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Abstract. A perturbative renormalization procedure is proposed which applies 
to massive field theories on a space-time lattice and is analogous to the BPHZ 
finite part prescription for continuum Feynman integrals. The renormalized 
perturbation theory is shown to be universal, i.e. under very natural assumptions 
the continuum limit exists and is independent of the details of the lattice action. 

I. Introduction 

In perturbation theory of a local quantum field theory there exist well-known 
renormalization procedures which remove ultraviolet divergencies. The BPHZ 
finite part prescription makes subtractions directly in the integrand of each 
Feynman integral in momentum space [1]. Divergencies of every subdiagram are 
subtracted by application of a Taylor operator in the external momenta of the 
subdiagram, which in position space is a local operation. The renormalized 
Feynman integral is defined in such a way that the ultraviolet (UV) divergence 
degrees of all subdiagrams are negative. There exists a power counting theorem 
due to Hahn and Zimmermann [2], which states the convergence of integrals 
having this property. 

Unfortunately, these methods assume a rational structure of the Feynman 
integrands and hence do not apply to diagrams with a lattice cutoff. In this case, 
instead of being rational, the integrand is periodic with the Brillouin zone. 
Removing divergencies by subtraction of Taylor polynomials is very unnatural in 
a lattice description, and in fact such a procedure does not work, due to violation 
of periodicity, In a recent paper [3], we have proposed a lattice version of the 
power counting theorem of Hahn and Zimmermann by generalizing the well-known 
notion of a UV-divergence degree. Having such a theorem at our disposal, we are 
able to construct a generalization of the BPHZ finite part prescription which 
applies to diagrams with a lattice cutoff. Due to power counting conditions, the 
combinatorics of subtractions are given by the forest formula of Zimmermann [1]. 
As will be seen, the important modification consists in replacing Taylor operators 
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by appropriate lattice subtraction operators. This class contains as a special case 
Taylor polynomials in "lattice momenta" (sin(qa)/a etc.), but is in fact much more 
general. Lattice diagrams renormalized in such a way are convergent when the 
cutoff is removed. The limit itself is universal, i.e. it does not depend on the lattice 
action chosen, and it is given by continuum Feynman integrals which are 
renormalized by the continuum BPHZ prescription. 

To avoid infrared singularities, we have assumed that all fields are massive. At 
first we introduce in Sect. 2 a couple of notations concerning Feynman diagrams 
and integrals on the lattice. In Sect. 3 the important notion of a lattice subtraction 
operator is introduced, and its most important properties are given. The lattice 
version of the BPHZ renormalization is defined in Sect. 4, It is shown that 
subtractions, if appropriately chosen, can be written as counterterm contributions 
to the lattice action. General conditions are stated which guarantee power counting 
renormalizability of a lattice field theory. In Sect. 5 the convergence proof of the 
renormalization scheme is given, using Zimmermann's method of "complete 
forests." For simplicity, all formulas are written for scalar fields only. In Sect. 6, 
the modifications necessary to include fields carrying internal symmetries and spin 
are briefly described. 

Throughout this paper, we will use the notations of [3]. These are listed for 
completeness in Appendix A, and there are also given-some general examples of 
subtraction operators. The Appendices B and C contain some lemmas used in the 
text. 

2. Feynman Diagrams and Integrals 

2.1. Topology of Feynman Diagrams. We define topological notions of Feynman 
diagrams and Feynman integrals. In part, our notations are those of Zimmermann 
[1] and Nakanishi [5]. 

A (Feynman) diagram or (Feynman) graph F is a structure 

F =(LP r, S r, 

having the following properties: ~ r ,  gr ,  

~er = { L I , . . . , L p ~ }  

g r = {El .... , EN(r)} 

~) r = {B1,..., Bu(r)} 

~ r  are mutually disjoint sets, 

internal lines of F, 

external lines of F, 

vertices of F. 

(2-1) 

~b r and Or are the incidence relations of F, i.e. they are mappings of the form 

d ? r : ~ r - ~ r X ~ r ,  (br(L)=(AL, BL), O r : ~ r - ~ r ,  Or(E)=AE. 

A L is called the outgoing endpoint and BL the ingoing endpoint of L e ~ r .  Both 
AL and BL are called endpoints of L. If AL = BL, then L is called a loop line. If 
A ~ N r  and there exists an E s g r  such that Or(E) = A, then A is called an external 
vertex of F. Otherwise, A is called an internal vertex of/Z 

Let 7 and F be diagrams. 7 is called a subdiagram (or subgraph) of/" (Fig. 1), if 

1. Y ~ C - ~ r ,  ~ = - ~ r ,  ~ = ~ r / ~  
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(i.e., (b, is the restriction of q5 r onto ~ r .  Especially, qSr(~,) __c N, x N~). 
2. Every Eegr satisfying Or(E)ENr is in g~, and 

~,~(~) = 0 r(E). 

The set of these lines is denoted by oxt o~,(r). 
3. Every E e ~ r \ ~ ¢ ~ ,  which has exactly one endpoint B F in N 7 under ~br, is in g, ,  
and 

0,(E) = B~.. 

int  The set of these E is denoted by g,(r~. 
4. The remaining external lines in d°~ (i.e. those which are not in ~'7(r~e~t or d°~(r~)i~t 
are obtained in the obvious way by cutting in to the lines LE~qfr\~ , which have 
both endpoints in N,. Every such line is called a loop line of F relative to 7. 

loop int  ex t  Furthermore, we set ~ , ( r )=  ~\(~,(r)W g~(r)). 
If every BeN~ is an endpoint of at least one line in ~ , ,  then 7 is called the 

subdiagram spanned by cS~ (This is the definition of a subgraph in the sense of 
Zimmermann [1].) 

A diagram F is said to be connected, if for all'pairs of vertices B1, B2~r,  
B~ # B2 there is a set of lines 

{L~,...,L~} -c ~ r  

such that B 1 is an endpoint of L~,B 2 an endpoint of L~, and for all i = 1 . . . .  , c -  1 
the lines L / a n d  L,+~ have one endpoint in common. A subset ~ ___ ~ r  of lines 
is called a connected set of lines, if the subdiagram o f F  spanned by ~ is connected. 
Two connected subgraphs ~ ,  72 are said to be disjoint, if they have neither vertices 
nor internal lines in common. A graph is disconnected, if it is not connected. 

A graph F is called 1PI (one-particle irreducible), if ~ r  :# 0, and there exists 
no line Le~qr  such that the diagram spanned by ~qor\{L } is disconnected. 

Let F be a Feynman diagram and ~ a connected subdiagram of F. The reduced 
diagram 

r l ~  = ( ~  ~/,, ~ ~/,, ~ ~/,, ~ ~/,, Or'/,) 

is defined as follows (Fig. 2): 

/~6N r is called a reduced vertex. For every Le~r /~ ,  ~r(L)= (A~, B~), 
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Fig. 2. A reduce diagram F/y 
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(AL, BE) if AL, B L ~  

6r/>(L)= (AL, B ) if AL(iJJ~,BL~ ~ 
(B, BL) if A L e ~ , B L ¢ ~  " 
(B, B) if A L,BLe~y 

and for every E¢g r/~, ~ r(E) = B F, 

{BB_E if BE¢~ , 
Or/~(E)= if BEeN~," 

By induction, a reduced graph can be defined for mutually disjoint, connected 
subdiagrams 71,...,9'c of F. To every ?i there corresponds exactly one reduced 
vertex/31 in F/?I ""7~. 

Let B e N  r and 2" _c 2"r. Then the line number D(B, 2') of 2" with respect to 
B is defined as the sum of the number of lines in ~ ,  having B as its outgoing 
endpoint, and the number of lines in 2.<¢, having B as ingoing endpoint. Especially, 
loop lines are counted twice. 

Let BI, B2eC~r, B1 # B2.2" ~- ~ r  is called a path between B 1 and B2, if 2" is 
connected, D(B1 ,2" )=D(B2 ,~ )=I  and D(B, 2")e{0,2} for all other Be~l r. 

-~ 2"r  is called a loop in F if ~ is connected and D(B, if)e{0, 2} for all BeNr .  
Let F be a connected diagram. A tree in F is a maximal set ~ __ 2"r  of lines 

containing no loop. Y * =  2" r \ J -  is called the chord set of 9- in F. J-* has 
m(F) = P(F) - M(F) + 1 lines, where P(F) is the number of internal lines of F 
and M(F)  is the number of vertices of F. m(F) is called the number of loops in 
F [5]. It is independent of the tree chosen. ~-* contains all loop lines. 

Lemma 2.1 [5]. A tree J" in 1" has the followino properties: 

a. D(B, F )  # 0 for each Be~)r. 
b. ~- is connected. 
c. For any B1, B2 E~F, B1 # B2, there is a unique path ~ ~_ ~-- between B1 and B z. 
d. The number of lines in ~- is M ( F ) -  1. 

2.2. Momentum Distributions. Having defined the topology of Feynman diagrams, 
we will now discuss momentum distributions and the structure of Feynman 
integrals on an infinite space-time lattice. First of all we define incidence numbers. 

Let F be a Feynman diagram and Le2"r ,  j r ( L )  = (Bi, B2), Bi # B2- Then, for 
every BeNr ,  we define incidence numbers by 

[ B I : L ] = - - I  , [ B 2 : L ] = + I ,  [B :L ]=0  if B # B 1 , B  2. 
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If B 1 = B2, then L is a loop line, and we set 

[ B : L ] = 0  for all B~N r.  

For  every external line E E g r ,  Or(E)= B1 eNr, we set 

[ B : L ] = 0  if BCB1, [ B I : L ] = + I  or - 1 .  

The choice between + 1 and - 1 is arbitrary. If ? is a subdiagram of F,  we define 
induced incidence numbers of ? by 

i n t  e x t  [B:L]~ = [B:L] if L ~ ° ~  w g~(r) t3 8~(r) , 

[ B : L ] ~ = + t  or - - t  if r~#loop 
~ ' ~  '~' ; ~ ( F ) "  

Again, the choice between - 1 and + 1 is arbitrary. 
A momentum distribution in F is a map 

JCt :~rUd~r-~R 4, L-~IL, 

so that 
[B:L]IL=O for all B e ~ r .  (2-2) 

L~C~ F W g  F 

This means momentum conservation at each vertex. IL flows from the outgoing 
endpoint B ([B:L] = -- 1) to the ingoing endpoint B' of L ([B':L] = + 1). The 
momenta of loop lines are not restricted by (2-2). 

Let F be a connected diagram. Then the only relations between the incidence 
numbers are 

[ B : L ] = 0  for all L~5¢ r. (2-3) 
B~B F 

For  every external line EeEr set 

qE = IE ~ [B:E] 
B~B F 

(the sum contains exactly one element), q~ are called external momenta of F. They 
are flowing into the diagram. If (2-2) is summed over all vertices B e N r ,  we get 
conservation of the overall momentum 

Z qe = 0. (2-4) 
E ~ g  F 

We shall assume all qE, E ~ r ,  are given momenta, such that (2-4) is satisfied. Then 
(2-2) is a system of equations for the line momenta IL, Ls~° r :  

[B:L]IL+ ~ I[B:L]IqE=O for all B e N r .  (2-5) 
L~ZP r E ~  r 

The system (2-5) is solvable, the matrix 

d r  = ( [B:L] IB~  r, L E ~  r) 

having rank d r  = M(F) - 1, and because of (2-4). 
In what follows let F be a 1PI diagram. We shall define a partition of line 

momenta into internal and external momenta. At first, we choose a basis of the 
external momenta. Fix Eoeg r. Then define 
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q = qr= (qFl E e S r ,  E # Eo). 

qro is given by momentum conservation. For  every L ~  r we write I L = kL + qL, 
defined as follows: 

1. We choose an arbitrary tree J~ in F. For  L1 . . . .  , L,~e~*,  m being the number 
of loops in F, we define 

1Li=k~, i.e., qL,=O, i = l  . . . . .  m 
and set 

k = k r =  (k I . . . . .  k,,). 

Remember that m is independent of the choice of a tree. (kt , . . . ,  kin) is called a 
basis of the internal momenta of F for the following reason: 

The endpoints of any L e J *  can be connected by a unique path NL in ,¢-. 
~L U {L} is a loop in F (if L is a loop line, then ~L = 0, and the loop is {L}). For  
every L e J -  the internal line momenta kL are defined as the unique solution of 

[B:L]kL=O for all B ~ r  
L~.~ F 

and are of the form 

kL=kL(k)= f',(CL)ikj, (CL)fiZ for all L e ~ r .  (2-6) 
j=l 

This is the general homogeneous solution of (2-5) in a form dependent on a chosen 
tree. We remark in passing that this shows that the line momenta are natural in 
the sense of [3]. 
2. External line momenta % = qL(q), L~9-, are now defined as the unique solution of 

[B:L]qL + ~ I[B:E]lq~(q)=O for all B e ~ r .  (2-7) 
L~Y E~f  r 

In summary, 
IL(k, q) = kL(k) + qL(q) for all L e 2 '  r. (2-8) 

We now define an (unrenormalized) Feynman integral of F by 
~/a 

3 r ( q ; # , a ) =  ~ d4k~...d4kmfr(k,q;#,a), (2-9) 

where m is the number of loops in F. The unrenormalized Feynman integrand I r  is 

[r (k ,q;# ,a)= H P~({1L},;#,a) 'YI AL(IL ;#'a)" (2-10) 
B ~  r L e a f  

For every Le~CP r the propagators are of the form 

XfiL(IL; #, a) (2-11) 
AL(1L; #, a) = I-I~(L) r e :1 • a ~ ± 2 , 

l l J  = l k  L jk 'L ,  ] ~ # L j ]  

where n(L)eN and 

The (L-dependent) sum 

fiL(IL; #, a) = ~ p(1)(#) V(~)(/L; a). (2-12) 
(i) 

is finite, p(0 are polynomials in the masses # and 
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V(0Cg~,,,rn~eZ, periodic in 1L with the Brillouin zone (BZ) [ - r~/a ,~/a]  ~'. The 
function classes ~ ,  are define in [3] (see Appendix A). In most applications the 
sum contains one term only. Furthermore, 

#~j > 0, 

eLj~C~2, eLj(IL; a) = jqLj(ILa), 

qLj(ILa#O)>O if lLe[--g/a,n/a] 4, 

(2-13) 

rlL j is (2n/a)-periodic in every component of IL, 
lira eLj(1L; a) = l~. 
a - * O  

This means that Z]z belongs to the class Y of functions which is defined in [3]. 
Especially, the propagators have only one pole in the BZ. For every vertex BSMr  
the functions f 'sCg c are of the form (2-12) in variables {IL}B, which are the momenta 
of the lines L e J g r W g r  having B as one of its endpoints. For uniqueness, we 
consider f'~ to be a function of the momenta flowing into the vertex B. Furthermore, 
we always assume fz B to be periodic with the BZ, in all momentum variables. As 
discussed above, all line momenta lL are written as 

IL(k, q) = kL(k) + qL(q) for all L ~ a r  . (2-8) 

The integrand I'r belongs to the function class ~-. 
Next, we define internal and external momenta of a 1PI subgraph 7 of F. For 

every external line E~g~ let q~ be a momentum flowing into the diagram, and such 
that 

q~ = 0. (2-14) 
E~gy 

Fixing Eorz8 r, we get a basis of the external momenta of 7, 

q~' = (q~l Ez ra ,  E # Eor ). 

We define a momentum distribution in the diagram 7: 

• _ .~  4 ./~'~.~ru~r R ,  L~IrL for L ~ r ,  E ~ q ~  for E ~ ,  

such that 

[B:L]fl~L + ~ I[B:E]rtq}(q'e)=O foral l  B ~ r ,  (2-15) 
L~---~ r E e ~  r 

where now the line momenta l~ 

lSLtCkr ,,~"~, = k~L(k r ) + q~L(q e ) (2-16) 

are partitioned as follows: 

1. For a tree ~-- in F, ~-c~ &o is not necessarily a tree in 7. But it can always be 
completed to such a tree 3-r. The chord set 3-* = £f~\~--r in 7 contains m(7 ) lines, 
where m(7) is the number of loops in 7. For these lines Li we define 

I L = k L  i = 1  . . . . .  m(7), 
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and we set 
k ~ = (k~ . . . . .  k~(~)) 

as a basis of the internal momenta of 7. Note that for every i = 1 . . . . .  ra(7) there is 
a S(i)E{I,.. . ,m(F)} such that 

k~ = ks(~), (2-17) 

and {S(i)li= 1,.. . ,  m(7)} contains m(7) elements. For every L e f ~  we define k~ as 
the solution of 

[B:L]~k~L=O for all B e ~ , ,  (2-18) 
Le~ 

so that 
kYL=k~(k ~) for atl L ~ .  (2-19) 

By (2-17),(2-18),(2-19), the set 

is natural in the sense of [3], where the union is over all 1PI subgraphs 7 of F 
(F  included). 
2. q~L(q~), LE~'-~, are defined as the unique solution of 

~, [B:L]~q~L + ~ f[B:E]~lq~(q~)=O for all B~M~. 

Having defined internal and external momenta k ~, q~, of 7, we will later need 
their relation to k,q. Set k r= k,q r= q and IL r =  I L for L ~  r. We define k~(k r) by 
(2-17) and q~(k r qr) by identifying every q~, E~g~, with the momentum _+ I r of 
the line L ~ S r W g r  which corresponds to E by considering ~ as a snbdiagram of 
/ '. The sign is determined by the condition that q~ always flows into the subdiagram 
7. It will be convenient to represent this map by a linear substitution operator S r [13: 

Sr:k~-*k~(k r) (independent of q!) (2-20) 
q, ~ q,(k r, qr). 

Note that the kr-dependence of q~ is only by the explicit kr-dependence of q}(k r, qr) 
of external lines of 7- Furthermore, k s is independent of the external momenta q 
of F. From (2-5) and (2-15) it follows that 

FL(k'(kr),q'(kr, q r ) ) - l r ( k r ,  q r) for all L~2 ' , .  (2-21) 

The definition of internal and external momenta can be generalized to an 
arbitrary subdiagram z of 7 (/~ of z etc.). In the formulation above, we have only 
to substitute 7-~ z, F ~ 7, and we get linear functions 

I~L(U,q ~) = k~(k ~) + q~L(q ~) = FL(k',q') for all L ~ ,  

~ = ( ~  . . . . .  ~ (~ ) ,  

q* = ( q ) l E ~ , ,  E ~ Eo,), 

where re(z) is the number of loops in z and Eo,eN, is a fixed external line of z. 
U, q' are functions of k ~, q~ via S~: 

S,:U = U(k'), q~ = q~(k',q'), (2-22) 
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where again k~-dependence of q* via S r is onlyby explicit k~-dependence of q)(k ~, q~) 
of external lines of r. Applied to a function f in U, q" 

s r f ( u ,  q~; a) = f(U(k') ,  q~(k', q0; a). (2-23) 

We will need a definition of internal and external momenta for arbitrary sequences 
of ordered 1PI subdiagrams. It is important to determine internal momenta of a 
subdiagram 7 always in the same way, independent of other diagrams in the 

~*  to define k ~ - (kl,. . . ,  k,~(r )) has to be sequence, i.e., always the same chord set 5' ~ - ~ 
chosen. This must be done in such a way that (2-22) is always satisfied. For arbitrary 
1PI subgraphs 7, z of F, ~ being a subgraph of 7, we choose 

3 - *  = * - ~-r c~ Let, (2-24) 

i.e. all lines in the chord set of z are also in the chord set of 7- This can always be 
achieved. Let P be the number of lines in a connected graph F and ~ r  = 
{L1,.. . ,  Lp}. For every connected subdiagram 7 of F we define ~-* __ £,e r as follows: 
Lfi~--* if and only if ~ \ { L  1 . . . .  , Lj_ 1} contains a loop cg such that cg _. {Lj}. In 
Appendix B it is shown that 5"v~-* is indeed a chord set in 7 (i.e., J r  = ~ \ J *  is a 
tree in 7). Apparently, (2-24) is a direct consequence of this construction. Also, an 
arbitrary chord set ~-* of F can be achieved by this way. For, if m is the number 
of loops in F and Y*- = {N1 . . . .  , N,,}, set Li = Ni, for i = 1,. . . ,m. 

If 7 is a subgraph of p and # a subgraph of F, 

Su(s , f  (u, q~; a) ) = f (U(kU), q~(k", q"); a), 

or in shorthand notation S, .S r = Su. 
For a 1PI subdiagram 7 of F we define a Feynman integrand I'~ by 

Ir(k~,q~;#,a) = 1-[ ~'B({/[}R;#,a)" I-[ AL(FL;I~,a). (2-25) 
B ~  Le.~, 

{/~}B represents the momenta q~,E~¢ r and ___ l~, L~S=e~, flowing into the vertex 
B. We always have 

Sr  PB({/~ }8; #, a) = P~({/L}B; #, a), (2-26) 

and the line momenta are given by (2-16). 
Let 7 be a 1PI subdiagram and 71,---,7~ mutually disjoint, connected 

subdiagrams of 7. We define the Feynman integrand I'7 of the reduced graph 
? = 7/71 . . . . .  7~ by 

IT(k',q';#, a) = 1-I ~',({l[},;/~,a)" I-[ z~(/[; #, a), (2-27) 
B~" L ~ -  

where for the reduced vertices/3~ one sets 

f=~ = 1 ec~ for all i = 1 . . . . .  c. 

The internal and external momenta of ~ are given by (2-16). 

2.3. Divergence Degrees. We now proceed to define UV-divergence degrees for 
Feynman integrals on the lattice. Let 7 be a 1PI subdiagram of F. Then the 
UV-divergence degree of 7 is given by 
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co(y) = ~ o)(~z) + ~ c9(~'B) + 4re(o/), (2-28) 
Le~CP~ B ~  

where 

C9(Z]L) = degrrLZ~L(/L; #, a), (2-29) 

co(~',) = degr{~}, ~'B({/L }B; it, a), (2-30) 

and re(y) is the number of loops in ~. The lattice degrees degr~ are defined in [3] 

(see Appendix A) and must be distinguished from the usual UV-degrees degr, of 
[1], which are defined for rational functions only. In (2-30), they are determined 
with respect to all momenta entering the vertex B. If the functions do not vanish 
in the limit a ~ 0, the UV-degrees on the lattice coincide with the corresponding 
degrees, defined for rational functions, of the a ~ 0-limits of the functions. If the 
continuum limit of ~'B vanishes and VB~<g,,o, then co(VB) = m o [3]. 

Similarly, for a reduced diagram ~ = 7/71 ""~'c, we set 

co(~7) = Z Cg(Z]L) + Z c9(VB) + 4m(~7), (2-31) 
L ~  7 Be,¢~l~ 

where m(~7) is the number of loops in ~, and C0(~L), cg(VB) are defined as above. 
For a reduced v e r t e x / ~  we have ~9(V~) = 0 because of Vg = 1. Furthermore 

m(~7) + ~ m(7~) = m(7), 
i=1 

i=1 

Finally, we repeat the definition of a forest [1]. Let F be a 1PI diagram. A 
F-forest U is a set of 1PI subdiagrams of F which do not overlap, i.e., for any 
71, ~)2 G U either 71 is a subdiagram of ~2 or 72 is a subdiagram of 71 or y ~ and 7z are 
disjoint. In the last case, 7~ and Vz have neither lines nor vertices in common. The 
simplest forest is given by U = ¢. 

Let U be a F-forest and 7~U. 7 is called maximal in U, if there is no 7'~U 
such that ~ is a subgraph of 7"7 is called minimal in U, if there exists no 7'~U 
such that 7' is a subdiagram of 7. Maximal elements of a forest are disjoint and 
minimal elements of a forest are also disjoint. 

For any 1PI subdiagram 7 of F the set of 1PI subdiagrams 

U(7) = {7'EUIT' is a subdiagram of 7 and ~' #7} 

is a F-forest as well as a y-forest. We define 

~ ( v )  = ~/~ ...~c, 

where 7~,...,  7~ are the maximal elements of U(7). 

3. Subtraction Operators 

Renormalization of Feynman integrals in momentum space can be described by 
a well-defined procedure of subtractions applied to Feynman integrands. We now 
define the structure of such subtractions and state their most important properties. 
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In the following, let F be a function of the momentum variables (tl . . . .  , th), 
(vl , . . . ,  vz), (qi . . . .  , q~) and of the lattice spacing a. (t) are the parameters of an affine 
subspace of the loop momenta, (v) are the complementary loop momenta, and (q) 
represents the external momenta. 

Definition 3.1. Let f e N  o = {0, 1, 2,. .. } and let ôtq be defined by 

G.' It, " P..iXq  ....  s,a) 0 F(t,v,q;a)  
= .i, ..... i,=o ' ' ~ c3qi. ]q=o 

(3-1) 

for every function F which is C ~° in q, where P,,q...~ ~ are totally symmetric 
in il . . . .  , i,, (2~/a)-periodic in every q l , . . . ,  q~, and lim~_~o P,,q...~,(ql . . . . .  qs; a) = 
q~- . .%.  If for every such F 

[ ( 1 - ~ ) F ] ( t , v , ) A ; # , a ) =  O(~: +i) as 2 ~ 0 ,  (3-2) 

?~ is called a subtraction operator of order 6. 
If the function F is periodic, then so is ?~F. In the limit a o 0 , ? ~  reproduces 

the Taylor operator t~ of order 6. Note  that degr~P,,q..~,(q; a) = n and degr~ P,,q...~, 
(q;a) = 0. ?~F can also be written as 

~,  ' ' " ' i s  p(") ¢,, q~;a)/\vqi.oil Oq~Oi~ F )  (3-3) 
L=o' n=O il,..,is~N 0 Zl • 

(n) c " ' Pir..i~(qi . . . .  , q~, a) = q]'.,, q':. where Pq..4 ecg, is periodic in q~,...,q~ and lim,_, o (") 
The inner sum in (3-3) is constrained by ~,~= i ij = n. 

In the following, let F e f f  be of the form 

V(t, v, q; #, a) 
F(t, v, q; #, a) = C(t, v, q; It, a) ' 

V e ~  ~, C =  [I  [e~(15a)+ #2], #~ z>O,  (3-4) 
i=1  

t h 

li= 2 b'kVk + Z Cuti+ ~ dlkqk' 
k = l  j = l  k = l  

(bn . . . . .  bu)¢O or (% . . . . .  c ,h)¢0 foral l  i = l  . . . .  ,n. 

A lattice Feynman integrand 7~ belongs to ~ .  We have assumed all propagators 
to be massive, hence a subtraction operator "/~') applies to [~. The condition (3-2) 
means that by application of a subtraction operator UV-divergencies are in fact 
subtracted. It restricts the functions P,:~..~, and their derivatives at q = 0. As will 
be shown in Appendix A, Taylor polynomials in "lattice momenta" satisfy the 
constraints, i.e. they are special examples of subtraction operators. Actually, 
Definition 3.1 is much more general. 

Besides being linear with respect to scalar multiplication and addition in ~-, 
a subtraction operator has the following important properties. 

Lemma 3.1. Let ?~q be a subtraction operator of order [~ and F e ~  of the form (3-4). 
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In fact, 

1. Write "/q~FSY as 

V'(t,v,q;12,a) 
(~F)( t ,  v, q; 12, a) = 

C'(t, v; 12, a) ' 

1 
l/'(t,v,q;12,a) = .  ~ '  ^ i v . . . i j  Pq' '¢(ql . . . .  ,q~;a)Vq..%(t,v;#,a), 

L I , m . , ~ s : U  1 " 

where the sum is constrained by ~ = 1 i :  =< 6, and Piv..~(q;a)~Cd~. for n = ~}=1 ii, 
• . , ,  i s  c ! lim,_, o Pq..~(q;a) = q]~ q~, and Vq...¢sc¢. Because of degr~ C' = degr~ C ,  it is 

sufficient to show 
degr<q V' < degr~ V' + 6. 

degr~ V'(t, v, q; 12, a) = max degrt~ [P~r..is(q; a)" Vq...~(t, v; #, a)] 
i l ' " i s  

_<_ 6 + maxdeg  h [Pq...~ (q; a)" Vq..%(t, v; 12, a)] 
i 1 . . . i  s 

= 6 + degr~ V' (t, v, q; 12, a). 

2. Set I = (11 . . . . .  l~)eN~. Then 

ai t~ i 
degr~[~-~F(t,v,q;12,a)]q= ° q;12,a) <degr ,  F(t, < degr~ ~qTql F(t, v, v, q; #, a), 

hence 
0~ 

3. All propagators  which depend on q are also dependent  on t. Hence 

1. degr~?q~F < degr~?q~F + 6. (3-5) 

2. degrr ?q~F __< degr~ F. (3-6) 

If for all i = 1 , . . . ,  n: ( % , . . . ,  %)  = 0 ~ ( d i l , . . . ,  dis) = 0, then 

3. degrt~?~f =< degr/?q F. (3-7) 

4. degr~ (1 - ? ~ ) F  < degr~ F - (6 + 1). (3-8) 

P r o @  To get some experience with lattice degrees, we will do the proof  in detail. 
Especially, we remind the reader of the properties of a UV-degree as stated in 
[3], Lemma 2.2 (see Appendix A). We  will also use multi-index notation. Let F ~  
be of the form (3-4). Note  that for arbitrary V(t, v, q; 12, a)eCg ~, 

degr~ V{q= o < degr~ V, 
(3-9) 

clegr~ V]q= o = degrt~ Vlq=o < degr~q V. 
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degrt~ F(t,v,q;#,a) <degr~-~F(t ,v,q;#,a)<degr?qqF-Il l .  
q=O 

Consequently, for Ill = n 

degr~P,,q...~.(q;a) F(t,v,q;#,a) <= n + degr~ F - 1/I = degr~ F. 
q=0 

4. (1 - ' / ~ ) F  can be written as 

V~(t, v, q; li, a) 
[(1 -~q)F]( t , v ,q ;p ,a ) :  C(t,v,q;#,a)C(t,v,O;p,a)a+i, (3.10) 

where VaeCg ~. Using (3-3) and VoeC ~°, we get Va(t,v,2q;li, a)= 0(2 a+l) as 2---,0, 
hence 

degr~ Va =< degr~ Va - (~ + 1). (3-11a) 

By assumption, 

degr~ C(t, v, q; ~, a) = degr?qq C(t, v, q; #, a). (3-11b) 

Consequently, 

degr~ (1 - ?~)F = degr~ V~( t, v, q; #, a) - degr 7 ( C( t, v, q; #, a). C( t, v, 0; #, a) ~+ i) 

< degr~q V~(t, v, q; I~, a ) -  (6 + 1) - degr~ (C(t, v, q; l.t, a). C(t, v, 0; p, a) ~ + ~) 

= degr~(1 - ' / ~ ) F  - (6 + 1) 

< degr?q F - (6 + 1), (3-12) 

where we have used Lemma 3.1.3. [] 

4. Renormalization 

We now proceed to give a renormalization prescription for lattice Feynman 
integrals with massive propagators. Let 

F = ( S f  r, gr ,  N r , ¢ r ,  Or) 

be a 1PI diagram having m loops, and Jr(q;# ,a)  the corresponding Feynman 
integral (2-9). The renormalized Feynman  integral of F is defined by 

~/a 
~r(q;#,a) = ~ d4kl '"d4k, ,Rr(k,q;#,a),  (4-1) 

--  7~/a 

where 

Rr(k,q;#,a) = Sr  Z 1-[ ( -  ~(~)S~)'f r(U) 
U e ~  y e U  

is given as follows: 

a. S~ are the substitution operators defined in (2-20), (2-22). 
b. ¢U is the set of all F-forests. 

(4-2) 
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c. I t ( U )  is the unsubtracted Feynman integrand 

G(k,q;12,a) 
with the following substitutions depending on a forest U: For every line L ~  r 
(vertex B ~ M r )  there is at most one 7~U such that LESe~ (BeM~), but L¢5¢~,, 

A 

(B¢~¢) for all 7'~U(7). If such a y~U exists, AL(VB) is written in variables q~, k s 
A 

as in (2-16). Otherwise, AL(V~) is written as a function of k, q as in (2-8). 
7a(~) is a subtraction operator of order 6(7) in external d. For every 7 ,~  (7)-- ~q~ 

momenta q7 of 7. 6(7) is constrained by 
6(y) ~ o)(y), (4-3) 

where ~(7) is the UV-divergence degree of 7, and for every F-forest U 

5(7) > o)(;7(U)) + ~ 6(7,), (4-4) 
i = i  

where 7~ . . . . .  7c are the maximal elements of U(7). These conditions are automati- 
cally satisfied if 5(7)= 0)(7) for all ?eU. If 6(7)< 0, we set 7a(7)= 0. - 7  

e. In the product 

]', - -  t" 7 7 "  
y ~ U  

the factors are ordered as follows: If71,72 ~ U, 7~ subdiagram of 72, then ( - ~ 7, ~7,, 
is ordered to the right-hand side of(  "~(r~).~ / If7D~z are disjoint, the order is 
irrelevant. 

More explicitly,/~r can be written as 

Rr(k ,  q; #, a) = ~ RVr(k, q; #, a), (4-5) 
U e ~  

where/~v is defined through the following recursion. For minimal ?eU, set 

~ ' U  R 7 (k ,  q'; 12, a) = fr(k 7, qT; #, a), 

and for every 7 ~ U u  {F}, Y~,---,~c being the maximal elements of U(7), 

c 

~C' (k7 ' qT; t2, a) = [~(v)(k 7, qT; 12, a). S7 1-[ ( - ?~(~,i)~ 7, ,*'7,,-(kY', ~""", t-, a). 
i = 1  

Then/~v is given by 
/~vr =/~v if F(~U, 

(4-6) 
~ v =  - o  r;'ar)~V~'r if FEU.  

We now state our main result. 

Renormalization Theorem. The continuum limit 

lim ~ r(q; #, a) 
a--*O 

of  the renormalized Feynman integral ~ r(q; #, a) exists and is given by 

lim ~r(q;  #, a) = S d4k~ ... d4k, ,Rr(k,  q, #), (4-7) 
a---~O - -  
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where 
R r(k, q, #) = lira R r(k, q; #, a). 

a ~ O  

Remember that we have assumed all the propagators to be massive. The theorem 
states that if l ima_.olr(k ,q;#,a)~O, R r is equal to the BPHZ-renormalized 
continuun limit of I 'r [1] (with a different choice of internal momenta). If 
lim~_~ o I t ( k ,  q, #, a) = 0, also Rr(k ,  q, #) =- O. This means that lattice Feynman 
integrals, which have at least one vertex function with vanishing a-* 0-limit, do 
not contribute to the continuum limit after renormalization. These vertex functions 
result from contributions to the lattice action which vanish in the (naive) a ~ 0-limit. 
Such terms do not contribute to the continuum limit in every order of perturbation 
theory. In this sense, renormalized perturbation theory is universal. 

The theorem states that the combinatorics of renormalization of diagrams 
with a lattice cutoff are given by Zimmermann's forest formula [1], with 
Taylor subtractions replaced by subtraction operators. The theorem becomes wrong 
if we would use Taylor operators, since the periodicity of the Feynman integrand, 
an important convergence condition [3], would be violated. The continuum limit 
of a renormalized diagram exists and is given by the universal limit resulting 
from the a~0-1imit in the integrand. However, it could happen that over- 
subtractions are necessary, and the higher the loop order, the higher the subtraction 
degrees. To state conditions which exclude this possibility, we shall write divergence 
degrees in dependence on terms in the lattice action. Consider an action of the form 

S(A) = S o (A) + Sint(A), (4-8) 

So (A) = a 4,~4 A~(na) Ai~ 1 (n, a) Aj(na), (4-9) 

Sint(A) = a'~ ~4 ~gjLJ(A '  ha), (4-10) 
nEZ J 

where Lj are polynomials in the lattice spacing a, the basic fields A at na and 
neighboring lattice sites, and they are homogeneous in A. Let 

be an arbitrary connected Feynman diagram of a field theory described by S. To 
every line L ~  of 7 there corresponds a pair of basic fields Ai, A k. We call L an 
ik-type line, having/-type and k-type legs. For every A i we define a UV-dimension 
di such that 

4 + ¢O(~L) <= d i q- d k (4-1 la) 

(in four dimensions), i.e. for i = k 

d~ > ½Ec~(ZlL) + 43. (4-1 lb) 

The number of loops in ? is given by 

m(7)= 1+  y" 1-- Z 1. (4-12) 

Hence L ~  B~ G 

aft?) = 4 + ~ (O~(ZIL) + 4) + ~ (C0(~'R) -- 4). (4-13) 
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After some elementary manipulations, using (4-11), we get (cp. [6]) 

co( ) ___< 
~(?) = 4 + ~ (co(B) - 4) - ~ek(?)dk, (4-14) 

B e ~  k 
where 

o(B) = ~ nk(B)d k + co(~'~). (4-15) 
k 

nk(B ) is the number of k-type legs entering the vertex B or synonymously is the 
power of k-type fields Ak in the action term corresponding to the vertex B. co(B) 
can be determined directly from this part of the action, ek(?) is the number of 
external k-type lines of ~. 

From these expressions, it is directly seen that the constraints (4-3) and (4-4) 
are satisfied if we choose 

6 ( ? ) = 4 +  ~ (6(B)-4)-~ek(~)d  k with  6(B)>co(B). (4-16) 
B~,~'~, k 

Consequently, a field theory on the lattice is renormalizable by power counting if 
for every vertex B the UV-divergence degree of B satisfies co(B) < 4. (Renormalizable 
by power counting means that with increasing number of loops the order of 
subtractions needed does not increase.) In particular, we can state the following 

Theorem. Let the couplin9 constants 9j in (4-10) be dimensionless. Take the limit 
a ~ 0 of (4-8) and denote the resuttin 9 continuum action by So(A). I f  for every vertex 
B of So(A) the continuum UV-diveroence degree coo(B) [6] satisfies ooc(B)< 4, then 
the lattice theory is renormaIizable, and its continuum limit is 9iven by the field theory 
which is described by the action So(A), and is renormalized by the BPHZ finite part 
prescription. 

As an example, consider the scalar ~4-theory with an additional ~6-interaction: 

S(~) = a 4 ~4 [g~(na)( - [~ + #2) g~(na) + 9 cb~(ha) + 2a2 ~6(na)] - (4-17) 
n~Z 

The propagator in this example is given by 

el(k) = 1 (4-18) #2, + 
where 

2 .  k~a .., lc 2 4 k , = a S m ~  - ,  i= 1,. 4, = Z (f¢~)2. 
i = l  

The only Green functions to be renormalized are the two- and four-point functions. 
In fact, any vertex B satisfies co(B) = 4, and (4-t4) shows that the divergence degrees 
of six-point and higher functions are smaller than zero. The four-point Green 
function has divergence degree co = 0. Hence subtraction of a constant is sufficient 
to absorb its overall divergence. The two-point function is quadratically divergent, 
and to renormalize it, we should choose as a subtraction operator ~ a Taylor 
operator of order two in the lattice momenta c 2. If c2 would be periodic, this is an 
always allowed choice (as shown in Appendix A). However, c2 is anti-periodic with 
the BZ, barring at the first sight i "2 to be a proper subtraction operator. Actually, 
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the model (4-17) is invariant under inversion q - -+-  q. This means, the first and 
mixed second derivatives to external momenta of diagrams vanish at zero momenta. 
The "effective" subtraction operator is given by 

~2 1 +1 ~=102I- ~92 q 

which is periodic. The renormalization theorem states that the a ~ 0-limit of the 
renormatized model of (4-17) exists and is described by the action 

&( ¢)) = ~ d4 x[ ~ (x ) ( -  [] + ~2) a,(x) + g~4(x)], 
and renormalized by the BPHZ finite part prescription. The limit is independent 
of the coupling 2. 

If at any order the overall subtractions of diagrams could be written as 
counterterms in the lattice action, then they subtract in higher orders divergencies 
of corresponding subdiagrams. However, for a lattice cutoff, the situation is a bit 

7a(~) to a diagram 7, we have to choose a basis of the more involved. To apply ~q,. 
external momenta of 7. By momentum conservation, one line is omitted, but which 
line is arbitrary. A similar arbitrariness holds for the coefficient functions P,,~,.. i,, 
in 7 a(~) The differences are always of order O(a), and by the renormalization ~ q y  • 

theorem, they do not have any influence on the continuum limit. Note that in the 
continuum the problem does not occur, subtractions being Taylor polynomials 
and hence independent of a basis. 

To get a counterterm in the action, we have to respect Bose and Fermi 
symmetries under exchange of equal-type external lines. This can be achieved as 
follows. First of all, we have to choose the same subtraction operator for all 
diagrams 7, which differ by an exchange of equal-type external lines only. This 
subtraction operator must be chosen to be symmetric, i.e. if it is written in a form 
(3-3), then for any permutation ~z of equal-type lines 

P(") (" a) p(n) ~,~ ~(1) i,(~)t~(1), q~(N); = qN; a), • . . , a i l . . . i N ~ V l l  ~ . . . , 

for all ix . . . . .  i N, where N + 1 is the number of external lines of 7. Finally, we have 
to take the arithmetic mean over all possible bases, or at least over those bases 
omitting an external line of the same type. Then the counterterm which results by 
integration over all loop momenta has the same permutation symmetries as the 
unsubtracted 7. Summation over all diagrams, which differ by an exchange of 
equal-type external lines, yields a counterterm having the desired Bose or Fermi 
symmetries, and it can be written as a contribution to the action. 

Furthermore, if the functions 

P}~?..,N(q* . . . . .  qN; a) 

are chosen to be symmetric and polynomials in lattice momenta (see Appendix 
A), the counterterms are always local, i.e., they are of the form 

AF¢ff = a 4 ~. P(A, na), 
n ~ Z  4 

where P(A, ha) is a homogeneous polynomial in the fields A at na and neighboring 
lattice sites. 



96 T. Reisz 

5. Convergence Proof 

To prove the renormalization theorem, we will show that (4-1) satisfies all criteria 
of the power counting theorem of [3]. The subtracted integrand (4-2) can be written 
as 

V(k, q; #, a) (5-1) 
/~ r(k, q; #, a) = B1 (k, q; #, a) B2(k; #, a) ' 

where 
n(L) 

Bl(k,q;#,a)= I~ [I  (eLj(1La)-t-#~J), 
Le~ Fj  = I 

n(L) 
Bz(k; #, a) = l~ l~ 1-[ (eLi(k~La) + #~yj(L,,), (5-2) 

Y Ls~¢ J= 1 

all masses #Lj are nonvanishing, hi(L, 7)eN o = {0, 1, 2 . . . .  }, and the outer product 
is over all 1PI subdiagrams 7 of F. Furthermore, 

IL (k ,q )  = kL (k )  + qL(q),  k~ = k~(k), (5-3) 

and V e ~  c, i.e.,/~r belongs to ~- (see Appendix A). By definition of the subtraction 
operators and of S~,/~r is periodic in the loop momenta k 1 . . . .  , kin. 

Let ~ be the set of all IL,LEYF, and of all k[ for 1PI subdiagrams ~ of F and 
Leo~q' r By construction of k[, the set £~o is natural in the sense of [3]. All that 
remains to be shown is that the power counting conditions of [3] are satisfied. Let 

t l , . - . , th ,  Vt . . . .  ,Vm-h (5-4) 

be an arbitrary basis of ~ ,  i.e. t l , . . . ,  t h, Vl,. . . ,  v,,_heS~, and the Jacobian satisfies 
det(O(t, v)/O(k)) # O. By fixing vl . . . .  , v,,-h, one defines a Zimmermann subspace H, 
i.e. a class of affine subspaces of the space of loop momenta (k 1 . . . . .  k,,). k = k(t, v, q) 
and kT=kT(t,v,q) for every 1PI subdiagram ~ of F are linear functions. 
(t) = ( t t , . . . ,  ta) is called the parametrization of H. The set of all such Zimmermann 
subspaces H, for all bases (5-4), is denoted by Jr .  We will show that for every 
H e W ,  parametrized by (t) = ( t t , . . . ,  th) with respect to a basis (5-4) of 5f 

4h + degr~/~r(k(t, v, q), q; #, a) < 0. (5-5) 

Then all the conditions are met for the power counting theorem to apply 
to the renormalized Feynman integral (4-1). This concludes the proof of the 
renormalization theorem. 

The general idea of proof can be found in [1] and uses the method of so-called 
complete forests. What is different here is the form of the integrand, a new kind 
of subtraction and the definition of a UV-divergence degree. However, as will be 
seen below, (5-5) is based on general properties of the divergence degrees [3], and 
of the subtraction operators (Lemma 3.1). This allows us to use the ideas of [1] 
(cp. [4]). Especially, the combinatorical part of the proof can be taken over literally. 
At first, we have to repeat the definition of a complete forest. A F-forest Ue~K is 
called complete on H, parametrized by (t), if F e U ,  and if for any 7eU: all lines of 
~(U) are constant on H relative to ?;, i.e. 

k~(t, v, q) is independent of t for every Ledgf(v), or 
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all lines of "7(U) are variable on H relative to -~, i.e. 

k[(t, v, q) is dependent on t for every Le~g/v). 

~](U) is said to be constant or variable on H, respectively. The forest formula (4-2) 
can now be written in a form dependent on a given Zimmermann subspace H. 

Lemma 5.1 [•]. Let F be a 1PI diagram and H e g f  . Then 

Rr(k, q; #, a) = ~ ,  Xv(k, q; #, a), (5-6) 
U e ~ e -  c 

where Cirri is the set of all F-forests which are complete on H. Xv  is recursively 
determined by 

J(v (k, q; #, a) = (1 - ~ ~r)) Yr(kr, q r; #, a) lkr= k.q r= q, (5-7) 

where Jor minimal 7~U 
L(k' ,  q'; #, a) = L(k' ,  q'; #, a) (5-8a) 

and for any other 7eU 
c 

L(k ' ,q ' ;# ,a)  = ff(v~(k',q';#,a).S, i l]  f(?i) L , (k" ,q";# ,a  ). (5-8b) 

71,... ,  7c are the maximal elements of U(7). f(7) is defined by 

) l - - ~  if y ~ ( U )  (5-9) 
f(7) = [ -?~( ' )  if yC~(U). 

N(U) is the set of all 7 e U, which have ~(U) variable on H and in addition are maximal 
element of U(z) for some ~ U  having ~(U) constant on H. 

All functions Y~, Xu, R r are in ~ .  The H-dependent form (5-6) o f /~ r  allows 

an estimation of degr~/~r by induction through a complete forest. As will be seen, 
every single term in the sum (5-6) already satisfies the desired bound on the 
UV-degree. The proof of Lemma 5.1 can be found in [1]. What is different here 
are the structure of the functions and the definition of internal and external 
momenta of subdiagrams. However, this does not have any influence onto the 
validity of Lemma 5.1 which is mainly a combinatorical statement. Of importance 
is that the internal momenta of subdiagrams are determined always in the same 
way. This is guaranteed by (2-24). 

For every Ue~Zff and every yeU we set 

My(?) = 4~m(e(U)), (5-10) 

where ze U(7)w {;~}, f(U) variable on H, and where raft(U)) is the number of loops 
in f(U). M v ( F  ) sums up the number of independent parameters of H, i.e., 
M v ( F  ) > 4h. This is proved in Appendix C. We now state the important 

Lemma. 5.2. Let H ~ 2/~ with parametrization (t) = (t ~ , . . . , th), U a F-forest which is 
complete on H, and R r, Y7 as in Lemma 5.1. Then for every yeU: 

1. degrr'[~(k' (t,v,q),q~;p,a)< -Mu(7)  for y(g) constant, (5-11) 

equality holding only if My(y) = 0. 
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2. degr~vlr~(kr(t,v,q),qr;#,a)<-_6(7)-Mv(?) for~(U) variable. (5-12) 

From 1. and 2. we get 

degr~ Rr(k(t ,  v, q), q; #, a) = - 4h - 1. (5-13) 

Note that the dependence of k r on the external momenta q does only occur 
through the parametrization of a Zimmermann subspace H. Differentiations and 
UV-degrees with respect to qr refer only to the explicit qr-dependence. Statement 
(5-13) is the desired power counting condition. Because H is an arbitrary subspace 
in o~, all conditions of the power counting theorem of [3] are satisfied. Hence, 
from Lemma 5.2 the renormalization theorem follows. 

Proof. By induction through the forest U. We will permanently use the degree 
properties of Lemma 2.2 of [3] without explicit reference, i'¢ (r) is a subtraction 
operator to which Lemma 3.1 applies. Note that the numerator V(t, v, q; It, a) of 
a function V / C e o  ~ satisfies degr~ V < degr,~ V, and if V is independent of t, then 

degrr V <__ 0. If 7 is minimal, then ~(U) = 7 and ~-~ = J'r, hence 

degr~ Yr(kr(t, v, q), q~; It, a) <= 0 if ;7(g) is constant, 

degrrqr Yy(k~(t, v, q), q~; #, a) -<_ 0)(7) - 4m(7) _-< 6(7) - My(7) if ;7(U) is variable. 

Now we assume that the inequalities 1. and 2. hold for all maximal elements 
7~e U (7), i = 1,.. . ,  c, for some non-minimal 7 e U. Then Yr is given in (5-8b). Sr means 
a linear substitution 

k,~ ~k~,(k,) ,  q~ ~q'~(kT, q'). 

1. Let ~(U) = 7/7~ ""7~ be constant on H. Then 

a .  

de-~r [r/~v..r~ (k ' ( t, v, q), q' ; It, a) <= O. 

b. ~(U)constant. Thenf(7~)=-?~}r° .Accordingtothehypothesisof induct ion 

degr~ tr~,(k"(t, v, q), q"; It, a) <= - -  M u ( T i  ) 

(equality holding only if Mv(7i) = 0). Hence 

degr~ ( -  ?~}")) Yr,(k~'(t, v, q), q"; It, a) < - Mv(7,) by Lemma 3.1.2, 

degr~ S, ( - ~}")) L,  (k" (t, v, q), q"; It, a) 

= degr~[Sr( - "~}~"~) L , ]  (k'(t, v, q), q~'; It, a) --< -- Mv(7i) 

( = holding only if My(T/) = 0). 

For, qr' depends via Sr only on those k r which are constant on H relative to 7, i.e., 
qr' is independent of t. 

c. ~Ti(U ) variable. Then f ( 7 3 =  1-~'~}~'), and according to the hypothesis 
of induction 

degr ,?L,(k"( t ,  v, q), q" ; It, a) <= 6(7i) - M v(Ti). 

~'~ is of the form 
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d 

L~(k' ,  q'; #, a) = f~d>w..,~(k', q'; #, a)S,~ 1-[ ( - 7~}J~)) L, j (  k'~s, q,lj;/x, a). 
j = l  

All lines of ~i(U) = ?i/Til "" Tie are variable on H relative to ?,, and the denominator  of 
d 

S,, 1-[ ( - t ~}J'J)) L~j( k''j, q'~J; #, a) 
j = l  

does not  depend on qe,, k~,j = k~,J(k~,) being independent  ofq ~' via Sri. Hence Lemma 
3.1.4 applies to Y~,: 

degr~ (1 ^~t~,,~ ^ ~, ' = - t , ,  )Y~,(k ( t , v , q ) , q " ;p ,a )<  - M v ( T i ) -  1. 

Again, in q~' only those k ~ occur which are constant  on H, hence 

degr~ S,(t - 7~} '*)) L~ (k'~( t, v, q), q'~;#, a) <_ - Mv(?~ ) - 1. 

In summary  

degr~ Y~(k~(t, v, q), q~; #, a) <= - My(?) ( = holding only if My(?) = 0), 

where we have used 

Mv(~') = ~ Mv(~,)  (~(U) constant). 
i = l  

2. Let ~(U) be variable on H. For  all i =  1 , . . . , c : f ( y , ) =  -7~} '*). 
a.  

deg r~  f~./~.r..,~(k'(t, v, q), q'; #, a) <= o f f ( U ) )  - 4m(~(U)) 

by definition of o~(~(U)) and m(~7(U)). 
b. ~7~(U) constant. 

degr~ Y~,(k'~(t, v, q), q"; #, a) <= - Mv(?~ ) ( = only if Mv(?~) = 0), 

degr~ ( - ' /~I '')) YT~(k"(t, v, q), q"; #, a) <= - Mv(?i ) by Lemma 3.1.2, 

d e g r ~ (  - 7~ ")) L~(k"(t ,  v, q), q~'; #, a) ~ 6(7~) - Mv(7~) by Lemma 3.1.1. 

The denominator  does not  depend on qr', and linear S~ can only decrease the 
degree with respect to (t, q~): 

degrQ S,( - t'~l '')) L,(k"(t ,  v, q), q"; #, a) <-_ 6(7i) - My(?,). 

c. ~i(U) variable. 

degr,@ Y~,(k~'(t, v, q), q~'; #, a) __< b(Tg) - My(?,) (induction hypothesis), 

degr,~/?,( - 7~} '')) L, (k" ( t ,  v, q), q"; #, a) <= 6(o/~) - Mv(?i) (Lemma 3.1.3), 

using the same arguments  as for 1.c, 

deg r~  S,( - 7~I '')) Li(k'~(t,  v, q), q'~; #, a) <= 6(7~) - Mv(7i). 

In summary 

degr~  Y,t(k'(t, v, q), qT; #, a) <= co(;7(U)) + ~ 6(7i) - My(7),  
i = 1  
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where we have used My(v) = 4m(~7(U)) + ~ =  1 Mv(?i). According to the condition 
(4-4) this implies 

degr~ Y~(k~(t, v, q), q~; #, a) _<_ ~(~) - My(y). 

To prove the last statement of the lemma, we must distinguish between if(U) 
variable and F(U) constant. If F(U) is constant on H, then 

degr~ Yr(kr( t ,  v, q), qr; #, a) <__ - M y ( F )  - 1 <= - 4h - 1, 

hence, using Lemma 3.1.2 

degr 7 Xv(k(t ,  v, q), q; #, a) <__ degr~ (1 - ?~r)) AYr(kr(t, v, q), qr; #, a) =< -- 4h - 1. 

If if(U) is variable on H, 

degr~q/'? Yr(kr(t,  v, q), qr; #, a) < (5(F) - M v ( F  ) <= (5(F) - 4h. 

Using Lemma 3.1.4 and the same argument as for 1.c, we get 

degr~ Xv(k(t ,  v, q), q; #, a) < degr~ (1 - ~ r ) )  ~r(kr(t,  v, q), qr; #, a) ~ - 4h - 1. 

Hence in both cases 

degr;Rr(k(t,  v, q), q; #, a) <= - 4h - 1, 

and Lemma 5.2 is completely proved. [] 

6. Generalizations 

Until now, we have discussed Feynman integrals for scalar fields only. This we 
have done for simplicity. There is no essential change if we include fields carrying 
spin and internal symmetries like Lorentz, colour, spinor indices etc. The 
diagrammatic notations introduced in Sect. 2 are supplemented by the notion of 
an index distribution. 

Definition 6.1. Let F be a Feynman diagram as given in (2-1). An index distribution 
is a collection of two maps d l , d z ,  defined by 

L d l , A ~ . X A 2 L  for all L ~  r, E ~2~A~  for all E E g r .  (6-1) 

All A's are finite sets. 
The index sets A are carrying the symmetry labels. Note that to every internal 

line there correspond two indices, one for each end of the line. In calculations, these 
indices are summed over. Propagators and vertex functions are now dependent 
on momenta and indices. A Feynman integral has the form 

r~/a 

j r (q ,e (~Yr) ;# ,a )= ~ S d'k1 "' 'd4k,.fr(k'q'e(gr)'efl(Zqyr);#'a)'  (6-2) 
~ L j j  L -- ~ / a  
L e ~ '  F 

I r (k ,q ,~ (g  r ) ,a f i (~  r);#,a) = [ I  VB({IL}B, {aL}B;#'a)" I-I /4L(1L'~L'flL;#'a)' 
B ~  F L~*LP F 

(6-3) 
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where 

a(g r) = (a~lE6¢ r), 
~fl(~ r) = ( (~L, i lL ) IL l ' r ) ,  

a ~ A ~  for all E~gr ,  
(6-4) 

aL~A~,flL~A 2 for all L ~  r. 

Propagators are of the form 

PL(IL; #' a)~LPL (6-5) 
"4L (IL, ~L '  ilL; 1~' a) = n(L) . 2 ' 

l i t= 1 [eLj(1L, a) + #L j] 

where ~LEA~, flzEAL 2, and for every pair (~L, ilL) the numerator is of a form (2-12). 
Vertex functions VB are also of a form (2-12), and {~L}B represents the indices of 
the line ends at the vertex B. Similarly, the integrand of a subdiagram 7' of F is 
given by 

I~(kr, qr, a(°~e),afl(~);l~,a) = I-[ F'n({l~}n,{a~}n;/t,a)" l-I ff~L(FL, aL, flL;I~,a), 
B a ~  L ~  

(6-6) 
where 

a(gr) = (a~lE~gr), afl(L#r) = ((~L, flL)[L~P~) • (6-7) 

An "induced index" a~ for E ~  7 is equal to the index of the line ending of L ~  r 
or L~o~r, which corresponds to E by the imbedding of ~ as a subdiagram of r 
(see Sect. 2). For L ~ e r ,  ~[ = a L. Analogous statements can be made about  reduced 
diagrams. 

Internal momenta are defined as before. However, divergence degrees are 
modified to be independent of symmetry labels. For every 1PI subdiagram ? of 
F, co(y ) is defined as in (2-28). However, cO(AL) and ¢o(f'n) are now given by 

CO(Z]L) = max degr~ L AL(IL, ~L, fiE; #, a), (6-8) 
CtL~A1L,flLeA 2 

a)(~'n) = max degree}, ~"n( {IL}B; #, a). (6-9) 
(%}B 

The same holds for reduced diagrams. 
Finally, the forest formula is changed to 

n]a 

~r(q,a(gr);# ,a)= ~ ~ d4k~...d4kfl~r(k,q,a(er),afl(L#r);#,a), (6-10) 
~L,~ - ~/a 

L ~  r 

where 

Rr(k ,q ,a(gr) ,a f l (~r) ;# ,a)=Sr  Z I-I(-~(~)sr)'[r(U), (6-tl) 
U ~  7~U 

and the only restrictions to the subtraction degrees 6(7) are given by (4-3) and 
(4-4). The convergence proof of (6-10) is identical to the above, the only 
modifications being that divergence degrees are now determined by (6-8) and (6-9). 
Finally, all comments we have made in Sect. 4 remain essentially unchanged. 

A further generalization is to choose a subtraction point ~ different from zero. 
But all statements and calculations above are insensitive to such a choice. This is 
because the choice of normalization has no influence on the convergence properties 
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of the Feynman integrals. A change of normalization conditions can be described 
by the addition of finite counterterms to the action which do not destroy 
renormalizability. 

Conclusions 

We have shown that the BPHZ renormalization procedure can be generalized in 
such a way that it applies to momentum-space Feynman integrals with a lattice 
cutoff. The generalization is that the counterterms, instead of being polynomials, 
are functions which are periodic with the Brillouin zone. They result from the wide 
class of lattice subtraction operators. This class includes as a special case 
polynomials in lattice momenta. In this case, after appropriate symmetrization in 
external momenta (as described in Sect. 4), they can be written as local counterterm 
contributions to the lattice action. Note that this symmetrization is necessary due 
to dependence of the counterterms on a chosen basis of external momenta. 

The continuum limit of a massive lattice field theory which is renormalized in 
this way exists and is given by the field theory which is described by the (naive) 
a ~ 0-limit of the lattice action, and which is renormalized by the BPHZ finite part 
prescription. This means that perturbation theory is universal, i.e., the continuum 
limit does not depend on the lattice action chosen. Also, the usual power counting 
renormalizability conditions of a field theory can be maintained, the only 
modification being that for all vertices of the theory the lattice UV-divergence 
degrees have to be less than or equal to four (in four-dimensional space-time). 
Especially, if all couplings are dimensionless, a lattice field theory is renormalizable 
if and only if its (formal) continuum limit is renormalizable (by power counting). 
Also, the choice of zero momentum as a subtraction point in the BPHZ procedure 
is of no importance. Any other choice is possible and corresponds to a change of 
the normalization conditions, which can be described by the addition of finite 
counterterms to the lattice action. 

There are some general restrictions on the structure of Feynman integrals in 
momentum-space imposed by the renormalization procedure. In particular, the 
integrands have to be periodic with the Brillouin zone, a property which is reflected 
by the fact that the counterterms must also be periodic. In the formulation 
of the lattice power counting theorem [3] and the renormalization procedure for 
lattice Feynman diagrams, we have always assumed that the propagators have 
exactly one pole in the Brillouin zone, i.e. the denominator of every propagator 
takes its minimum at vanishing momentum only. Especially, lattice fermions 
with propagators having poles on the boundary of the Brillouin zone are 
excluded, whereas the renormalization procedure works e.g. for Wilson fermions. 
Furthermore, we have always assumed the numerator and denominator of the 
integrand to be C% This condition can be weakened in that the propagators should 
have this property at least in a small neighborhood of zero momentum, and 
globally they should be differentiable to such a degree that all differentiations 
necessary to subtract divergencies can be done without problems. 

So far, we have discussed massive field theories in order to avoid infrared 
singularities. This allowed us to concentrate on the problems specific to the lattice 
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as a UV-cutoff. If massless fields occur, we have to take into account possible 
infrared singularities very carefully. However, they are not specific to the lattice 
and are expected to be tractable by the methods which were developed for 
continuum Feynman integrals many years ago [6-9]. We will discuss this problem 
in a forthcoming paper and shall see that one only has to supplement the ultraviolet 
power counting conditions by infrared power counting conditions. 

Appendix A. Examples of Subtraction operators 

We give some general examples for ~ tq to be a subtraction operator. At first, we 
repeat the definition of the function classes c£~ etc. of [3]. For meZ, cg m is the class 
of functions V of the form V(u;a)=F(ua)/a", where FeC ~. If in addition 
lim~_~o V(u; a) exists, we get the class cg~,. cg(cgc) is the set of functions which are 
finite sums of functions in some cgm(cgT, ). For V(u,w;a)=F(ua, wa)/amCgr~,ru= 
m - degr~ V is the largest non-negative integer such that 

ObF(u, w) 
~,=o--0 for [b l<r , ,  

where l b[ is the length of the multi-index b, i.e., the sum of its components. If 

V = ~ i  ViCg, Vie~g,,, and m~ v~ mk for i ~ k, then degr~ V= max/degr~ V~. 
~- is the set of all functions of the form F = P/C, where PeCg c and the 

denominator CCg c is a finite product 

C = [-I [ei(li; a) + 1~2]. 
i=1 

li are linear functions in momentum variables, and e, are functions as defined in 
(2-13). Note that 

degr~ (e~(l,; a )+  #z)= {2 0 
if li depends o n  u 

otherwise, 

and this is equal to degr,(l~ + #~) (see [1]). The UV-degree of F with respect to u is 
defined by 

degra F - degra V -  degra C = degra~ V -  2n,, 

where nu is the number of li depending on u. For F,F~,F2e~,  degr~ satisfies 

degra (F~ + F2) _-< max (degra F1, degr~ F2), 

degr~(F 1 "Fz) <__ degr~ F 1 + degr~ F z, 

degr~ ~ F _< degra F - [ c I, 

0 c 
degr~ Ow--- T F <= degr~ F. 

These are the "degree-properties" of [3], Lemma 2.2. 
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Having reviewed general notions, we shall now state some general examples 
of subtraction operators. Let us introduce a special subset J / o f  (¢c. j / /deno tes  
the set of functions P satisfying 

P(q; a)~(# c, 

lira P(q; a) = q, 
a ~ 0  

where q is a real variable. If in addition P is a finite product of sin and cos functions 
and is (2n/a)-periodic in q, then P is called a "lattice momentum". For  instance, 
[sin(qa)/a] or [(2/a)sin(qa/2)cos(qa/2)] are lattice momenta. 

For  6 ~ N o = { 0 , 1 , 2  . . . .  } consider the following construction: For  every 
j = 1,. . . ,  s and i = ( i l , . . . ,  i~)~N~), i~ + . . .  + i~ < 6, let PJl~(q; a ) ~ 4  such that 

Pjl~(qJ; a) i~ is (21r/a)-periodic in ql . . . . .  q~. 
j = l  

Set 

q++i ,="  1 V s . 7 ] -  ~i, ~i. -I 

° X is'-i'IHe "(q';a)'ql e - - 
I 

= q,...,~,~No """ ~'L~ =~ .3L 11a~t ,"J  ~ P , l ~ ( q ~ ; a ) " J q = o "  

(A-l) 

This means that in application to a function F, which is C ~ in q, derivatives are 
taken at q = 0. 

Lemma A.1. I f  for every j = 1 . . . .  , s and every 1 <_ 5 there exists a constant czj, so that 

( ~ Pj,~(q; a) )q=o = C~i (A-2) 

for all i, then for arbitrary function F which is C ~ in q 

(1 - - ?~ ) f  = 0  fora l l  n e N ~ , l n l < &  (a-3) 
_lq=0 

This means that ~ is a subtraction operator of order 6. 

Proof. For a fixed iEN~, i~ + ... + is < 6, choose 

P j(q; a) - PJl,(q; a) (A-4) 

for every j = 1,. . . ,  s. As a consequence of (A-2) 

[ I  n2li(2qfi a) i' = (-I P~(2q~; a) 0 + 0(2 ~÷ '), (A-5) 
j = t  j = l  

and 

c~i~ a) i~ J -o ( b P l ( q t ; a )  ~' ~'~ ( c311 ""OPsli(qs; F'~q = • cob ) 
• _ c3Ps(qs; a)i. ~ F /q  = o" \OP1L~(q~;a)" 

Hence, using Taylor's formula and that Pj~J/4, we get for 2 ~ 0, 

i l + ' " + i s = n  1 
( 1 - 2 ~ q ) F = F -  Z Z 

n=O il,...,is~N 0 il!"'i~! 

(A-6) 
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J\aP~, (ql; a)'"'aP~(q,; a)" F 0(,1. a+ ') 
q=0 

/F s 7(0+i)/2\ 

As a corollary, we get 

Lemma A.2. Let Ps~¢[. Then 

,.~ _ 1 (A-7) 
t ~ -  ~=o-~. i,,...~,i,=oP(qh;a).'.Pt.q¢,;a) OP(~;a)  aP(q,.;a) ~=o 

is a subtraction operator of order 6. 
As an example, set P(q; a) = sin(qa)/a. P is a lattice momentum, and (A-7) is a 

subtraction operator. Note that P is a periodic function. If the function class 
is restricted appropriately, then we are allowed to use anti-periodic functions like 
(2/a) sin(qa/2) without violating (A-3). For  instance, this can be done in the 
• 4-theory as shown in Sect. 4. 

Appendix 13. Chord Sets 

Lemma B.1. Let 7 be a connected Feynman diagram, P the number of lines in ? and 
~q~ = {L1 . . . . .  Lp}. Define ~ ~-* ~ ~C~ by 

L i ~ J  ~ ~ \ { L 1  . . . .  ,Lj-1 } contains a loop cg_ {Lj}, 

for every j = 1,. . . ,  P. Then J r~-* is a chord set in 7. 

Proof. We have to show that 3-~ -- ~r\:~-* is a tree in ~, i.e., 9-~ contains no loop, 
but ~-~u {L} is not a tree, i.e., contains a loop, for every Le~J *. 

If ~ ___ J-~ is a loop in ,W~, then there exists a k such that LkeC~ ~ ~ \  
{L1,... ,  Lk- ~ }. But this is in contradiction to Lk~-~.  Hence, J ~  contains no loop. 
To prove the second condition, let 

,y~,or, = {Li,,Li2 . . . .  ,Li~} ~-- ~ ,  il < i2 < "'" < ira. 

We have to show that 3 - r u  {L~) contains a loop, for every k = 1,.. . ,m. If L~ is 
a loop line, this is trivial. Let B k, Cge~:, be the endpoints of L~k. We show that 
there is a path ~ _ ~ r  between Bk and Ck. Then ~ {L~} is a loop in Wrw {L~}. 

If k = m, then by construction 

~L~\ {L1,. . . ,  L~,_~ } ~_ ~-~ ~ {Li~ } 

contains a loop %~ such that Li, ~c~.  ~,~ = cg~\ {Lira } ~_ ~~  is a path between Bm 
and C~ in ~-~. Assume the assertion holds for k + 1 . . . . .  m. 

~L~\{L 1 . . . . .  L~_~} 

contains a loop qfk, and L~(~k  . ~k\{Li~} is a path in ~c*°~\{L 1 . . . . .  L~_, } between 

Bk and Ck- Replacing for every L~C~g\{L~}, j =  k +  1,. . . ,m, {L~s} by ~ ,  the 
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resulting set 
~ek = % \ { L ~ . ) \ ( U r = k  + ~ {L,, })UT=k+ 1 ~ j  __ J ' ,  

is a connected set of lines in Y~. This set always contains a path Nk between Bk 
and Ck. [] 

Appendix C. Complete Forests and the Dimension of Zimmermann Subspaces 

Let F be a 1PI Feynman diagram, H an arbitrary Zimmermann subspace, 
parametrized by (t)= (t 1 .... , th) (and complementary parameters (v)), defined by 
(5-4), and U a complete F-forest on H. For every ?~U 

My(7) -= 4 ~m(f(U)), (5-10) 

where the sum is over all ~U(? )u{?} ,  f(U) variable on H, and m(f(U)) is the 
number of loops in f(U). We prove that 

Mv(F ) ~ 4h. (C-l) 

Let Y-* be a chord set in F. Every kL, LeY-*, has a representation 

h 

kL(t,v,q)= ~ CLjtj+ VL(V,q), 
j = l  

- J r  we define where rank(CLs ) = h. For every 2/? c * 

rank t ~ = rank(CLj)L~, 

i.e., the rank of C restricted to the rows L s ~ .  rank t ~ is the maximal number of 
momenta k L, L E ~  which are linear independent with respect to t. 

Lemma C.1. For every 7EU 
My(7) => 4"rank, J * .  (C-2) 

For F this means My(F)> 4"rank, J ' *  = 4h. 

Proof. By induction through the forest. For any 5e _~ ~ r  let # ~  be the number 
of lines in ~ .  First, let y be minimal in U. If 7 is constant, then My(?) = 0. But all 
lines of f *  are constant, i.e., rankt ~-* = 0. If 7 is variable, 

My(7) = 4m(7) = 4"# J-* > 4" rank, Y'*. 

Next, let ? e U and 71,.. . ,  ?c be the maximal elements of U(7), so that ~(U) = 7/Y 1"'" ?c. 
By construction of chord sets in Sect. 2, 5r* _c ~--*. Note that 

c 07- c u~--* L ~  - 5e~/~,~.. .~i= 1 ~ .~, U i =  1 ~,. 

The number of loops in ~(U) is given by 

m(f(U))=m(7)- ~ r n ( 7 , ) = # f * -  ~ #~-*, 
i = 1  i = 1  

, c ~- = # ( ~ r  n (~,/,~...,o Ui= 1 ~,)). 

If ~7(U) is variable, then 
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My(?) = 4m(~7(U)) + ~ My(?, ) ~ 4.#(~"* c~ (£P~/w--~c U~=I ~--,,)) + 4 ~ rank, ~-* 
i = 1  i = 1  

' 4 > 4.rankt(~"*c~(Lar/.w.rcU,=13-v) ) + ~. rankt~r* , > 4.rank,~--*, 
i = 1  

where we have used that for d ,  2 _ : - * :  rank~ d + rankt ~ > rank~(s¢ u ~). If ~7(U) 
is constant, then 

My(7) = ~. Mv(yi)> 4 ~ rankt3"e*. 
i = 1  i = 1  

a. For Le3-*  c~ ~e/r,...r: kL is constant, hence rankt(5-* c~ A°r/w..~0 ) = O. 
b. For L e f * c ~ : - r :  

k L = k[' + q['. 

L¢9"-r, hence q[' is of the forum 

q~' = 2 dLEk~ = fL(v, q), 
E ~ T / ? I  ""?e 

i.e., q~' is independent of t. Furthermore, 

= Z cL kM(t, q). 

Consequently 
kL(t,v,q)= ~ CL~tkM(t,v,q) +fL(v,q), 

M ~  ~,~ 

and 
rankt g/~*7, = rankt (~--* u (Y* c~ J-~)). 

In summary 

rank, 9 -*  = rankt(J* c~ ~,/w..,o ) + ~ rank~(J-~* w ( J *  c~ J , , ) )  
i = 1  i = 1  

> rankt5-*.  [] 
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