0 rt) 0 4.9)
0 0 0

with r,(2)—0 for t —— . From the previous section
we know that this solution approaches the solution (4.6)
and then oscillates around it. With increasing time ¢ the
oscillations are getting smaller and smaller. In the Ham-
iltonian (2.14) they have time for only a finite number of
oscillations, before r(z) in (4.6) reaches the equator r =1
and then starts to decrease again. Solution (4.9) contin-
ues to oscillate with again increasing oscillations, but
when (4.6) reaches its end point, these oscillations are, in
general, out of phase such that no toron point is reached.
If, however, just on the equator the oscillations happen to
pass through (4.6), i.e., the two vectors y,(¢) and y,(?)
simultaneously cross their respective equator, and the
solution (4.9) looks the same on both sides of the equator,
then the solution will also end at a toron point, and we
have a solution with finite action. In Fig. 7 we schemati-
cally illustrate a few examples: if the starting point
moves closer to the origin, the solution performs more os-
cillations, and there exists a infinite set of such finite ac-
tion paths. Moving the starting point in the opposite
direction we eventually arrive at the extreme case [(c) of
Fig. 7]:

1 0 0 )
Y= 1[0 ry(2) 0}, ry()=2 (4.10)
2 2 1_+_e21
0O 0 O

with the action integral
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FIG. 7. Examples of trajectories with finite action for the
Hamiltonian (2.14):  y,(£)=(r(2),0,0), y,(¢£)=(0,r,(1),0),
y3(£)=(0,0,0). The left half shows the “northern hemisphere”
of y,, y,, the right half the “southern hemisphere.” The hor-
izontal line represents the solution r,=r,=V2/(—1), line (c)
belongs to (4.10). Trajectories (b) and (c) have the property that
on the “equator” (|y,;| =1, |y,| =1) they intersect with the
line r, =r,: that is why they are symmetric on both sides of the
equator and start and end on toron points. All trajectories are
schematic.

S=N32. 4.11)

Comparison with (4.8) shows that the oscillating paths
are “shorter” than the straight line (4.6). Further investi-
gation shows that there exists still another set of solutions
of the form (4.9) which also end at toron point and,
hence, have finite action. Here y,; and y, do not pass at
the same time across the equator, but still there is a sym-
metry between the two sides of the equators.

Next, consider another set of trajectories in the vicinity
of (4.3). From (4.9) it differs by a spatial rotation (= ma-
trix multiplication from the right, 45° rotation in the x-y
plane):

rp r O
Y=|—-r, r, O (4.12)
0 00

[again 7,(¢)—0 for t — — «]. These solutions start from
toron points with y, =y,. For small r, and r, the motion
is described by the reduced Hamiltonian (3.9) which is in-
variant under spatial rotations. The functions r, and r,,
therefore, evolve as in the previous case. However, when
r, and r, grow the Hamiltonian looses the symmetry un-
der spatial rotations, and (4.10) and (4.12) evolve
differently. Nevertheless, our previous discussion still ap-
plies: (4.2) oscillates around the solution

r r O
Y=|-r r O (4.13)
0 00

which is gauge equivalent to (4.6). In general, a trajecto-
ry (4.12) will not end at a toron point. Candidates for
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solutions with finite action are those trajectories which
on the equators of y, and y, have certain symmetry pro-
perties. Since (4.12) already implies |y, |=|y,]|

=V r?4+r3, the oscillating quantity is (y;'y,)/
|y1] |y, | = cose (it oscillates around 90°). We there-
fore demand that, on the equator, either ¢ passes through
90° or ¢=0. For the first case a few examples are shown
in Fig. 8. For starting points close to the origin these tra-
jectories have more and more oscillations, and their ac-
tion integral approaches (4.8). At the opposite end, the
trajectory with the smallest number of oscillations [(c) of
Fig. 8] can be found analytically:

1

rl(t)——-——‘/——— ,
1 42V 2t)172
(I+e™ ™) (4.14)
e\/2t
ry(t)= (1+e2‘/5‘)1/2 :
Its action integral
S=N*V2 (4.15)

is, again, smaller than (4.8), i.e., the oscillating paths are
“shorter” than the straight line (4.6) with (4.7).

A very similar discussion applies to a larger class of
trajectories which interpolates between (4.9) with (4.12):

cosa —sina r cosff  sinf3
Y= |sina cosa r, —sinf cosfB
1 0 1
4.16)
a b c
Y\ r
0 1

FIG. 8. Other examples of trajectories with finite action for
the Hamiltonian (2.14): y,(£)=(r (1), —r,(2),0), y,(t)=(r, (1),
ry(1),0), y3(1)=(0,0,0). A polar plot is shown of
r={yil=ly | =Vri+ri vs plcosp=y,'y2/ | yi|-|y2])-
Solution (c) belongs to (4.14). Solutions (b) and (c) have p=17/2
just when both y, and y, reach the “equator”: therefore their
behavior on the “southern hemisphere” is the same as on the
“northern hemisphere.” Again, the trajectories are schematic.
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with r,(t)—0, a(t)—0, B(t)— B, for t— — 0. For each
B, one finds two discrete sets of solutions with finite ac-
tion, which accumulate on (4.6) (or some rotated analo-
gue of it). For the first set both y, and y, pass simultane-
ously across the equator and y;-y=0 on the equator; the
second set has somewhat more complicated symmetry
properties on the equator. This then completes our dis-
cussion of trajectories of the following type. At the start-
ing point both y, and y, point in the one-direction, and
y;=0. Away from the starting point, y, and y, stay in
the 1-2 plane and y; remains zero. We have limited our-
selves to those trajectories where the action integral is
close to (4.8). By this we mean the following. There are,
for example, other solutions in the vicinity of (4.6) and
(4.7), which start from a toron point close to the origin,
then for a long time oscillate around (4.6). Shortly before
(4.6) reaches its end point, such a solution may turn back,
again oscillates around (4.6), and finally ends on a toron
point close to its starting point. Such a trajectory has ap-
proximately twice the action integral (4.8), and it is not
counted as being ‘“close to (4.8).” It is therefore clear
that our search for solutions with finite action, even for
this restricted class of initial conditions, is far from being
complete.

We still have to go through few other solutions in the
vicinity of (4.6). First we return to (4.9) and consider a
more general spatial rotation. This leads to starting
points of the form

r S 8§ 83
Yo = 0 |RpR;R;,=(0 0 O 4.17)
0 0 0O

(R, denotes a constant rotation in the ik plane). A com-
puter analysis of the case s; =s, >>s3 shows that, as soon
as s differs from zero, the trajectory is pushed away from
(4.6) and does not reach a toron point: for very small s;
the trajectory for a long time follows (4.6), but shortly be-
fore (4.6) reaches its end point it deviates and turns back.
Next we consider solutions which, in group space, no
longer stay in the 1-2 plane. From Sec. III we know that
a solution

(4.18)

with r,(t), r;(¢£)—0 for t — — o is attracted by the path
(4.3): if r; initially is small, it follows for some time the
solution (4.9) which in turn oscillates around (4.6). After
a while, however, r; starts to grow, and before (4.9)
reaches a toron end point, the trajectory escapes. We
therefore conclude that, outside of the form (4.16), there
are no solutions with finite action in the vicinity of
(4.6)—(4.8).

We finally illustrate our results in the toron cube of
Fig. 3. To this end we have to rotate (in group space) all
our solutions: starting points of y,, y,, y; have to point in
the three-direction. Our main result then states that
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FIG. 9. The bottom of the toron cube of Fig. 2. The dark
lines inside the square consist of starting points of solutions
with finite action: in addition to the lines ¢, =u/2, ¥,=7/2
there are structures at the four corner points (approximately:
squares). We have drawn only the largest ones, but there are
more inside them, becoming smaller and smaller and finally ac-
cumulating at the corner points.

solutions with finite action [close to (4.8)] only start from
toron points on the surface of the cube, not from the inte-
rior. For the bottom face of the cube we have illustrated,
in Fig. 9, where solutions with finite action can start.
(There are more lines closer to the corner points, but they
are not visible on this scale.) As we have discussed in
some detail, all these trajectories end on toron points,
which also lie in the bottom plane, but near the corner
point opposite to the starting point.

V. CONCLUSIONS

We first summarize the main results. This paper is
part of a larger program which consists of a systematic
study of the weak-coupling limit of lattice gauge theories.
We make use of the Hamiltonian formulation and apply
the semiclassical approximation. We are primarily in-
terested in caustics, since the prefactor in the ground-
state wave function which represents the quantum fluc-
tuations around classical solutions becomes large and,
hence, may provide significant contributions to physical
quantities. Of particular interest are caustics in those re-
gions of configuration space where the (exponentially de-
creasing) wave functions is not yet too small: this are
field configurations close to the origin or other points
with vanishing potential (=magnetic energy).

The first part of a semiclassical analysis consists of a
detailed study of classical trajectories. In this paper we
have begun to investigate a N? lattice model of pure
SU(2) gauge theory, imposing periodic boundary condi-
tions. We have found it convenient to first study only
trajectories in the space of constant fields (momentum
k=0): putting 4, =0 for all k40, the classical equations
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of motion reduce to a set of nine coupled equations
which, by symmetry arguments, can be reduced further
down to six or even three equations. It is the analysis of
these equations of motion which we have presented in
this paper.

Our results clearly demonstrate that, even in this re-
stricted subspace of fields, classical trajectories exhibit a
very rich structure, which includes the origin. In partic-
ular, caustics start right at the origin, and they consists of
infinitely many nested cones with a cross section shown
in Fig. 1. Both the existence and location of these caus-
tics support the idea that we are pursuing: we are search-
ing for regions close to the origin where caustics are
dense, as candidates for a strong enhancement of the
ground state wave function. We strongly expect that
what we see in the k=0 subspace is only a small part of a
much larger structure. Results of this paper are therefore
mainly viewed as an entry point into the complicated sys-
tem of caustics. It may, however, also be that our
analysis already contains some physics. We have seen
that caustics are particularly dense near the field
configurations {y;,¥,¥3|¥1'¥2=¥1'¥3=¥,'¥3=0, yi=y}
=y§}, i.e., all x links in the one-direction, all y links in
the two-direction, and all z links in the three-direction. It
therefore seems as if these ‘“hedgehog” configurations
may be of particular importance. As to the technical as-
pects of our analysis, we have shown that almost all
relevant information (as far as the caustics are concerned)
is contained in two unknown functions: f; and f,, as
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defined in Sec. III. A qualitative analysis of these func-
tions can be done by analytic methods; it is only for the
numerical values of some parameters where the computer
has been used.

We conclude with a few words about future steps.
Clearly the next task will be the extension of our analysis
to fields with k=<0. We need to know how the caustics
evolve when leaving the k=0 subspace. In the previous
section we have already obtained some indicates that,
when both k=0 and k=40 fields are taken into account,
new caustics appear which start at some finite (but small)
distance away from the origin. This will be confirmed in
a forthcoming paper where we shall present a more de-
tailed analysis of trajectories outside of (but close to) the
k=0 subspace: at distances of order 1/N trajectories of
different momenta k start to intersect. This could be the
beginning of the formation of caustics which belong to lo-
calized field configurations, i.e., fields which are concen-
trated around some site 1 on the lattice.
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FIG. 1. Caustics in the vicinity of the origin. r;, r;, r3
denote the three variables of the reduced Hamiltonian (3.9).



