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We discuss cosmologies where the Planck length is not a fundamental constant but rather 
evolves with time. The dynamics which should be responsible for today's tiny value of this length 
scale are governed by the effective potential of a Brans-Dicke type theory. Qualitative properties 
of this potential depend on the short distance behaviour of the unifying fundamental theory. We 
discuss criteria for the asymptotic behaviour of realistic cosmologies and show that the role of a 
possible cosmological constant is quite different from the case of standard cosmology. 

1. Introduction 

In our present understanding of fundamental laws of nature we observe mass 
scales of two different orders of magnitude. On the one side there are the mass 

scales characteristic for the standard SU(3)x  SU(2)x  U(1) model which we may 

identify with the QCD scale A QCD and the W-boson mass M w. But we also know 
that much higher mass scales appear in our world: The Planck mass Mp, character- 
istic for gravity, is 17 orders of magnitude bigger than M w. The observed baryon 
asymmetry in the universe together with the observed stability of the proton 
suggests a scale M x characteristic for baryon number violation which should not be 
too much below Mp. Also the smallness of neutrino masses (if they are not zero) 
could be explained by a high scale characteristic for lepton number (or B -  L) 
violation. The approach to this problem adopted most frequently takes Me as a 
fundamental (intrinsic) mass scale of the theory. The question then arises why other 
scales like M w are so much smaller than Mp. In the gravitational sector one needs 
to solve the cosmological constant problem, i.e. to explain why today's value of the 
Hubble parameter H 0 is much smaller than M Z / M p  (or even Me). 

In this paper we investigate the alternative approach where Mp is not a funda- 
mental mass parameter but rather a property of today's state of the world, typically 
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given by a vacuum expectation value (vev) of some scalar field. Its present value 
may then be a consequence of the evolution of the universe, a hypothesis proposed 
long ago by Dirac [1]. Such a theory may have some other fundamental mass scale 
m which we suppose to be much smaller than Mp. As a typical example m could be 
given by AQC D or Mw, but it could even be much smaller. Alternatively the theory 
may have no intrinsic mass scale. In the latter case dilatation (scale) symmetry can 
only be broken spontaneously. For both alternatives Mp is given by the present 
value of a scalar field X which is much bigger than m and therefore not directly 
related to an intrinsic scale. Typical "initial" conditions for cosmology do not 
require anymore that all scales are of order Mp. The scales for initial conditions 
would rather be given by rn or even be completely random. A central question in 
this scenario is the following: How does X evolve with time so that its present value 
is Mfl 

The most popular proposal in this direction is the model of Brans and Dicke [2]. 
(See also the description in ref. [3].) This model assumes a massless scalar X which 
has no self-interactions or interactions with other fields except for the graviton. The 
Einstein-Hilbert term in the action (M~/16~r)R is replaced by x2R and a kinetic 
term for X is supplemented. In the light of modern particle theory and its 
unification with gravity, however, there seems to be no good reason why X should 
not be interacting. In general, we expect some potential, V(93i, X), where q3i denotes 
the degrees of freedom of the low-energy model like the Higgs doublet. It is not 
surprising that the combined cosmology for gravity and X will crucially depend on 
the form of this potential. The purpose of this paper is a study of cosmologies with 
field dependent Newton's constant in presence of a potential V. 

From the point of view of the low-energy standard SU(3) × SU(2) × U(1) model 
the field X plays the role of a physical cutoff scale. For energies beyond this scale 
physics is expected to change dramatically. For example, a much higher symmetry 
may become visible. Actually, the standard model very probably needs some 
physical cutoff as an implication of the triviality of cp4-theory (which very likely 
applies to the weak Higgs sector and perhaps to the abelian U(1) theory*). In 
absence of any experimental results indicating new (intermediate) scales, it seems 
not unnatural to identify X with this physical cutoff. What we have in mind is a 
model with a variable cutoff length l. For example, in the lattice regularization of 
the standard model this would mean that the lattice distance l becomes a dynamical 
degree of freedom. For most purposes the field X -  l-1 may be thought of as a 
background field. Its evolution must be such that l becomes much smaller than 
Mw 1 . 

What are the dynamics of the cutoff length l resulting from its interaction with 
the standard model degrees of freedom q3~? First we expect nonrenormalizable 
interactions of the type 12¢~ 6 o r  1 2 ( ~ b )  2 with c~ the Higgs doublet and ~ a fermion. 

* For a thorough discussion of triviality and its implications see ref. [4]. 
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They correspond to the "finite volume effects" for the lattice or the baryon number 
violating four fermion interactions in grand unified models. More general, such 
interactions are proportional l ~, P > 0, and vanish for l---> 0. Next there can be 
logarithmic contributions like ~41n(/~) from the running of dimensionless coupling 
constants. Finally, the symmetry also allows a mass type term l-2~2 for the Higgs 
doublet. Terms proportional l -  p are dangerous. They blow up for small l and tend 
to make any small value ( l~)<< 1 impossible. Such terms must be absent for a 
realistic model (or at least their coefficient must be very small). To a good 
approximation V(~ i, l) should be finite or at most logarithmically divergent for 

l ~ 0 .  
We are interested in a model where for small enough l (so that l P corrections are 

negligible) the observed SU(3)x  SU(2)x  U(1) model becomes a renormalizable 
theory without any mass like terms - l-P. In contrast to the usual renormalization 
procedure where l is only a technical device, this becomes in our context a strong 
physical assumption on the relative decoupling of the short distance degrees of 
freedom. It is closely related to the existence of a gauge hierarchy. We will adopt 
this assumption throughout most of this paper. We also note another difference 
from usual renormalization, namely that the renormalized dimensionless couplings 

at some fixed low-energy scale may now depend on l. 
As an example of a physical cutoff length l one may consider higher dimensional 

theories. Here the degree of freedom 1 is identified with some characteristic length 
scale of the internal space. Our assumption implies a relative decoupling of the low 
energy degrees of freedom from the short distance degrees of freedom which are 
connected with the dynamics of the internal space. In this sense the low-energy 
world should "lose its memory" about the scale of the internal space (up to possible 
logarithmic corrections). One should note that l is not necessarily simply the volume 
degree of freedom of the internal space. The decoupling of the low-energy degrees of 
freedom may obtain as a consequence of an internal space changing also its shape as 
l varies. Rough properties of the low-energy world like gauge symmetries and 
quantum numbers of chiral fermions do not depend on detailed properties of the 
internal space but follow from isometries and index considerations [5]. The dimen- 
sionless couplings, however, will depend on the shape. This may contribute to the 

dependence of these couplings on l. 
In a more general context we may consider some fundamental theory which is a 

system of infinitely many degrees of freedom (as, for example, strings). It may 
nevertheless be possible to describe the physics of our world by much less properly 
chosen degrees of freedom, in a way that all other additional degrees of freedom 
only describe small corrections, negligible for most purposes. This is related to the 
concept of universality classes in statistical mechanics. Universality classes are 
usually characterized by symmetries and a few other basic properties. We 
know - even if we don't understand why - that our world belongs to a universality 
class characterized by the symmetry gen 4 x SU(3) x SU(2) x U(1) in a phase where 
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SU(3) is confined and SU(2) X U(1) is spontaneously broken to  U ( l ) e  m. (Here gen 4 
denotes general coordinate and Lorentz transformations in four dimensions.) As a 
consequence of the symmetries, such a universality class should have a description 
in terms of four-dimensional space time with a finite number of fields which include 
the gauge bosons and the Higgs doublet. In addition the fermionic content of this 
universality class must be specified - the quantum numbers of chiral fermions. The 
interactions among these fields should be renormalizable in the limit where the 
other "irrelevant" degrees of freedom can be neglected. 

If we study the dynamical evolution of possible states the "ground state" 
associated with a certain universality class may be viewed as a fixed point in the 
space of states which is approached asymptotically by many trajectories. (As an 
example from statistical mechanics the ground state could correspond to the 
thermodynamic equilibrium state at the critical temperature of a second order phase 
transition.) For  a description of the approach to the ground state, however, one also 
needs to consider the "irrelevant" degrees of freedom which only decouple in the 
asymptotic ground state. (For the statistical analogue this would be the transition 
from non-equilibrium to equilibrium.) The decoupling of degrees of freedom in a 
general field theory is most easily described by some mass scale ( l -1)  growing huge 
compared to the mass scales characteristic for the ground state (AQcD, Mw). This 
rises the mass of the irrelevant degrees of freedom compared to the modes of the 
standard model. In this sense our study of the evolution of l is a study on how 
the irrelevant degrees of freedom decouple dynamically during the approach to the 
ground state characteristic for the gen 4 × SU(3) × SU(2) × U(1) universality class. 

Actually, there are two ways how degrees of freedom can decouple for l ~ 0. For 
most irrelevant modes the mass will grow - l-1. This results in local non-renormal- 
izable effective interactions between the modes of the standard model. As a second 
possibility the mass of such a particle may be zero or remain small for l ~ 0, 
whereas its couplings to the modes of the standard model vanish for l ~ 0. This 
happens if no renormalizable couplings are permitted by the symmetry. In particu- 
lar, this is the case for the graviton which decouples for M e ~ oo. Massless modes 
cannot  be eliminated in favour of local nonrenormalizable interactions between the 
standard model modes. They must often be kept for the description of low-energy 
phenomena. Despite their small coupling strength they can play a role for physics at 
very long distances. 

In our approach the length l itself is one of the irrelevant degrees of freedom. It is 
not clear a priori if it belongs to the first category (with mass - l 1) or to the 
second one. Since l is a scalar and a singlet under SU(3) X SU(2) × U(1), only one 
renormalizable coupling with the modes of the standard model is allowed by the 
symmetry, namely the coupling with the Higgs doublet of the form /-2~2. This 
coupling (unless it is tiny) is in contradiction with the existence of our world being 
described by the gen 4 x SU(3) x SU(2) x U(1) universality class and should there- 
fore be discarded. If the mode 1 has mass - l - t  it will only play a role during very 
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early cosmology, for example in higher dimensional models of inflation [6]. In 
contrast, if this mode remains light it possibly can also influence late cosmology and 

may  be related to the fate of the cosmological constant. In this paper we investigate 
this latter scenario. 

As we have already mentioned the very assumption of our world being described 
by a gen 4 x SU(3) x SU(2) x U(1) universality class implies that the product l M  w 

must  be very small. There are in principle two possibilities for the asymptotic 
behaviour: either l M  w ---, 0 or l M  w approaches a very small constant. In both cases 
the small value l M  w implies the existence of a gauge hierarchy! In a sense, the 
gauge hierarchy problem is now turned upside down: We do not start from a short 
distance theory and try to explain the occurrence of small mass scales. We rather 
start  f rom the observed standard model with scales A Qc D and M w and try to 
describe how the other degrees of freedom of a more fundamental theory decouple 
as a result of dynamics. One may wonder if the assumption of a gen 4 x SU(3) x 
SU(2) x U(1) universality class also implies a solution to the cosmological constant 
problem since for l ---, 0 gravity should decouple and the ground state should be flat 
Minkowski space. There is unfortunately no such automatic solution of the cosmo- 
logical constant problem. Since M p -  l 1 the curvature scalar /~ will indeed be 
proport ional  lZm  4 with m some suitable scale of the low energy model. It  vanishes 
for l ---, 0 as it should. But a value m - M w gives a value for /}  more than 50 orders 
of magnitude bigger than observed. Additional physics is therefore needed for an 
understanding of the smallness of the cosmological constant. We will study this 
question in detail. 

To summarize this discussion we hope that we have convinced the reader that the 
potential  V ( ~ ,  l) can never be derived from the standard model alone. Its proper- 
ties reflect the way how our observed world emerges from some more fundamental 
theory. Our study therefore needs a guess how the decoupling of the irrelevant 
degrees of freedom might be realized. This situation has an important consequence 
for our understanding of cosmology: The potential V(qSg, l) can crucially influence 
even late cosmology, but it cannot be determined from covariance arguments plus 
standard model physics alone. Additional unknown physics is needed and we should 
not be too surprised if the way how the standard model arises from a fundamental 
theory leads to observable deviations from the standard hot big bang cosmology 
even at a late stage of its evolution! 

In sect. 2 we give the action for the coupled system of a low energy degree of 
freedom q3 (which we take the scalar doublet), the physical cutoff scale X = l -  1 and 
gravity. We derive the coupled system of field equations in presence of matter or 
radiation. We concentrate on the special case of a Roberson-Walker metric with 
k = 0. In sect. 3 we discuss as a first most simple example for a nonvanishing 
potential  the asymptotic solutions of the Brans-Dicke theory with cosmological 
constant. This corresponds to a potential V(~Po, l )  = V o for O V / O ~ ( ~ o ,  l) = 0. In 
contrast  to the unacceptable exponential behaviour of the scale factor a ( t )  for 
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standard cosmology with cosmological constant, we find now a power law expan- 
sion for a ( t )  even for V0> 0! The Hubble parameter decreases like 7/t -1. This 
demonstrates the possible drastic differences between cosmologies with fixed M e or 
with M e - X in case of a nonvanishing potential. A nonzero V 0 is much less harmful 
if the Planck mass is given by a dynamical degree of freedom. 

In sect. 4 we develop an important alternative language for the description of our 
models which is related to Weyl scaling. This version is formulated in terms of ratios 
like (P/X, g ~ / X  z, R / X  2. The Planck mass appears now as a constant. In this 
version the short distance degree of freedom with properly normalized kinetic term 
is o -  In X. Also the effective potential is modified. It has a typical exponential 
dependence on o. The description of cosmology is closer to a standard gravity 
theory in this language. The new physics associated with the dynamical Planck mass 
appears now in the specific form of the effective potential. Of course, the Weyl 
scaled formulation is strictly equivalent to the formulation of sect. 2. In sect. 5 we 
formulate criteria for a realistic overall behaviour of cosmology based on the 
observed properties of late cosmology and on the successful description of nucleo- 
synthesis and background radiation by the standard hot big bang model. We discuss 
the solutions of sect. 3 with respect to these criteria. More general potentials and the 
corresponding cosmologies are discussed in a subsequent paper [7] with emphasis on 
the fate of dilatation symmetry [8]. 

2. Variable short distance scale 

As a convenient formalism for the discussion of this paper we will use the 
effective action for the coupled system of the Higgs doublet ~, the short distance 
length l and the graviton g~. These fields may be considered as background fields. 
The effective action is thought to be obtained in the usual way by integrating the 
quantum fluctuations in presence of sources and performing a Legendre transforma- 
tion. (Of course, for the gravity sector this assumes the existence of a consistent 
quantum theory of gravity.) We neither know the fundamental theory nor are we 
able to solve a complex quantum theory. Both would be necessary to compute the 
effective action. For our discussion we mainly use the symmetry properties of the 
effective action, scale arguments and a few qualitative assumptions on the l 
dependence of the effective potential. This will be sufficient to establish the 
asymptotic behavior of cosmology. The cosmological equations are the classical field 
equations obtained from a variation of the effective action. Our treatment can easily 
be generalized to include other degrees of freedom of the standard model as for 
example the effective o-model for QCD at small momentum. Alternatively, one can 
imagine that the QCD degrees of freedom are integrated out and their effects 
included in the effective action. We will adopt the latter approach in order to keep 
the discussion simple. 
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We write the effective action in the form 

s=sO...~ S M, 

s°= -fd,xgl/2{l-2k-4o t-,aja,t-aja ep+ v(+, l)}. (2.1) 

By our assumption we should obtain a standard renormalizable SU(3)× SU(2)× 
U(1) field theory including the weak doublet for l << Mw 1. In this limit S should 
become the corresponding effective action for q~ on flat space with S O containing 
the standard kinetic term and the effective potential V. In particular, V should 
remain finite (or diverge at most logarithmically for l ~ 0). It should therefore not 
contain terms - 1  -p, P > 0. Gravity is a nonrenormalizable interaction, and its 
coupling, Newton's "constant", should vanish for l ~ 0. We normalize l so that the 
coefficient of the curvature scalar in S O (which is the inverse of Newtons "constant" 
divided by 167r) is 1-2. We want tc consider the physical cutoff length 1 as a 
dynamical degree of freedom and there should be a kinetic term for l. The most 
general term not involving more than two derivatives would be f ( l ,O)O~,la"l .  
Neglecting the dependence on q~ the only possible function not involving mass scales 
is f - 1 - 4 .  (If l is interpreted as an internal length scale of a higher dimensional 
theory, kinetic terms - l -4~ , l a~ ' l  are indeed obtained from dimensional reduc- 
tion of invariants with dimensionless couplings.) In order to ensure stability of 
Minkowski space for l ~ 0 we require 

> 3 ( 2 . 2 )  
2" 

(This condition will become more apparent later.) The effective potential V may in 
general depend on l and we will discuss various possibilities. V is the only piece in 
S o which could contain mass scales. According to our assumptions V either contains 
no mass scale at all or its mass scales are much smaller than the Planck mass. In 
general, the effective action will only be approximated by S o and we collect all other 
pieces in S M. S M contains all higher derivative terms (including non-local terms) in 
the effective action as well as (~a dependent) deviations of f ( l ,  ep) from 4~01-4. We 
also note that for cosmology the effective action has to be evaluated on a back- 
ground with nonvanishing entropy, for example in thermo-dynamical equilibrium at 
temperature T. We formally include all such effects either in V or in S M. Both V and 
S g may therefore in general depend on other (time-dependent) functions char- 
acterizing the state of the universe, like temperature T, energy density 15, pressure/3 
or classical expectation values of other fields. 

We may bring S o into a more standard form by using 

X = / 1 ( 2 . 3 )  
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For the doublet field ~ we write 

eP(x)=exp(ia(x) 2 )gP(x) (2.4) 

with ¢~(x) the (real) modulus of ~. We will neglect the degrees of freedom or(x). The 
effective action S O for X and ¢~ reads 

S O= - fd4xg,1/2{X2k-4o:O~xO"x-O.gaO"~+V(~,X)}.  (2.5) 

The field equations are 

1 OV 
~;~ + 2 O~ - #qo, (2.6) 

1 OV 1 1 ~ 
- -  - -  - - ~ X  

X;~ + 8o: OX + ~ Rx= 4o: ' (2.7) 

/•ttv 1 - ~ 1 ~ 

- ~ R & , =  2X2 (7% + T a + Vg~,, + g : ) ,  (2.8) 

~X-- ~ , -  -4~oX;pX;Pg~, + 8O:X;~,X;, + 2(X2);~. - 2(X2);Ppg~,,, (2.9) 

~;oqo; g~. + 2~;~ff;.. (2.10) 

Here we define 

3S M 
/~y = 2~ 1/2 3 ~  , 

3S M 
~cp = 1 ~ - 1 / 2 _ _  

3S M 
~x= ½ g - a / 2  (2.11) 

3X 

These quantities contain in particular the effects of incoherent excitations (entropy). 
They fulfil the identity 

7~M~'";, + 2X;~'~ x + 2ff;~*q ~ = O. (2.12) 

We may call 7~/~ the energy-momentum tensor of matter and note that it is 
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covariantly conserved only if the fields if, X are static or their associated ~7 are zero. 
Contraction of (2.8) gives the useful identities (with 7 ~M= 7~M~,) 

1 
{~M+ 4 V -  2%0 % "  - p -  8~oX;oX ;p-  6(X2) Pp} (2.13) 

2X2 

OV 
(6 + 4~0)(X 2) ;° 0 = 7 ~M + 4 V -  2~;p+; p - X ~ -  x . (2.14) 

For oa ~ - 3 the kinetic term for X 2 vanishes and X ceases to be an independent 
degree of f r e e dom-  it would then be determined as a function of ff by the 
vanishing of the right-hand side of (2.14). We note that for V independent of X the 
source term for [-IX2 is the trace of the energy momentum tensor ;r~ + ~M + Vg.~. 

Let us now consider an isotropic and homogenous universe with the usual 
Robertson-Walker scale factor a(t):  

g+=l, g,j= -a=(t)£j, +=+(t), x=x(t), 

7~M= Pgoo, ~Sg= -/3g,j, q,v = cT+(t), 4 x = qx( t ) .  (2.15) 

Motivated by the success of inflationary cosmology we will further assume that ~ 2 
can be neglected compared to/~2 = (a/~7)2 up to the present time (k = 0 universe). 
In addition we suppose (for late cosmology) that 7~ M is dominated by incoherent 
matter fluctuations with 

p = ( X n - 1 ) ~  

and n = 3 (n = 4) for the matter 
introduce 

This leads to the field equations 

f i 2 =  1 
6,~ 

dominated (radiation 

4 , = x  2 , 

q+= X -x 
~Tq- 

~ 2 

v++:+: 7- 

p + n/lt5 = - 2qSq'v - 

- 6 / 1 ~  + ~5 ) ,  

2~o~q + , 

_ .  1 3 V  
+ 3Hgp + - ~ ,  

2 Off 

(2.16) 

dominated) period. We 

(2.17) 

6+4¢0 4 V + ( 4 - n ) t S - 2 ~  2-2~b =q+ .  O] + 3/4~ (2.18) 
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3. B r a n s - D i c k e  theory with cosmolog i ca l  constant  

As a first simple example for cosmological solutions we consider the case where 
the potential V is independent of X. In addition we assume that q~ is settled at a 
corresponding minimum of V so that q5 = 0. The value of the potential at its 
minimum, Vo, plays the role of a cosmological constant. We also take q x =  ~ff = 0 
and the energy-momentum tensor for matter is therefore conserved. For a radiation 
dominated (n = 4) or matter dominated (n = 3) period the field equations read 

/ 7 2 = v  ° t~ '~4 ;2 
- -  + - -  + 4'2 /1 (3 .1 )  
64' 64' 6 4' ' 

t~ + n/tt5 = O, (3.2) 

1 
q) + 3H~ 6 + 4~0 {4Vo + ( 4 -  n)tS}. (3.3) 

For  V o = 0 these are the field equations of the Brans-Dicke theory [2, 3]. 
Here we are interested in solutions which approach asymptotically for large t the 

evolution 

IQ = f l t -1 ,  ~ = ao t~ . (3.4) 

Conservation of the energy momentum tensor (3.2) immediately implies 

= pot -"~ .  (3.5) 

For positive (negative) ~ the scale factor 6( t )  expands (shrinks) and t5 decreases 
(increases) whereas for ~ = 0 both 6 and t5 are constant. For negative ~ the universe 
is asymptotically t5 dominated (V o can be neglected) whereas ~ > 0 leads to a V o 
dominated universe (for V 0 # 0). For solutions with ~ = 0 the ratio of matter density 
and cosmological constant po /Vo  goes to a constant. 

The evolution of 4' depends critically on n, ~ and the sign of V 0. For n = 4 or 
t5 = 0 (V o dominated universe) eq. (3.3) has the solution (for ~ :g + 1) --  3 

1 
4' = 4'0 q- 4'1 t l  3~ q_ (1 -t- 3~)(3 + 2~0) V°t2" (3.6) 
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One finds the following asymptot ic  behaviour for n = 4 

lim + ( t ) =  

17o t2 
f o r ~ >  - ½ ,  17o>0 

(1 + 3~)(3 + 2*0) 

Vo ~t21n( t / t o )  for ~ - ~, V o > 0 

+ i t  1-3~ for ~ < - ½  or for ~ < ½, 

qJlln(t/to) for ~ - 7 , -  1 V o = 0 

q~o for ~ > ~, V o = 0.  

6 5 5  

Vo=0 

(3.7) 

For  negative V o and ~ >/ - ½ there is no asymptotic  solution of the form (3.4) since 

qJ is by  definit ion positive. For  the matter  dominated case n = 3 one finds similarly 

lim qJ(t) = 

Vo t2 
for ~ > 0 ,  V 0 > 0  

(1 + 3~)(3 + 2*0) 
1 2 (Vo + 

for ~ = O, V o >  - 10 0 
(3 + 2*0) 

Pot2-3~ 
for ~ < 0 or for ~ < ~, 

(2 -- 3~)(6 + 4*0) 

q~lln(t/to) for ~ = ~,2 V o = 0 

o for ~ > 2, V o = 0 .  

Vo=O 

(3.8) 

There  is no  H = ~t -1 asymptotic  behaviour for positive ~ and negative V o. 

Finally, possible solutions must  fulfil (3.1). Depending on *0 and Vo, we find the 
following types of solutions: 

1 (i) Vo>O, ~ >  - ~ ,  n = 3 o r 4 :  

= .0 + 7,1 V o dominated,  ~ - t 2 . 

(ii) V o > 0, 3 < .0 ~ 1 2~  n = 4 "  

Po 3(1 + 2*0) 
~ = 0 ,  - - =  - - ,  ~ - t  2. 

V o 3 + 2 * 0  

(iii) V o >  0, - 1  < .0  ~< - ½, n = 3 

or V o < 0  , 3 < * 0 <  - 1 ,  n = 3 "  

17o+ Po *0 
~ = 0 ,  - -  = ~ - t  2. 

4Vo + Oo 3 + 2*0 ' 
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(iv) V o arbi trary,  - ~ < ~ < - 1, n = 3 

or V o = 0 ,  ~0> _ 4  3~ n = 3 "  

2(1 + co) 
3to + 4 ' ¢~-donfinated, # ~ t 2 - 3 ~  . 

(v) V 0 = 0  , 3<¢0 ,  n = 4 :  

= 1, ~b = 2p0. (3.9) 

There  is a solution similar to (v) for V 0 = 0, n = 3, ~0 > - 3 with ~ = 2 provided the 
a sympto t i c  behaviour  of q~ is not  the logari thmic behaviour  of  (3.8) but  rather  ~b 
goes to a cons tant  ~P0 = 3 ~P0- N o  solutions of  the type (3.4) exist for n = 4, V 0 < 0 or 
for n = 3 ,  V o negative and ~ > / - l o r  V 0 positive and - 3 < ¢ o ~ < - 4  or ¢ o = - 1 .  

In  order  to derive these solutions, we have assumed that  ¢~ is t ime independent .  
We show in the appendix  that more  general cosmologies with 

q5 - t ~, X - t ~ (3.10) 

can be  m a p p e d  by  field rescalings and corresponding rescalings of  ¢o and V onto  
cosmologies  where ~ is asymptot ical ly  constant.  (This is not  possible for fi = fl and 
we will discuss this case in detail in ref. [7]). Using this freedom, our assumpt ions  
for  the above  Brans-Dicke solutions consist in the X independence of V o in the 
appropr ia t e ly  scaled version. 

4. Weyl scaling 

Before discussing these solutions (and other more  realistic scenarios) let us note 
that  there is another  useful picture of our coupled system where Newtons  constant  
is kept  fixed. We may  introduce an arbi t rary mass  scale M and scale all fields by  
appropr i a t e  powers  of x / M :  

g,~u ~ W 2g~ v 

gl/2 _=_ W - 4 ~ 1 / 2 ,  

k = w - 2 (  R - 6 ( I n  w ) ; ~  - 6(ln w ) ; ' ( l n  w ) ; ,  },  

w = M / X .  (4.1) 

Choos ing  M propor t iona l  to todays observed Planck mass  M e 

M 2 =  M~ 
16~r (4.2) 
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one obtains the standard form for the gravitational interactions with fixed Newton's 

constant: 

M2 M 4 } 
s ° =  - f d 4 x g ' / 2  M 2 R  - (6 + 4~o)M2x-2X;"X;, - -~5-~;~; ,  + ~ V . (4.3) 

Similarly we rescale the scalar doublet q5 

95M= ep = w~5. (4 .4 )  
X 

(Note that 9) is now the ratio between q5 and X times M and the expectation value 
of the Higgs doublet is therefore measured in units of the Planck mass normalized 
to today's value.) The kinetic term of X involves derivatives of In X and we define 

o = M l n ( x / M )  = - M l n ( lM) .  (4.5) 

In this picture, the action reads 

S O = - f d 4 x g  ~/2 M 2 R  - (6 + 4¢o)o;~'o;~,- ~-5o;~'o;, 

-¢p;"q~;,-2-~qo;,o;" + W } ,  (4.6) 

o ) m 4 
W = e x p  - 4 ~  V = - - ~ - V .  (4.7) 

For  ~0 > - 23- and neglecting terms - ~ p / M  this is the standard action for gravity 
coupled to two scalar fields q~ and o with potential W(% o). (The factor 6 + 4¢0 can 
be absorbed by a trivial rescaling of a.) 

At this point it may seem that our discussion will not lead to anything new. 
However, the possible new physics is hidden in the specific form of the scalar 
potential W. We choose a definition of M so that today's value of o is zero. The 
ratio e p / M  should be small today. The potential W is today equal to V. Assume now 
that the cutoff length l was larger in the past than today. In this case o was negative 
and W was larger than V by a factor (/past,//today) 4. Similarly, if V has a minimum 
for a given value of q5 we find from (4.4) that ep was in the past much larger than 
q5 = %oaay- If at some moment X was of the order qS, our rescaled version leads to ep 
of the order of Mp for this time. Cosmologies with l decreasing from ~-~ to M 1 
correspond in the rescaled version to an expectation value of 9) decreasing from M 
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to ~! It may  be instructive to see how given terms in V appear  in W: 

~f~4 _+ ~ 4 ,  

/.2c~2 ~ / ,2exp(  - 2 o / M )  ~92 

e --+ e e x p ( -  4 o / M ) .  (4.8) 

A cosmological  constant today of the order aft 4 would appear  to be of the order  
a M  4 for X = ff and similarly a mass term today/ .2 __ f~2 appears of the order  M 2 for 
X = q~. If we come back to the example of the last section with V depending only on 

and assume that ff has settled at OV/O~ = 0 we find 

OW 
- -  ~ 0 ~  
Ocp 

OW 4V 0 ( 4 o )  
O~- - ~ -  exp - ~ . (4.9) 

For  positive (negative) V 0 there is a driving force which tends to increase (decrease) 
o. The  mass matr ix  (with ½02V/0~2 = / ,2 )  is (up to normalizat ion of o)  

1 32W { 20 ] 2 
2 O ~2 exp ~ - ~ -  ]/,  , 

l O2W e x p ( - 2 o ]  f~2 2 8 e x p ( - ~ )  V° 

2 O~p3o - exp - ~ / ,  . (4.10) 

For  o = 0, (ep 2 < <  M 2) one finds one eigenvalue about  /,2 and the other 8Vo/M z. 
Excitat ions above the cosmological background comprise the s tandard Higgs doub- 
let ep plus an additional long range scalar field o. For  V 0 = 0 this is the massless 
Brans-Dicke scalar. For  V 0 = A4QCD the interaction mediated by excitations of o 
would have a typical range 

8Vol -- 1 /2  

l o = M2 ] = (2" 10 T M  eV) 1 = 10 km.  (4.11) 

We will come back to this interaction in more detail in ref. [7]. 
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The  field equations from (4.6), neglecting the q~/M corrections to the kinetic 

terms*, are 

1 OW 
cp;~'~, + - q~ 

2 acp 

1 OW 

' ~ 6 + 4 ~ ) ° ; ~ +  2 Oo 
q° ,  

1 1 
R ~ - ½ R g ~ , -  2M2 (T~ + T~ + Wg~ + T dg) = " ~  T~., 

T~ ° =  (6 + 4 ~ ) ( 2 0 ; ~ 0 , , -  o;°o;pg,~), 

T~ = 2q9; cp;~ P - cp; ep;pg~,. (4.12) 

The  quantit ies q% q° and Tiff f are defined similar as in (2.11) 

~ S  M ~ S  M ~ S  M 
_ _  q~O 1 1 / 2  , qO= 1 1 / 2  (4.13) 

T ~  = 2g -1/2 8g~, ~ , = ~g Sop ~g 8o 

and one has the relations 

m 2 
W T/zv, T d -  x C = 

q~ = w3q~ , 

1 
qO = w3qX + 2 M  T¢~Mg~" (4.14) 

If  we use again the s tandard form of the Robertson-Walker  metric for a homoge-  
neous and isotropic universe (g0o = 1, gij = - a 2 ( t ) g , j )  the rescaled formulat ion of 
this section is related to sects. 2, 3 by a coordinate t ransformation of the time 

variable (with /" the time coordinate in sects. 2, 3) 

d [  M 
- w .  (4.15) 

dt  X 

The  space-like comoving coordinates x i need not  to be rescaled and one has for the 

3 * This approximation is valid for (ep/M) << ~o + 32 . For ~ = - ~ one may use the field equation from 
(4.3) to express X as a functional of ~ before choosing an appropriately scaled field % 
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scale factor and the Hubble parameter 

,q= wa ,  

t t =  w - i l l +  w 2~. (4.16) 

Similarly, one finds for the energy-momentum tensor 

= w-4D, fi = w - 4 p .  (4.17) 

With these scalings (and noting (X2);/tv ~ (X2);~v q-4X;,X;,-  2XO, x;og~, etc.) one 
verifies that the field equations (2.18) are equivalent (up to op/M corrections) to the 
rescaled version 

1 
H 2= 6M 2 ( E + o ) ,  

E = W +  qb 2 + (6 + 4 o 9 ) 6  2 , 

= - 6 H ( E -  W )  - (~  + n H o ) ,  

+ nHp = - 26pq~ - 26q ° ' 

1 O W  
~ + 3 H q b +  _ _ - q ~ O ,  

2 0~ 

(6 + 4o9)(6 + 3Hd) + 
1 OW 

2 Oo q°" (4.18) 

Here E is the total energy of the scalar fields qv and o and E -  W is the kinetic 
energy part. 

We can reexpress the equation for energy momentum conservation by the original 
~7~, ~x (2.11): 

{ ) + n H o -  ( n - 4 ) ~ O  = - 2 e x p  - ( q b ~ ° + d ~ x ) .  (4.19) 

For  ~7 • = qx = 0 we note for the radiation dominated epoch (n = 4) that the energy 
momentum tensor for matter is conserved in both formulations, whereas for n = 3 
this is true only for 6 = 0. In addition to the possibly unusual form of the potential 
W this is a second important difference in comparison to standard cosmology. This 
deviation f rom energy momentum conservation is related to the time dependence of 
particle masses which dominate in the matter dominated epoch. In fact, if the 
particle masses depend on o, m = m(a) ,  there will be an additional contribution to 
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f rom the change in m Om( ) 
At5 = Oo d . (4.20) 

If  for the unscaled version the particle masses would be independent  of X and 95 
these masses would read after Weyl scaling 

rn = r~w = r~ exp( - o/M) .  (4.21) 

This explains the additional term on the left-hand side of eq. (4.19). In a realistic 
theory  particle masses will depend on 95 and possibly also on X so that we expect 
nonzero  ~ and ~×*. 

We  finally indicate the Weyl scaling for additional scalars ~-, fermions ~b and 
gauge fields A, :  

T ~ W'~ ,  

+ = w3/2q;, 

A~ =.,~,.  (4.22) 

It  is easy to check (with (4.1) and (4.4)) that all (gauge + gravity) covariant kinetic 

terms are t ransformed into themselves plus additional terms involving derivatives of 
o. Dimensionless couplings like the gauge couplings, Yukawa couplings and quartic 

scalar couplings remain unchanged under  Weyl scaling, whereas couplings with 

d imension  of  mass are scaled with an appropriate  power of  w (compare (4.8) and 
(4.21)). 

5. Conditions for realistic cosmologies 

Explicit solutions of the cosmological equations (4.18) or (2.18) depend on the 
fo rm of W(V) and may in general be quite complicated. Rough asymptotic  features 
are often more  easily obtained and we will concentrate on "realistic" cosmologies 
fulfilling a few criteria for their asymptot ic  behaviour. The first three criteria 
concern  the overall behaviour. We formulate them in a language with Newtons  
cons tan t  held fixed. 

(i) We want  to describe an expanding universe and require the asymptot ic  
behaviour  ( remember k = 0 by assumption) 

H = ~?t -1, ~ > 0. (5.1) 

* Even in the Weinberg-Salam model with standard cosmology there is a nonzero contribution 
q~0 = ap/c p from the ¢p dependence of particle masses. If the universe is dominated by massive 
neutrinos a is of the order one whereas for a baryon dominated universe a -- quark mass/nucleon 
mass. The presence of q~ leads to a p dependent shift in cp with qb - a/~2~p lt5. The correction to 
energy conservation is tiny today, z~k - kp/ep 4. 
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(Constraints on ~ may be derived from the deceleration parameter q0, or from the 
age of the universe, t o = ~l/Ho. ) 

(ii) The observed luminous matter density is today of the order H 2 M  2 (about one 
percent of the critical density). This should be no accident and we demand an 
asymptotic  evolution 

p ~ H 2 M  2 ~ t -2  . (5.2) 

(iii) There should have been a transition when atoms formed and the photon gas 
decoupled. This happened when the temperature fell below a typical ionization 
energy of hydrogen which is proportional he4% T D ~ 10-10% (We assume here that 

dimensionless couplings like the electromagnetic coupling constant e and Yukawa 
coupling h did not change much during the history of the universe.) If  the universe 
was once very hot with T of the order of cp we conclude that 0 must decrease faster 
than cp 4. The constraint for a powerlaw behaviour is 

~ t a ,  OL > l 
2" 

From (5.1) and (5.3) one obtains the relation 

I t = C ~  

(5.3) 

(5.4) 

This tells us immediately that no cosmology can determine both H(rp) and ~0 
simultaneously independent of time. If  the theory has no small quantity at all, the 
constant C must be of the order one. A value of a near - ¼ would give today's 
Hubble  parameter  near the observed value H 0 -- 2- 10 33 eW. (If a changes during 

the evolution of the universe, for example at the transition between radiation and 
matter  dominated period, one should use an appropriate mean value of a to predict 
H 0 as function of op/M.)  For a different from zero there is a time independent 
relation between the Hubble parameter and typical particle masses given by % On 
the other hand, todays observed value e p / M  = 10 -16 has no fundamental signifi- 
cance, but is rather due to the oldness of the universe. If in addition the ratio 
A QCD/qO is time independent, all small dimensionless quantities appear only as a 
consequence of the age of the universe and an old hypothesis of Dirac [1] would be 
realized. In contrast, for a = 0 the ratio ¢ p / M  must be a small quantity characteris- 
tic for the theory and is in principle calculable from its fundamental parameters. 
There is no time independent relation between H and particle masses. This is the 
case of standard cosmology. 

(iv) There are several observations [9] from which upper bounds on the time 
variation of Newton's  constant are derived. 

"• 
to 

IKI = ~< 10-1a /yr .  (5.5) 
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Actually, the above limits apply in cosmologies where typical particle masses are 
time independent. Assuming that A QCD/ep is constant, all particle masses are 
proport ional  to % They depend on time for a ~ 0. One therefore should replace 

d 2o~ 
x = -~  (cp2G)/co2G ,o = - - n  o . ~  (5.6) 

(A calculation in the picture with variable Newton's  "constant" leads of course to 
the same result. For a -- - ¼ one derives from (5.5) the bound ~/>__ 2 - 5.) 

Other constraints are based on the successful explanation of helium abundance in 
standard cosmology and the related prediction of the temperature of the back- 
ground radiation [3]. We assume that the observed helium abundance by weight 
(near 24%) is produced cosmologically when the temperature dropped below a 
typical nuclear dissociation temperature Ty characteristic for nucleosynthesis. The 
conditions that an appreciable amount of helium is produced cosmologically are 
best formulated in the picture where nuclear reaction rates are time independent. 
These reaction rates depend on two scales: The Fermi constant q5 -2 sets the scale 
for weak interaction rates, the neutron lifetime and also for the electron mass m e 
and the quark masses appearing in the neutron proton mass difference. On the other 
hand A QC D determines nucleon masses, binding energies and strong interaction 
rates. We concentrate on a time independent ratio AQCD/~ SO that the only 
difference f rom the standard picture is the possible variation of the Planck mass 

compared to q5 for a ~ 0". 
In the picture with constant q5 one has to compare typical weak or strong nuclear 

reaction rates with the relative change of temperature with time. 

T l p  
1./-?=-iT 1. (5.7) 

For  standard cosmology (a  = 0) the temperature range relevant for nuclear synthe- 
sis (101°-10 9 °K) corresponds to time scales between 1 and 10 2 sec. If ~52GN varies 
with time, the time scale for nucleosynthesis is multiplied (for ~ :g 0, and /~2 of the 
order O/X 2) by a factor 

( G ~ )  -1/2 -- X_._NNM, (5.8) 

where G y  and G o are Newton's  "constant" at the time of nucleosynthesis and 

today. 

* For ~/X --* const the standard picture is valid and we can replace the scale c} by % 



664 C. Wetterich / Cosmology (I) 

The scale factor x N / M  can be evaluated in either one of the pictures with 
constant q3 or constant M v 

~ 

M cpy t---N = ~0 ] " (5.9) 

(This assumes that ~ was constant before Weyl scaling. Again, a stands for an 
appropriate mean value between nucleosynthesis and today if the time evolution of 
~o has changed during that period and similar for/~.) The ratio t'N//'0 is of the order 
10 -15. Even small values of [/3[ give huge changes in the time scale relevant for 
nucleosynthesis. 

The cosmologically produced He abundance and associated abundances of de- 
uterium and 3He depend very critically on the time scale of the evolution of the 
universe [3]. If the time scale is moderately shortened the He abundance increases. 
For  X N~ M smaller than 10-1 to 10-2 it starts decreasing again and finally becomes 
tiny since there would not be enough time to produce helium before the temperature 
falls too low. For x N / M  > 1 the time of nucleosynthesis would be postponed and 
more neutrons could decay before. Already by an increase of the time scale by a 
factor 100 almost all neutrons would have decayed before He could be formed. 
Taking together the cosmologically observed abundances of 4He, 3He and d, 
possible deviations from the standard time scale must be small, typically in the 
range of the effect of one neutrino species more or less contributing to the density of 
the universe. Nucleosynthesis can be regarded as an extremely good test on the time 
evolution of q02G N. Any cosmological explanation of nucleosynthesis gives stringent 
conditions: 

(v) The time scale during nucleosynthesis should be modified by less than 10% 
compared to standard cosmology with three neutrino species. This leads to 

I/~1___ 3 .10  3. (5.10) 

The same condition holds for a. A value a --- - 1 required for Dirac's small number 
hypothesis is clearly inconsistent with cosmological nucleosynthesis. Cosmological 
nucleosynthesis suggests that the ratio ep/M ((P/X) should become almost constant 
asymptotically, with a =/~ = 0 between the time of nucleosynthesis and today. 

(vi) The observed abundances of 4He and 3He + d give information on the 
baryon density at the time of nucleosynthesis. This can be used to predict today's 
background temperature T O of the photon gas. For T - a  -1 during the radiation 
dominated period one finds the correct order of magnitude for T 0. For n = 4 the law 
aT = const follows from the conservation of T,~. One concludes that the right-hand 
side of (4.19) must be very small during the radiation dominated period. We require 
(with indices N and C for nucleosynthesis and combination of atoms) 

TNaN 
<~ Tca~ c <~ 10. (5.11) 
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Having  established criteria for realistic cosmologies we can apply  them to the 
solut ions of  sect. 3. It  is convenient  to translate these solutions to the picture with 
cons tan t  Mp.  For  H = ~/--1 and + = +0 ~29 one obtains ( / 3>  - 1 )  

H = ~ t  - 1  ' 

~+~ 
l + ~ '  

t - / - ~ +  l ,  

x - t  ~, 

8 -  (5.12) 

We  note  tha t  so lu t ions /~  - / ' - 1  are t ransformed into H - t 1 if X is propor t iona l  to 
/'~, /3 > - 1. Even a contract ing universe in the unscaled version (~ < 0) will appea r  
as expand ing  after Weyl scaling provided /3 > - ~ !  For  realistic cosmologies one 
should have p - t -2. F rom (4.17) and (5.12) one finds, with t5 - / ' - 7  

p -  t (4/~+~)/(1+/~). (5.13) 

Fo r  the generalized Brans-Dicke solutions of sect. 3 one has "~ = n~. One finds 
P - t - 2  for  cases (ii), (iii), (iv) and (v) of  eq. (3.9), whereas for case (i) p decreases 
faster  than t -2. It  is interesting that  even models  with nonvanishing cosmological  
cons tan t  (V o = 0) lead to cosmologies with H - t 1, p _ t -2 ,  in sharp contrast  to 
s t andard  gravi ty  where a nonvanishing cosmological  constant  implies an exponen-  
tial behav iour  for H and p. 

A solut ion with c~ - 7 ~ reads after Weyl scaling 

~ D ~ t  ff , 

S-fi 
l + / ~  

(5.14) 

Condi t ion  (5.3) implies (for ~ = 0) t ha t /~  must  be smaller than 1. This condit ion is 
violated for  all solutions except those with V o = 0 and ~ > 0 (cases (iv) and (v)). This 
is the s tandard  Brans-Dicke theory. We could think about  a solution start ing with 
(3.9)v) in the radiat ion dominated  period which makes  a transit ion to the asymp-  
totic solut ion (3.9)iv) once the tempera ture  has decreased sufficiently to enter  the 
ma t t e r  domina ted  epoch. This would be consistent with the three condit ions 
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(5.1)-(5.3) for the overall behaviour of realistic cosmologies. During the radiation 
dominated period one has fi = 0 and energy momentum is conserved. Conditions (v) 
and (vi) are fulfilled. However, for the matter dominated period the condition of 
(almost) vanishing fi requires ~ to be very near 2. This is the asymptotic value for 
0~ ~ ~ .  As is well known, the Brans-Dicke theory converges to standard cosmology 
in the limit 0~ ---, ~ .  It  is compatible with observation for ~0 > 500. 

For  the Brans-Dicke type solution (3.9)ii) with V 0 > 0, n = 4 the coupled system 
of gravitation, scalar singlet X and radiation would lead to realistic cosmology. The 
only problems come from the variation of the ratio (P/X. It is not difficult to 

construct potentials where (P/X instead of ff reaches asymptotically a constant 
value. Then a positive cosmological constant V 0 > 0 is compatible with the power 
law behaviour of standard cosmology. We describe such a model, with adequate 
generalizations and an extension for the matter dominated epoch, in a subsequent 
paper  [7]. There we discuss the fate of dilatation symmetry. We will see how this 
symmetry is intimately related to the behaviour of the theory under variation of a 
physical cutoff length l. 

Appendix 

The action (2.5) remains form invariant under the following rescaling of fields 
(with arbitrary scale M and 6 > - 1) 

x = ( 2 / M ) " 2 ,  

if) = 

~,~,~ = ( x / M  ) - 28-gf,, . (A.1) 

This corresponds to taking instead of l some power of l as basic short distance 
length scale. Expressing the action in the new fields X, ~, g, ,  leads to a rescaling 
o~ ~ ~, V ~ V according to 

3 + 2~ ]1/2 
= 1 + 8, (A.2) 

~3+2~o] 

V =  ~ V. (A.3) 

If  some cosmology leads to an asymptotic behaviour X - t ~, ~P - t s  with ~ v~ fi one 
can choose a scaling with 

c7 
8 = fi _-----~ (A.4)  
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in o rde r  to  ob ta in  ~ asympto t ica l ly  constant .  If  ff ~ / 3  we can always use this 

scaling, so tha t  the asympto t ic  behav iour  is either ~P/X --' const  or  q~ ~ const.  This  

def ines  ~o and  V unambiguous ly  except  for ~ / X  ~ const.  W e  note  that  the condi -  

t ion w > - 3 remains  conserved under  rescaling. 
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