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We discuss the cosmological constant problem in the light of dilatation symmetry and its 
possible anomaly. For dilatation symmetric quantum theories realistic asymptotic cosmology is 
obtained provided the effective potential has a nontrivial minimum. For theories with dilatation 
anomaly one needs as a nontrivial "cosmon condition" that the energy-momentum tensor in the 
vacuum is purely anomalous. Such a condition is related to the short distance renormalization 
group behaviour of the fundamental theory. Observable deviations from the standard hot big bang 
cosmology are possible. 

1. Introduction 

Theor ies  wi th  only dimensionless  pa ramete r s  are descr ibed by  a d i la ta t ion  in- 

va r i an t  (classical)  action. This symmet ry  consists of a c o m m o n  mul t ip l ica t ive  scaling 

of  all  f ields according to their  dimension.  The  " f u n d a m e n t a l  cons tan ts"  with 

d imens ion  of  mass,  like the electron mass m e and the Planck mass  Mp,  are typica l ly  

i n d u c e d  b y  vacuum expecta t ion  values (vev's) of  scalar  fields. In  general ,  such vev's 

m a y  vary  as a consequence of cosmological  evolut ion and  the observed values of the 

co r r e spond ing  " f u n d a m e n t a l  cons tan ts"  ob ta in  only as a result  of asympto t ic  " l a t e "  

cosmology.  Q u a n t u m  f luctuat ions may  or  may  not  conserve d i la ta t ion  symmetry .  In  

the  second  case d i la ta t ion  symmet ry  is anomalous  and an intr insic  scale m is 

i n t roduced  b y  quant iza t ion  (m is p ropor t iona l  to the renormal iza t ion  scale/z) .  

In  ref. [1] ( thereaf ter  called I) we have s tudied cosmologies  with a var iable  

N e w t o n ' s  " cons t an t " .  In  these models  M e is genera ted  by  the vev of  a scalar  singlet 

X and  m e is p ropor t iona l  to the Higgs double t  q~ of  the s tandard  model .  As  an 

a p p r o x i m a t i o n  to the effective act ion we used a Brans-Dicke  type theory (I, (2.5)) 

s ° =  -fd4xgl/2{x2k-4,~O,xO"x-O,~O"#+V(#,x)}. (1.1) 

The  dynamics  of  these models  depends  cri t ical ly on the form of  the effective 
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potential  V. In particular, all effects from anomalies will appear through V. (For a 
more general situation see sect. 3 and the appendix.) 

Consider first the case where the fundamental quantum theory does not lead to 
any intrinsic mass scale m (dilatation symmetry is anomaly free). Then physics can 
only depend on scale ratios like (P/X, but not on c~ and X separately. In particular 
the effective potential must have the form V =  ~4o((p/X ). The theory has a global 
dilatation symmetry corresponding to a constant scaling of all fields according to 
their dimension. (In this context the inverse metric ~"~ has the same scale dimen- 
sion as X2.) Since we observe the appearance of scales in our world, dilatation 
symmetry must be spontaneously broken. Any nonzero vev of a scalar field induces 
such a spontaneous breaking. The scale characteristic for spontaneous dilatation 
symmetry breaking may be identified with the largest vev of a scalar. In our case it 
is given by X and should be in the vicinity of Mp. A spontaneously broken global 
symmetry leads to a Goldstone boson, the dilaton, which should only have deriva- 
tive couplings. These couplings are suppressed by powers of M~ 1. A shift in the 
dilaton field corresponds to an overall change of all scales. In a theory where only 
scale ratios are measurable the overall scale plays the same unobservable role as the 
phase in a theory with global U(1) symmetry. In our model the dilaton can be 
identified with the field o - in X. 

A fundamental  quantum theory without intrinsic scale m should be finite. As an 
alternative one may consider an asymptotically free renormalizable theory which 
has a running dimensionless coupling constant. Even though the classical action 
may not have any scale parameter, a renormalization scale/~ must be introduced in 
the quantization procedure. This leads to the appearance of an intrinsic mass scale 
m (which plays the same role as A QCD in a pure QCD theory). Dilatation symmetry 
is said to have anomalies - it is not realized as a quantum symmetry. Nevertheless, 
for m much smaller than the scale X characteristic for spontaneous dilatation 
symmetry breaking, we can still consider the dilatation symmetric theory as an 

approximation.  The language of symmetry currents etc. remains useful, but the 
anomaly leads to some characteristic qualitative changes. The physical quantities are 

no longer independent of the dilaton vev since the overall scale "feels" the existence 
of an intrinsic scale m, even if the connection is only weak. As a consequence, the 
dilaton has not only derivative couplings. It  is subject to a driving force propor- 
tional to the dilatation anomaly, which is given by the anomalous trace of the 
energy-momentum tensor ~ .  It also acquires a small mass, typically suppressed by 
powers of mix .  Any vacuum solution with static constant X requires the anomaly 
to vanish. In general the anomaly depends on X- This governs the dynamical 
behaviour for X. As a consequence, the dilatation anomaly determines those 
qualitative properties of the effective potential which characterize the asymptotic 
evolution of cosmology. Our study of cosmologies with dynamical Planck mass in I 
is therefore intimately connected with the fate of dilatation symmetry. In this sense 
the present paper  should be understood as a logical continuation of I. Although our 
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t reatment of dilatation symmetry is essentially self-contained, we recommend read- 
ing of I for a more profound understanding of the spirit, formalism and notations of 
the present work. 

In sect. 2 we study the cosmology of scale free models (without dilatation 
anomaly). We find that late cosmology leads to the standard big-bang picture 
provided the potential V(~, X) has a nontrivial minimum. In this case the dilaton 
mode becomes irrelevant for late cosmology (in the limit where its coupling to 
matter  can be neglected). On the other hand, if V(95, X) has only a relative 
minimum with respect to ¢~ the cosmology looks like the standard model with 
nonvanishing cosmological constant. In sect. 3 we turn to models with dilatation 
anomalies. We formulate three conditions on the dynamics of the dilaton which are 
necessary for a realistic cosmology. The trace anomaly should vanish for some value 
of the dilaton field, O~(o0) = 0. For this value the dilaton mass should be positive. 
Finally, for the static vacuum solution with o = o 0 the trace of the energy-momen- 
tum tensor should be purely anomalous. If the dilaton fulfils these three conditions 
it is called a cosmon [2]. Its dynamics drives the cosmological constant to zero. In 

sect. 4 we establish the connection between the "cosmon condition" and the short 
distance behaviour of the underlying fundamental theory for models where intrinsic 
mass scales arise only from the running of dimensionless couplings. One finds that 
the trace anomaly for static configurations is given by the renormalization group 
equation for the effective potential, 0~=/~ OV/Ott. We discuss in sect. 5 the 
situation where this renormalization group equation is governed by an anomalous 
dimension, /~ OV/OI~ = A V. The cosmology for this case is investigated in sect. 6. It 
is characterized by a cosmological "constant '"  which evolves with time and is of the 
general type discussed in ref. [3]. Realistic cosmology is obtained if the anomalous 
dimension A is within a certain range. We conclude this paper in sect. 7 with a 
discussion of the cosmological constant problem. 

2. Models  without mass scales 

Let us first investigate models without intrinsic mass scale. The most general 
form* for the effective potential is 

v(~ ,  x)  = v ( ~ / x ) ~  4 = v ( x ) ~ '  (2.1) 

with v a (dimensionless) function depending only on the ratio x = Fp/X. Possible 
extrema of V with respect to ¢~ are determined by 

Ov ~ -3 OV 4 v ( x )  + - = 0 .  ( 2 . 2 t  

* The discussion of this section formally includes terms like ~2X2 or X 4. They are, however, at 
variance to the spirit of I. 
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If  eq. (2.2) has a solution, with q~ 4:0  the corresponding value of ~ must  be 

propor t iona l  to X. We therefore expect the existence of cosmologies where any 

change in X is accompanied by an appropriate change in ¢~ so that (P/X remains 

constant .  
This can be seen more easily by performing a Weyl scaling of the metric (I, sect. 

4). The rescaled potential now reads (o = M l n ( x / M ) ,  cp = ~ M / x  ) 

W (  cp, o )  = v(  ep /M )ep 4 = v(  x ) x  4M 4 , (2.3) 

x - - (2.4) 
X M "  

We note  that  W is completely independent  of o. Therefore o is a massless 
Golds tone  boson  which has only derivative couplings (compare (I, 4.6)). All particle 

physics depend only on the ratio x = ep/M. The scale M itself is arbitrary and one 
obtains  equivalent physics for any choice of  M. For  "quasistat ic" cosmologies with 
constant ,  Hubble  pa r a m e t e r / 4  one out of the three scales ~, X and /~ is irrelevant. 

Physics depends only on the ratios ¢P/X and H / X -  Thi.'s generalizes to evolutionary 

cosmologies  which depend in addit ion on ratios l ike /~ /X 2 etc. 

The  asymptot ic  behaviour of  "scale free" cosmologies depends on the possible 
existence of  a min imum of W which must  obey*  

OU 
x0-~X- x (x0)  = - 4v (x0 ) .  (2.5) 

If  eq. (2.5) has no solution, the field ¢p cannot  be asymptotically static and one is 

conf ron ted  with the problems of  cosmologies with varying q~2G N (similar to the case 

q0 - t ~ described in I, sect. 5). On the other hand, if a nontrivial minimum of W 
exists it is reasonable to assume that ep/M settles at x 0 at an early stage of the 
evolution of  the universe, leading to an asymptotic  behaviour with a = 0. Up  to the 
addit ional  Golds tone  boson ~ the cosmology is of the standard type. In particular, 
the value W ( x o )  acts as an effective cosmological constant.  Realistic cosmologies 

require V(Xo) to vanish or be very small. F rom the field equation (I, 4.12), 
(6 + 4w)o;".+ ~-(OW/Oo)2 = q°, we conclude that o approaches asymptotically a 
cons tan t  value (we assume here q ~ = 0) 

o = C 1 + C 2 e x p ( - 3 H o t  ) for H =  H 0 , 

o = C 1 + C2 tl 37 for H = */t 1. (2.6) 

In  bo th  cases it can be neglected for late cosmology. The asymptotic  value C 1 is 

* We disregard here the uninteresting trivial case of a minimum at cp = O. 
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irrelevant. In conclusion, scale free models can give realistic cosmologies of the 
standard Friedmann type provided the parameters of the model are such that the 

cosmological constant W ( x o )  vanishes and x 0 is very small (gauge hierarchy). The 
scale free version of the Brans-Dicke type action (1.1) differs from the standard 
model with fixed Newton's constant only by the presence of the Goldstone boson o. 
For  q° = 0 this is irrelevant for late cosmology. Despite its long range, observation 
of effects due to an exchange or production of this Goldstone boson may be 
difficult, due to its purely derivative couplings which are suppressed by powers of 
the Planck mass Mp. We note that for W ( x o )  = 0 realistic asymptotic cosmology is 
obtained for arbitrary ~0 (¢0 > - 3). This may seem puzzling. Inserting the asymp- 

totic value q5 = X o X  , the effective action (1.1) reduces to the action of the Brans-Dicke 
theory [4] without potential. Standard Brans-Dicke theory, however, is consistent 
with observation only for ~0 > 500. The difference comes from the coupling to 
matter.  In the standard Brans-Dicke theory the nucleon and electron masses are 
treated as intrinsic scales. For varying X the observable value of Newton's "con- 
stant"  G N - X  -2  changes with respect to particle masses. In contrast, a dilatation 
symmetric quantum theory implies that all particle masses must be proportional to 

X (e.g. m e - - q ~ -  X)" The observable ratios rn2eGy etc. are therefore static for 
asymptotic cosmology. In the formalism of I, sect. 2 the X dependence of particle 
masses leads to a nonvanishing right hand side of the scalar field equation (I, 2.7) 
for the matter  dominated epoch (~x 4= 0). In view of (I, 4.14) and (I, 4.19) this is 
indeed required for the decoupling of the dilaton mode from matter (q° = 0). 

It  is instructive to understand the Goldstone boson appearing in scale free models 
in terms of dilatation invariance. The action (1.1) with a scale free potential (2.1) is 
invariant under global scale transformations of the fields. 

fp -'+ eafp,  

X --+ e~x,  

g, uv --+ e -  2agt, v . (2.7) 

In the Weyl scaled version they read 

ep ---, ep , g ,  ~ g , , ,  

o --* o + a M .  (2.8) 

The field o is therefore the Goldstone boson which originates from spontaneous 
breaking of dilatation symmetry for any nonzero value of c~ or X*- It  is straightfor- 
ward to construct the conserved current corresponding to dilatation symmetry. 

* The true Goldstone boson contains an admixture of q~ to X of the order x 0. 
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Expressed in the Weyl scaled fields it reads 

Its divergence obviously vanishes as a consequence of the field equations for o 
derived from (I, 4.6). Of course, we could equivalently construct* the dilatation 
current from the original action (1.1): 

J~) = 291/2g""{(6 + 4~0)X O,X + q5 O,q5 }. (2.10) 

For a check of its vanishing divergence we can use the field equations (I, 2.6)-(I, 
2.8) and the identity for a dilatation symmetric potential 

OV OV 
X-~X + ~5-0--~ = aN. (2.11) 

On a manifold** parametrized by cartesian coordinates x ~ we can also formulate a 
particular general coordinate transformation 

Xg--~ e - a x  g, 

g~ .  ---~ e Z ~ g ~ .  ( 2 . 1 2 )  

The infinitesimal transformation is 

x t~ ...., X ~ + ~ = x t~ _ olx tL , 

~ = _ ~ x  Ox~ = a x  ~ 0 ~ ,  

= a ( x  x 0 x + 2)~, , .  (2.13) 

* For  a global infinitesimal t ransformation 8qo i = aO, q) i with ct constant  and Oi a differential operator  
or  a constant ,  and a Lagrange density £~0 containing terms with up to two derivatives of the fields %, 
the symmet ry  current  is 

0.£ p OoLP ) O ~  K ~' , 

J.=o,~, 0(0.%) ° v o ( o . 0 . % )  + a v ( ° , % ) 0 ( 0 . 0 ~ % )  

where K u is obtained c,'om 8 .~= a O,K t'. I r  ..~,." conventions the curvature scalar is 

k = g~og~o( 0. o~g~o - 0° o°g~0) + r ; og . O  - r ~ o 5  ~o 

The term - 6X 0,X in (2.10) is the contribution from the gravitational part  of the action. 
* * F o r  manifolds  with nontrivial topology cartesian coordinate systems can be chosen for the different 

coordinate patches separately. 
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Combining the transformations (2.7) and (2.12) gives another version of dilatation 
symmetry where the coordinates instead of the metric are scaled 

& ~ = a ( x  xO x +  1)~5, 6 X = a ( x  xOx + 1)X, 

a~,., = ax x Oxg,,. (2.14) 

It is adapted to a special coordinate choice (cartesian parametrization) and often 
used to study dilatation transformations on flat space. The corresponding symmetry 
current in flat space can be constructed from the energy-momentum tensor [5]. 

For  dilatation symmetric theories it follows immediately from (2.11) that any 

extremum of V(X, (p) can only occur for vanishing potential V(X0, q~0)= 0. The 
condition for a vanishing cosmological constant amounts therefore to the require- 
ment  that V has a minimum 

OV OV 
xO---(X°' ~o) = o~" (Xo, ~o) = O. (2.15) 

It  follows from the general form of the potential (2.1) that for any extremum at 
(X0, ¢P0) there is also an extremum at (e'~Xo, e%50). The potential must therefore 
have a flat direction. Conversely, a flat direction starting from the origin must be at 
V = 0. Flat directions arise when the potential depends only on one particular linear 
combinat ion of ~ and X- This could be a consequence of some unknown symmetry. 
We also note that for V convex or bounded from below a zero of v ( ~ / X )  is 
sufficient to produce a flat direction. Any point where V vanishes must be a 
minimum in this case. We may summarize this section by the following general 
statement: If  the effective potential of a dilatation symmetric quantum theory has a 
nontrivial minimum, such theories always lead to a Brans-Dicke theory, but with 
variable particle masses (m e - X  etc). Such a theory leads to realistic asymptotic 
cosmology (provided that there is no instability in the kinetic term of the Brans-Dicke 
scalar, ~o > - 3). 

3. Dilatation anomalies* 

Even if we start with a dilatation symmetric action without any mass parameter 
the properly renormalized quantum field theory sometimes needs the introduction 
of a mass scale. This occurs if there is no scale invariant way to define the 
functional measure in the functional integral. In this case renormalization neces- 
sarily involves the introduction of a scale, the renormalization scale /~. For scale 

* Parts of this and the next section have been obtained in collaboration with R.D. Peccei and J. Sol& 
and are published in ref. [2]. 
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dependent (running) renormalized dimensionless couplings gi the theory must be 
defined by specifying their values g~(/~) at a certain scale/~. In such theories the 
dilatation symmetry is broken by the quantization the theory has a dilatation 
anomaly. A typical example is pure QCD: The dilatation anomaly is the anomalous 
trace of the energy-momentum tensor [6] 

/LI, a 

v%¢- 2gs FA F;, (3.1) 

with gs the strong gauge coupling and fl(gs) the well-known /~-function of the 
SU(3) gauge theory. 

In the presence of an anomaly the dilatation current is no longer conserved 

O,J~= A = ffl/z(vi~ + ~o)-  (3.2) 

Here we have included a possible dilatation anomaly $~ in the gravitational sector. 
We can account for the anomaly t~¢ in the effective potential for q5 and X- 
Anomalies introduce an explicit dependence of the effective potential V on the 
renormalization scale/z 

V= V(x, ~; ~, gi(~))-  (3.3) 

For example, in pure QCD the expectation value of F~""F~ should be of the order 
A4Qco. The anomaly gives a constant contribution to V, proportional to 
114exp(-c/g2s(ll)). In general, the anomaly measures the deviation of the effective 
potential V from its scale invariant form 

OV OV 
02 = 4 V -  X~-- - ~ (3.4) 

O~ oX 

Similarly, in the Weyl scaled version with/% = gl/2(~ + ~ ) ,  one has 

0~ = exp - 0~ = - M  O~- 

As a consequence of dilatation anomalies the potential W now depends on o and a 
has in general non-derivative couplings. For any possible solution with constant and 
static fields q5 and X the divergence of the dilatation current (2.9) or (A.3) must 
vanish*. Such solutions are therefore only possible for values ~P0, o0 for which the 
dilatation anomaly A is zero. Let us assume that ep has reached a static constant 

* This is similar to the axion [7]. In our case the dilatation anomaly plays an analogous role to the 
strong CP violating parameter ~. 
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value ~0 so that O.rp--0. The field equation for o is then given (see appendix) by 

1 
f ( o ) a ; ~  + g (o )  o;~'o;i , = - ~ 8 ( o ) ,  (3.6) 

where 8 ( 0 )  is the anomaly 8~+  8 G with all terms containing derivatives of o 
subtracted. Obviously, the anomaly 8 (0 )  acts as a driving force for o. 

Solutions with constant static o = o 0 require 

8(00)  = 0 .  (3.7) 

These solutions are stable only if the mass term for the excitation is positive (or 
vanishes) 

1 08 
2 

ms Mf(oo) 3o (%)  > 0. (3.8) 

The effective cosmological constant for o = %  is W(oo). It should vanish for any 
realistic cosmology and we must require 

W(oo) = O. (3.9) 

Otherwise the universe approaches asymptotically an exponential expansion (14/(o0) 
> 0) or a catastrophic contraction (W(oo) < 0). Such a behaviour would be much 
more singular than the Brans-Dicke cosmologies with V 0 :~ 0 discussed in I, sect. 3, 
which approach flat space asymptotically. 

For  solutions fulfilling (3.9) the actual value of o o is irrelevant. In addition, we 
have a freedom in the definition of o and M since X = Mexp(o/M) remains 
unchanged under the transformation 

o'  = e - a ( o  + &M), 

M' = e-aM.  (3.10) 

We use this freedom to set o 0 = 0. It is the corresponding value of M which is 
related to Newton's constant (I, 4.2). 

Let us look at the role of a possible dilatation anomaly in the gravitational sector 
(see appendix) in view of the combined conditions (3.7) and (3.9): From the 
definition of 8 ( o )  (A.9) one sees immediately that they require 

8¢(tr0) = 0 .  (3.11) 

We conclude that the dilatation anomaly in the gravitational sector does not play an 
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essential role for such theories. For the remainder of this paper we will use the 

simplification ~6 = 0 (h = 1). 
We can express (3.7) and (3.9) as conditions on V: 

OV OV 
4V(Xo, qSo) - X -~x ( X o , ~P o ) - °P - ~  ( X o , ~P o ) = O, 

V ( X o ,  ¢P0) = 0. (3.12) 

The minimum of V must be at zero. This corresponds to the usual fine tuning 
condition for the cosmological constant. In our context, however, this has a perhaps 
more physical interpretation: We require a model with the property that the trace of 
the energy-momentum tensor in the vacuum with static X0 and c~0 (7~fl = 4V) is 

given by its anomalous part 8~ 

f ¢ ( X o , , o )  = (3.13) 

If a static Xo exists ~ ( X 0 )  must vanish and if in addition the stability condition 
(3.8) holds, the cosmology necessarily approaches flat space asymptotically. The 
field o is then called a "cosmon" [2]. Its dynamics drives the anomalous trace tq~ 
and by (3.13) the cosmological constant to zero. Realistic cosmology of the standard 
type is obtained provided the energy stored in coherent oscillations of the cosmon 
never exceeds the radiation energy during the usual radiation dominated epoch [8]. 
This depends on "initial conditions" for the amplitude of cosmon oscillations. Since 
the cosmon always couples to the anomalous trace ~ ,  its evolution in the history of 
the universe may be rather complicated, especially during phase transitions when 
condensates form. This issue certainly merits further study. 

Since ~ depends only on o / M  we can immediately conclude that the cosmon 

mass (3.8) is of the order 

m 4 

2 (3.14) m o -  M 2 .  

Here rn is typically the largest characteristic scale produced by the anomaly. In our 
approach, m should be at most of the order of the Fermi scale % --- 174 GeV. A 
lower bound would be given by A QCD if strong interactions were a fundamental 
theory valid to arbitrarily short distances: 

A]~CD 10 -11 (3.15) too>_ ~ 2. eV. 
Mp 

This would give an upper bound on the range of about 10 km. Possible detection of 
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an intermediate range cosmon force is discussed in ref. [2]. We will see below that m 
depends crucially on the short distance behaviour of the full (unified) theory. A 
cosmon mass quite different from (3.15) should therefore not be excluded at this 
point. 

4. The cosmon condition 

Let us concentrate on theories where all intrinsic mass scales (like m) appear only 
through the running of dimensionless couplings. Physical quantities only depend on 
renormalized dimensionless coupling constants gi(/~) defined at some renormaliza- 
tion scale ~. Except /~ no explicit mass parameter should appear in the theory. In 
such theories the "cosmon condition" (3.13) requires a nontrivial connection be- 
tween the long distance and short distance properties of a theory. Let us assume for 
simplicity that the fundamental theory has only one dimensionless running coupling 
constant g(/~) and therefore no free adjustable dimensionless parameter. The 
effective potential (3.3) must have the form 

v =  x / . ;  (4.1) 

and one finds for the dilatation anomaly 

OV 
v~¢ = /~-~- .  (4.2) 

Using the independence of V on the choice of the renormalization scale /~ (the 
renormalization group equation) one also obtains 

OV 
07= 

og(.) 
13 =/~ (4.3) 

In particular, there is no anomaly if the fundamental coupling g is not running 
(/3 = 0), despite the fact that all low energy coupfings may be scale dependent. The 
cosmon condition reads 

OV 
/~W---(Xo, q?0) = 4V(x0, ¢P0) = 0. (4.4) 

On the other hand the cosmon condition is related to the X dependence of the 
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effective potential 

OV 
VC'x(Xo, q~o) = -X-g-- (Xo,  ~o) = O. (4.5) 

oX 

In flat space this is just the condition that static fields X0, q~0 must correspond to an 
extremum of the potential. In the presence of curvature, however, X0 is determined 

(for (OV/O~)(Xo, C~o)=O) by Xo(OV/Ox)(Xo,~Po)=4V(Xo,(Po) and (4.5) is a 
nontrivial condition on the theory*. For flat space and static fields one has the 
general identity { ~ ; ) =  {Tf) .  This explains the historical origin of the name 
"anomalous trace of the energy-momentum tensor" for the dilatation anomaly. 
Indeed, once all vev's are expressed in terms of /~ one necessarily has V 0 = Co/* 4. 
Using 017/0% = 0 for all fields % one obtains 

_ dV OV 0% OV OV . 

T 2 = 4 V ° = l Z - d ~ = W ~  + f f  Oft 0% f i G  =O;" (4.6) 

Inclusion of gravity only permits to conclude an identity for the partial/,-derivative 

of T f  (for fixed vev's of %) 

0 
{~ )  = ll.t-~-~ {Tf). (4.7) 

As discussed in the introduction of I, there are several types of possible sources 
for the x-dependence of the effective potential. It may arise from mass type terms in 

the effective potential for q% like 

AV x = eX2q~ 2 + rX 4 . (4.8) 

Such terms give no contribution to ~;. Following the ideas of I these terms should 
be absent (or their coefficients be very small). A second source, more related to the 
spirit of I, comes from the fact that the standard SU(3) x SU(2) x U(1) model is not 
expected to be valid up to infinitely high energies. At short distances we expect that 
the theory shows a higher symmetry, possibly connected to grand unification, higher 
dimensions or strings. This symmetry must be spontaneously broken and it is 
natural to associate the corresponding symmetry breaking scale M x with the 
expectation value of X and therefore with Me: 

Mx = "fX. (4.9) 

The ratio ~ should not be very far from unity and we will take ~ = 1 unless stated 

* We note that ~x(X, ~o) = 0 for all X would lead to the Brans-Dicke theories discussed in I, sect. 3, 
which are only realistic for V(X, ~o) = O. 
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otherwise. The change of fl functions at M x produces a X dependence of the 
effective potential. As an illustration we give the X dependence of A QC D in an 
SU(5) theory in the one-loop approximation: 

AQCD=exp(.~I--~_21#b~/b'(~X) '-(bS/b3, (4.10) 
2b, go ] 

Here the SU(5) coupling is defined at a renormalization scale # >> X, go = g(/~), and 
b 5, b 3 are the usual coefficients of the g3 term in the fl function (fl = bg 3) above 
and below the scale M x. (We have neglected fermion mass thresholds.) 

More generally, we can understand this contribution to the X dependence of V in 
terms of the renormalization group equations. The scale invariant version of the 
standard model admits Higgs mass terms in the action only in the form AV× (4.8). It 
has therefore only dimensionless couplings. Let us denote their values at the 
symmetry breaking scale M x by gj(x). Below Mx, the scale dependence of gj is 
given by the usual renormalization group equations of the standard model with 
fl-functions /3j. Above Mx the evolution equations change and are determined by 
different fl-functions/~. (In a fundamental theory the/~ are all related to fl in eq. 
(4.2).) Formally one has 

Ogj(x) ¢, g~(¢) f~od g(x) = x - - - a T - -  x 

agj(x) 
g(x) =x--aT-- x (~ << X << #) .  (4.11) 

We can express the effective potential entirely in terms of the gj(x):  

V =  ~ 4 U ( ~ / X ,  g j ( x ) ) .  (4.12) 

This implies 

8~ 

0U ^ 0U ~ 4 
~x = - X-~X + flj Og~.(X) )(p . (4.13) 

Neglecting the explicit X dependent contributions AV x (4.8) we can determine the X 
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dependence of 5 by the "low energy" renormalization group equations 

0~ 0~ 
+ flj Ogj(x~ - 0 .  (4.14) X -~X 

In this formulation, the cosmon condition is equivalent to a nontrivial matching 
condition for the low energy and high energy B-functions: 

05 ^ O~ 

Bjog-U--( ) = - -  flj Ogj(x) = O. (4.15) 
~o, X0 q)o, Xo 

Such a condition is certainly quite suggestive, but not well understood. In a theory 
with free adjustable parameters it seems not particularly difficult to choose param- 
eters such that (4.15) holds for some X0- In a fundamental theory without adjustable 
parameters, however, the condition (4.15) (or its generalization for AV× ¢ 0) would 
be a remarkable property. 

5. An anomalous renormalization group equation for the cosmological "constant" 

The simplest solution of having both #~ and V simultaneously vanishing for some 
value X0 would be that they are proportional to each other: 

OV 
I~ = A V .  (5.1) 

0F 

In this case the renormalization group equation for V would be entirely determined 
by the anomalous dimension A. The dimensionless quantity A may depend on the 
dimensionless coupling constants of the theory. This is what happens in a pure ~4 
theory* 

v={x 

OV OX OX 
= ! ~  = 4 =  _ 1 - ~p4 

1 B ~4 f l ~  V .  ( 5 . 2 )  = - - ~  x = - -  ~k 

* The one-loop approximation to the scalar potential in the dilatation symmetric standard model has 
been discussed recently by Buchmfiller and Dragon [9]. Their method implicitly assumes an extension 
of the standard model to infinitely short distances. The results coincide with our formalism for 
~,~ = %,.  For g~,~ = c~,~, however, Buchmfiller and Dragon use a regularization and renormalization 
which differs from ours. It gives different results for different coordinate parametrizations of 
Minkowski space and leads to a term ~1/21n ~, whose meaning and consistency is not immediately 
apparent. 
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In analogy, suppose for a moment that one could write the effective potential of a 
fundamental theory with only one running coupling constant g as 

v= g2(x)P= g2(x/., g(.))P (5.3) 

with lP independent of ~t. The only fundamental mass scale of such a theory is the 
scale of anomalous dilatation symmetry breaking generated by the running of g. 
Therefore the quantity V should be a quartic polynomial in the various (perhaps 
infinitely many) scalar fields of this theory*. In this case dilatation symmetry 
breaking would be entirely described by the anomalous dimension of V: 

OV Og 2 ^ Og 
# -~ -  = #~f i -  V= - 2 g x - ~ x l ~ =  -2g~l~ 

2/~ 
= - - - V = A V .  (5.4) 

g 

On the other hand, scale ratios like ¢P/X would only depend on the properties of I~ 
and be independent of the scale of dilatation symmetry breaking. 

Of course, the assumption (5.3) is very strong and we do not expect it to hold 
except for very simple theories. Nevertheless, the property that scale ratios like ~ /X 
are independent of dilatation anomalies should always be a very good approxima- 
tion if the scale m characteristic for anomalous dilatation symmetry breaking is 
much smaller than ¢~ and X- Consider now a relative minimum of V with respect to 
all fields except X (a V/O~p = 0) and denote the corresponding value of the effective 
potential by V0(X). Instead of (5.3) we only will assume 

av0 
t*--~-~ = A Vo . (5.5) 

Such a behaviour would be suggested if Vo(X) is the only relevant quantity with 
dimension of mass. We may call (5.5) the renormalization group equation for the 
cosmological "constant". More generally, if A is a function of X, it only can depend 
on the ratio m / x  where m is the physical scale generated by the dilatation anomaly. 
(Remember that Of and V 0' and therefore A, are physical quantities which must be 
independent under a simultaneous change of t~ and g(/~).) It will be sufficient for 
our purpose if A ( m / x  ) approaches a constant A ~ 0 in the limit where m / x  goes 
to zero. 

A renormalization group equation of the type (5.5) has important consequences. 
Consider the case where A can be approximated by a constant. For an asymptoti- 

* There is an appropriate generalization for fermions or other bosonic fields. Condensates of such 
fields can again be expressed in terms of scalar operators. 
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cally free theory A should be positive. Using (3.4) and (4.2) one obtains 
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V o = a o  

For A < 4  the anomaly ~¢=AV o vanishes for Xo=0 .  In this case all scales 

disappear for the static solution X0 = qSo= 0 and dilatation symmetry becomes 
restored for such a solution. For A > 4 the trace anomaly only vanishes for X ---' oc. 
There is no finite static Xo fulfilling (3.7) and we expect that X moves asymptoti- 
cally to infinity. We will discuss the corresponding cosmology in the next section. 

The intermediate case A = 4 corresponds to the discussion in I, sect. 3 with the 

important difference that now qS/X instead of q5 is kept constant. For all cases the 

renormalization group equation (7.20) is inconsistent with (3.7) for finite nonvanish- 

ing X o unless a o = 0. 
Nevertheless, for A > 4, the cosmon condition (3.12) is fulfilled asymptotically for 

X ~ oo. For large enough X the cosmological constant V o becomes arbitrarily small. 

Any nonvanishing positive a o may be absorbed by a redefinition of m and we take 
a o = 1. The scale m may then be identified with the characteristic scale generated by 
anomalous dilatation symmetry breaking. In a fundamental theory it is the only 
intrinsic scale and sets the units for all other operators with dimension of mass. In 
units where today's value of X is X0 = 1.7.10 TM GeV the scale m is bounded by 

today's observed value for the Hubble parameter 

H 0 = 2h 0 • 10 33 eV, 

2 2 
3H°M~P (3" 10 . 3  e V ) 4 h  2 , 

V°-< 8~ 

m = X0 -- < (1 "']"f~I+4/AI~2/A'O 1027 120/A e V  . ( 5 . 7 )  

For A > 4 the bound on m is bigger than 3hlo/2. 10 .3 eV and it approaches this 

value for A --* 4. 
One may ask if it is reasonable that today's value of V 0 is in the range - 10 46 

GeV 4 or smaller although individual contributions from QCD and weak symmetry 
breaking could have a characteristic size of (10-z-10 s) GeV 4. Let us first discuss 

this question for the contributions to the dilatation anomaly t~. First of all we note 
that "individual contributions" from different sectors of the theory are not really 
well defined. Weak interactions and QCD are not independent. (For example, quark 

masses arise from weak symmetry breaking and play a role in QCD.) As a 
consequence ~ff (and V0) is not simply an addition of a pure weak and a pure QCD 
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piece. If  we nevertheless decide on some definition for the individual contributions 
to ~ ,  they will typically reflect how the effective potential changes if one varies a 
certain degree of freedom while keeping the others fixed. This is connected to the 
physics determining scale ratios. Scale ratios like A QCD/C ~ typically depend on 
dimensionless couplings and may be unrelated to the fate of dilatation symmetry. 
Individual contributions to 0~ may therefore be large (for example - if4) even for a 
theory where dilatation symmetry has no anomaly at all. The total dilatation 
anomaly ~ is related to different physics, namely the connection between the 
overall scale of vev's and the intrinsic scale m. It can be much smaller than the 
individual contributions. These must simply cancel if the theory either has no 
anomaly, or if the anomaly vanishes in the vacuum as a result of the dynamics of 
the X-field ( ~ ( X 0 )  = 0), or if t ~  vanishes asymptotically for m / x  ~ O. In the latter 
case the existence of two different scales m and X (characterizing intrinsic and 
spontaneous breaking of dilatation symmetry) is crucial. 

The minimum value V 0 of the effective potential is a quantity connected with a 
scale ratio, namely R / X  2. A priori it is therefore not necessarily related to the fate 
of the overall scale and could be of the order of its individual contributions even if 
~ is much smaller. For theories which establish a connection between V 0 and t~,  
however, the situation is different. For ~ = A V 0 (5.5) the physics responsible for a 
small , ~  also leads to a small value V0, independent of the size of its individual 
contributions. A potential V 0 of the form (5.6) would then be natural even if 
individual contributions to V 0 are of the order q~4 o r  even larger. We note in 
particular that no small dimensionless coupling appears in (5.6). The smallness of 
today's  value of V 0 directly obtains from the small ratio m / x .  We still have to ask in 
this case if a value of X much larger than m is natural. Already the most naive 
consideration for a theory with only one mass scale m (and without very small 
dimensionless quantities) would suggest that the possible values for an asymptotic 
solution for X should correspond to X ~ m, X = 0 or X --* ~v. We will see in the next 
section that it is the latter case which is realized for V 0 of the type (5.6). The 
smallness of today's value of m / x  obtains then naturally as a result of the age of 
the universe. 

A fundamental  theory leading to the evolution equation (5.5) can therefore 
predict a very small value for both ~ and V 0 (as observed today) as a dynamical 
result of the evolution of the universe. The cosmon conditions (3.7), (3.8), (3.12), 
(4.5), (4.15) must be fulfilled today within a very good approximation! This places a 
restriction on the allowed values of the dimensionless couplings of the effective low 

2 2 energy theory. This condition, V 0 < H6Mp, is equivalent to the usual fine tuning 
condition for the cosmological constant. In our case, however, it does not obtain as 
a result of a special choice of fundamental coupling constants but rather as a 
consequence of the short distance behaviour of the theory leading to (5.5). For any 
ground state consistent with (5.5) the dimensionless couplings must adjust to give a 
tiny value V 0 today. (For the example of a higher dimensional theory the shape of 
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internal space must adjust correspondingly.) If the most general terms in AV x (4.8) 
would be present this only would restrict the allowed value of the unobservable 
coupling x. If  we discard AV x according to the spirit described in the introduction 
of I, the model becomes much more predictive. For a short distance behaviour (5.5) 
and z~V x = 0 the perturbative approximation for the effective potential of the Higgs 
doublet  leads to a prediction for both the Higgs boson mass and the top quark mass 
(in case of three generations). Indeed, since for the vacuum OV/O(p=O and 
O V / O x  = 0 holds, the dilatation anomaly for the weak Higgs doublet is given by 

1/~ ~4 (5.2). This should be at most of the order of the QCD contribution V 0 ~ - ~  x~ 
A%c D. The B-function for the quartic scalar coupling must therefore be very 

small. The positive contributions to Px arising from the gauge interactions must 
cancel the negative contributions from the Yukawa coupling of the top quark. If the 
one-loop approximation for the effective scalar potential [10] is valid one obtains a 
top quark mass ~ 80 GeV. For this value of m t the mass of the physical Higgs 

boson is unusually small, below 1 GeV. 

6. Cosmology with time variation of the cosmological "constant" 

In this section we study the cosmology with a potential Vo(X) = ( m / x ) A x  4. The 
discussion is analogous to the model of I, sect. 3 (which is recovered for A = 4)*. 
However, here we assume that ~ / X  instead of X is time independent. We will use 
the Weyl scaled field equations (I, 4.18) with ~ = 0. The potential reads 

(6.1) 

We neglect for a moment incoherent fluctuations (0 = P  = qO= q~ = 0). The field 
equation for o is 

6 d 
- -  + 3 H - -  = c e x p ( - A o / M ) ,  
M M 

A ( m ) A M 2  (6.2) 
C-- 4 (3+2¢0)  M 

For  H ( t ) =  ~/t -a this has a particular solution 

provided 

2 M  t 
o ( t )  = o( to)  + I n - -  (6.3) 

A t o 

3 ~ - l  = ½ActZexp(-A ° ( t ° )  " (6.4) 

* This holds for n = 4. For n = 3 the approximation q° = 0 is not equivalent to ~x = 0 in I, sect. 3. 
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The remaining field equations (I, 4.18) are fulfilled for 

4(3 + 200) 
- Y. (6.5) v/ A2  

Let us now include relativistic (n = 4) or nonrelativistic (n = 3) matter (still keeping 
q° = 0). It  is easy to see that for Y > 2 / n  all matter effects become asymptotically 
negligible since 0 decreases - t  nY. One would end with a universe containing 
essentially only coherent motions of the o field coupled to gravity. Asymptotic 
cosmology is given by (6.3) and (6.5). For Y <  2 / n ,  however, the asymptotic 
solutions look different. One now finds 

~1 = 2 / n ,  (6.6) 

P = Oo t2t-2 , (6.7) 

po t2 4 

6M 2 - n 2 ( 1 -  ½nY ) .  (6.8) 

Depending on Y we therefore have the following possibilities for the asymptotic 
1 y < 2  behaviour: for Y > 2 the universe is o-dominated (p can be neglected). For ~ < 

the universe is 0 dominated during the period when matter is dominantly relativis- 
tic. When matter  becomes nonrelativistic the universe turns to the usual behaviour 
a - t 2/3. Finally, for Y < ½ both the radiation dominated and the matter  dominated 
period have the standard expansion laws a ~ t 1/2 and a ~ t 2/3 respectively. 

I t  is instructive to interpret these asymptotic solutions in terms of a cosmological 
"constant"  X which varies with time. There are two contributions of the o field to 
the energy momentum tensor: One comes from the potential W ( o )  and the other 
f rom the kinetic term - 6  2. The definition of the cosmological constant, energy 
density and pressure is ambiguous. One possibility would be to identify X = W, 
O, = Po = (6 + 4~0)d 2. This has the disadvantage that in presence of both the o field 
and matter  (radiation) the ratio between p and O would be different for the two 
components  of the energy-momentum tensor. We therefore adopt the definition [3] 

p o = ( l n - 1 ) O o  (6.9) 

with n = 4 or 3 for the radiation dominated or matter dominated period, respec- 
tively. This determines which part of the kinetic term is counted in the cosmological 
constant 

X = W -  - - - 2  ( 3 + 2 o a ) 6  2, (6.10) 
n 

12 
po = - - ( 3  + 2~0)6 2 . (6.11) 

n 
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The energy-momentum tensor is 
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T00= X+ Oo+ p, 

T~j= (~ - p o - P ) g i j .  (6.12) 

We can express the time derivative of A in terms of A, H and 6 

~ = - 6 X n - - - ~ + 1 2  - 1  ( 3 + 2 w ) 6  2 H nM " 

This cosmology is of the general type discussed in ref. [3]*. For the asymptotic 
behaviour one has A6/nM = H if Y <  2/n. Then X decreases faster than t -2 and 
becomes negligible. In the language of ref. [3] we have a p dominated universe but 
the energy density contains now an additional contribution po compared to stan- 
dard cosmology. The energy of coherent o-motion po approaches 3W (2W) for n = 4 
(3). Its relative contribution to the energy density is (see (6.8)). 

Oo 
- ½ n Y .  (6.14) 

P+ Po 

Taking A = 4 one recovers (I, 3.9, ii). For Y > 2/n the asymptotic behaviour is 
A 6 / n M  = 2 H / n Y  and the ratio h/Oo approaches ½nY-  1. For A = 4, n = 4 this 
corresponds to the solution (I, 3.9, i). Comparing these cosmologies with the criteria 

formulated in I, sect. 5, we find that the second condition (I, 5.2) is violated for Y > ~. 
Helium synthesis and the background radiation would be unacceptably altered for 
Y > ½. We therefore concentrate on the case Y < ½ which has the standard asymp- 
totic evolution law H = (2/n)t  1, p _ t-2,  ep = const. A realistic overall cosmologi- 
cal evolution with asymptotically vanishing cosmological "constant" emerges pro- 

vided 

A > ~8(3 + 2o~) . (6.15) 

It  may be surprising that realistic cosmologies are obtained even for A smaller than 
four (~  must be negative in this case). Although the potential V 0 increases - X 4 A 
(compare (5.6)) the field X is nevertheless driven to infinity! Due to the coupling to 
gravity the driving force for X is proportional 4Vo/x - OVo/OX instead of the 
standard behaviour depending only on the derivative of V 0. For 0 < A < 4 the 
dilatation symmetric solution at X o = 0  is unstable. Instead of approaching 
the minimum of V 0 the field X moves upwards in this potential. However, V 0 
increases slower than X 4. As a result the ratio R/X 2 goes to zero and spacetime 

* Fo r  o ther  a t t empt s  to obta in  a vanishing cosmological  cons tan t  as a resul t  of dynamics  see ref. [11]. 
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approaches Minkowski space asymptotically. Indeed, there is no difference between 
A greater or smaller than four in the Weyl scaled version. For all positive A the 
potential W(o)  decreases - exp( - o/ l /M)  and the cosmon condition O IV/0 o = W 
= 0 is asymptotically fulfilled for o ---, m. 

For Y < ½ the main difference between the cosmology discussed in this section 
and the standard hot big bang evolution is the contribution of the coherent motion 
of the o field to the total energy density according to (6.14). This influences the time 

scale during nucleosynthesis. Applying criterion (v) of I, sect. 5, this implies an 
upper bound on Y 

Y z O . 1 .  (6.16) 

This can be fulfilled even for small values of A, provided ~0 is near the critical value 

~0o = - 3. We have no independent information on ~o and a small value for ~0 - w c 

may not be unnatural. We recall that for ~0=~o c the field o ceases to be a 
propagating degree of freedom. Also for ~0 = ~c dilatation symmetry becomes a 

local instead of a global symmetry. The theory therefore has particular properties 
for ¢0 ~ ~% and a value ~o near co c must not be a "fine tuning" of parameters. 

Taking things together we have found a realistic cosmology where Newton's 
constant decreases with time. It vanishes asymptotically as X goes to infinity. In this 

sense the weakness of gravitational interactions is not intrinsic but rather a 

consequence of the evolution of the universe. Nevertheless the ratio (P/X should 
reach a (small) constant value asymptotically. This ratio is supposed to be an 
intrinsic property of the theory. In this respect the model resembles standard 

cosmology rather than Dirac's hypothesis. Could there be observable consequences 
of this scenario? Let us first estimate the mass of a "cosmon" excitation o - o o with 
% the coherent background field with cosmological evolution (6.3): 

1 O2W 2 
m, 4(3+2~0) 302 ( o = % )  

A 2 W(oo) 

4(3 + 2,0) M 2 
(6.17) 

Expressing W(%) in terms of today's Hubble parameter H 0 one finds that today's 
cosmon mass is given by H 0 independent of all other parameters of the model 

2 9 2 m o -  ~H(~. (6.18) 

We find a new "universal" force with a range given by the size of our observable 
universe! 

For all purposes except cosmology this cosmon is massless. The cosmon coupling 
to matter (take a nucleus, for example) is of gravitational strength ( -  1/M2). It 
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depends [2] on the expectation value of the anomaly 0 f  in a nucleus*. In addition 

there are possible contributions from spatial gradients of fields in a nucleus. We will 

not attempt in this paper to estimate the cosmon charge QN for the model 

considered in this section. We only note that as long a s  Q N  is proportional to the 

mass of the nucleus, M N, one would simply have an additional long range attractive 
force adding to gravity. Its only consequence would be a difference between the 

value of Newton's constant observed in our solar system (or galaxy) and the one 
relevant for nucleosynthesis. The first counts both contributions from the cosmon 
and the graviton and is therefore larger than the purely gravitational constant 
G N = Mp 2. As a result the Planck mass Mp could be somewhat higher than 
commonly estimated. The effect on nucleosynthesis goes in the opposite direction 
than the effect from po (6.14) and the bound (6.16) could increase. Deviations from 

QN - MN are expected [2] to be proportional to baryon number in leading order. 
They may give rise to a baryon number dependence of the combined graviton plus 

cosmon force, which does not depend on distance for the model of this section. 
Experiment tells that such a baryon number dependent contribution must be small 

[12]. 
The cosmon coupling to matter could also have effects on cosmology by inducing 

a nonvanishing value qa in the field equations (I, 4.18). This may be particularly 
important for the matter dominated epoch. Since in our model 6 does not vanish we 
would predict a deviation from energy momentum conservation according to (I, 
4.18). This would lead for n = 3 to an asymptotic behaviour H =  ~/t -1, ~/~ 2 as 

discussed in ref. [3]. One also should estimate possible dissipative effects from the 

decay of the coherent a motion. They could modify the contribution of po to the 
total energy density and therefore alter (6.16). At first sight, however, such effects 

seem to be very small. 
In any case we should not forget that our model (characterized by (6.1) and 

q0 = const) is at best an approximation. It is conceivable that the ratio FP/X 

undergoes a very slow change even for the asymptotic behaviour, resulting in a tiny 
value of a for the discussion of I, sect. 5. Even for qo = const and a potential V 0 
fulfilling (5.5) we expect the anomalous dimension A to depend on the renormalized 
coupling constants of the theory. This may induce a weak X dependence of 
A - typically A = A o + A l l n ( x / m  ). For A depending on o one obtains 

O 

(6.19) 

It is well conceivable that the a dependence of A leads to cosmologies where both 0o 

*The formulae in ref. [2] correspond to ~o = ~8, h free. They are related to this version (co free, h = 1) 
by a rescaling of X, resulting in the identification 4(3 + 2~0) = (1 + 12h)/h. Derivatives and metric 
in ref. [2] correspond to I, sect. 2, not to the Weyl scaled version of I, sect. 4, which we use in this 
section. 
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and X decrease faster than t -2 so that all effects form o become asymptotically 
negligible (at least for qO= 0). As an example, consider a potential which can be 
approximated for o > - 6  by 

1 . 
This leads to an asymptotic solution H = (2 /n ) t  -1, 0 -  t -2 with 

o(t) = M(  2 In t ]l/(l+e)_ 
-2-- 

i 2=  8(3 + 2 o ~ ) ( ( 6 / n ) -  1) M 2 
(1 + e)2X 2 1~ " (6.21) 

Both 6 2 and W (and therefore Oo and X) decrease asymptotically like 
t -2( ln  t) -2e/(1 +~) and become negligible for ~ > 0. 

7. Conclusions 

We have found realistic cosmologies for models where Newton's "constant" is a 
dynamical degree of freedom and can therefore evolve with time. The models we 
have considered are quite different from Brans-Dicke cosmology due to the ex- 
istence of a nontrivial effective potential. It is crucial for realistic late cosmology 
that the ratio between the scales of weak and strong interactions and the dynamical 
Planck mass, ~ /X,  approaches asymptotically a constant (or almost so). Not only 
the Planck mass ( - X )  but also the scales of weak and strong interactions ( -q3)  
should correspond to dynamical degrees of freedom. These scales may also change 
during the evolution of the universe. Two general types of cosmologies are possible 
in this context. Either X approaches asymptotically a constant value X 0 and similar 
for ~. Realistic late cosmology is then expected to be of the standard type. Or X 
goes asymptotically to infinity. Depending on the specific model the cosmology can 
be of the standard type, but interesting modifications, for example for the critical 
energy density of matter, the age of the universe, or the static behaviour of coupling 
constants, are also possible. 

In our models the expectation value of X is identified with the scale of sponta- 
neous breaking of dilatation symmetry. The Fermi scale ~ and the scale of strong 
interactions A QCD should asymptotically be proportional to X. They should there- 
fore not correspond to intrinsic scales of the theory if cosmology is of the type 
where X still evolves today and goes asymptotically to infinity. In this case A OCD 
and q~ should also be a consequence of spontaneous dilatation symmetry breaking. 
This is realized if the renormalized dimensionless couplings of the scale invariant 
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version of the standard model, when evaluated at the short distance scale X, are 
either independent of X or do only weakly depend on X- In the first case dilatation 
symmetry has no anomaly and the fundamental theory should be finite. (This could 
be the case for superstrings.) For the second possibility the running of the short 
distance couplings generates a dilatation anomaly. Scale transformations are not a 
quantum symmetry and the running of dimensionless couplings introduces an 
intrinsic scale rn in the theory. If  the dependence of the short distance couplings on 
X is weak, the intrinsic scale m is much smaller than the spontaneous scale X. We 

discussed models where m is even much smaller than A QcD and 95 so that 95/X is 
essentially unaffected by the existence of an intrinsic scale and dilatation symmetry 
is a good approximation for the low energy standard model. There is actually no 
contradiction between the observed running of the strong coupling constant and the 
absence (or small role) of dilatation anomalies. The dilatation anomaly is connected 
to the running of the fundamental coupling constants of the short distance theory 
and not to the evolution of the effective low energy theory. We also have studied 
models where strong a n d / o r  weak interactions are characterized by an intrinsic 
scale m - A QCO or m - 95. The language of spontaneously broken dilatation symme- 
try is still adapted (m << X) and cosmology can be characterized by properties of the 

dilatation anomaly. In such models the asymptotic constant ratio 95/X must obtain 
as a consequence of X approaching a constant X0. 

In this paper  we only describe late cosmology. Very early cosmology may be quite 
different from the asymptotic behaviour of 95/X. For example, X may initially have 
been of the same order as 95. This would have important consequences for early 
cosmology since gravitational interactions would have had the same strength as 
weak interactions! It is not clear for such scenarios if the temperature was ever high 
enough to restore SU(2)× U(1) symmetry. There was possibly no weak phase 
transition in early cosmology. (In the Weyl scaled formulation cp decreases from a 
value - Mp to today's scale in this case.) 

What  about  the physics associated with the vanishing of the cosmological 
constant? In general, a theory has two different systems of mass scales. First, there 
are intrinsic scales. These are generated by the running of fundamental dimension- 
less coupling constants and connected to the dilatation anomaly. More generally, if 
a model has intrinsic mass parameters (like a term /~2952 in the Higgs potential) we 
may formally include such explicit scale breaking effects in the anomaly. We denote 
the largest intrinsic physical mass scale by m. Second, we have "sliding" scales. 
These correspond to expectation values of scalar operators. Their value is de- 
termined dynamically and may evolve with time. We denote the heaviest sliding 
scale by M. Typically, today's value of M should be in the vicinity of the Planck 
mass Mp. The two systems of mass scales can move against each other. This 
corresponds to the degree of freedom of a (pseudo)dilaton. We call this excitation a 
cosmon if its dynamics leads to a vanishing cosmological constant. Depending on 
the ratio m/M we distinguish four different scenarios for the cosmological constant. 



6 9 2  C. Wetterich / Cosmology (II) 

(A) Dilatation symmetry has no anomalies. No intrinsic mass scale appears in the 
theory (m = 0). There is a massless Goldstone boson a -  In X (unless its kinetic 
term vanishes). The vanishing of the cosmological constant is related to dilatation 
symmetry only through the specific form of the effective potential. This must 
possess a minimum for nonzero vev's of some scalars or, equivalently, a flat 
direction. New physics could only arise if the derivative couplings of the Goldstone 
boson would lead to an appreciable coupling to matter. This would also influence 
cosmology for the matter dominated epoch (q" ~ 0). 

(B) The intrinsic scale m is much smaller than the observed scales of weak and 
strong interactions. Integrating out all degrees of freedom of the standard model 
leads to an effective theory for gravity and the field X which is characterized by an 
effective potential Vo(X). If the intrinsic mass scale m arises only through the 
running of fundamental dimensionless coupling constants, the dilatation anomaly is 

given by the renormalization group equation for V0, vg~ =/x OVo/Otx. We assume 
that this renormalization group equation is determined by a nonvanishing anoma- 

lous dimension bt O Vo/O~t = A V o. This implies a specific form of the potential for o, 
W ( o )  - e x p ( - A a / M ) .  As a consequence, the sliding scales (X, q~) still move today 
compared to m and the ratio x / m  goes asymptotically to infinity. This leads to 
cosmologies with a nontrivial time evolution of the cosmological constant which 
vanishes asymptotically. The kinetic energy of the a field can contribute a fraction 
Po to the total energy density of the late universe. The cosmon o mediates a new 
long range force with at most gravitational strength. Its mass is today given by the 

Hubble  parameter,  m o - H 0. 
Depending on the matter couplings of the cosmon this could lead to a composi- 

tion dependence of the combined gravitational + cosmon force. If the cosmon 
contributes a substantial amount to the long range force, this would influence the 
age of the universe. For the matter dominated epoch the energy momentum tensor 
of matter  would not be conserved (qO 4= 0) and the evolution law could be modified 
( H  = T/t -1, T/4: _2) Also, if (P/X approaches only asymptotically a constant value, 3 " 

the variation of this quantity today would lead to a time dependence of coupling 
constants. All these interesting possible effects require, however, a substantial 
coupling of the pseudodilaton a to matter. 

(C) The intrinsic mass is identified with the scale of strong or weak interactions 
[2], m -  A QC D or m -  q~. In this case X should approach a static finite value 
(a  ~ o0). This requires that the the anomalous trace of the energy-momentum 
tensor must vanish for some value of a ( 0 f ( a 0 ) =  0). The cosmological constant 
vanishes if, for a = a0, the trace of the energy momentum tensor is purely anoma- 
lous (T~(o0) -- ~ ( o 0 )  ). The connection of this "cosmon-condition" with properties 
of the fundamental  theory is not well understood. The mass of the cosmon is 
m o -  m Z /M.  Exchange of cosmons leads to an intermediate range force with 
gravitational strength and typically a nontrivial composition dependence. Depend- 
ing on m, this force could be observable. The cosmology for this scenario is not yet 
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well studied. It is influenced by the energy stored in the coherent motion of the 
cosmon. For  late cosmology, this depends on the initial conditions after the last 
(QCD) phase transition and on the matter couplings of the cosmon (q~). Since the 
anomalous trace of the energy momentum tensor depends on condensates, and 
therefore also the value o 0 which determines the strength of gravity, the cosmology 
of phase transitions may be rather complicated. 

(D) Finally we should mention the possibility that m = Mp. No observable long 
range or intermediate range effects survive. All particles except those of the 
standard model and the graviton have huge masses - Mp. Although our treatment 
of dilatation symmetry and its relation to the cosmological constant remains 
formally valid, it is questionable that it is helpful for an understanding of the 
cosmological constant problem. (One word of caution, however, applies to the last 
two scenarios: It is not completely excluded that intrinsic scales appearing in 
particle physics are much higher than the one characterizing cosmology.) 

It is even conceivable that features of two of our scenarios are realized simulta- 
neously. This can happen if the effective low energy theory has an additional 
approximate dilatation type symmetry, corresponding to a rescaling of ~v and g~ in 
the Weyl scaled version. (This requires AV x = 0.) With respect to such a symmetry 
M plays the role of an "intrinsic" scale and the symmetry is broken explicitly in the 
gravitational sector. Nevertheless, there may be an additional pseudo Goldstone 
boson r with a small mass and nontrivial interactions with gravitational strength. 
Our formalism with h ( r )  4= 1 can be applied to this situation. 

Although we know from observation that today's value of the cosmological 
constant must be tiny, we do not know which one of our scenarios applies. The 
unknown physics related to this question could well give rise to interesting observ- 
able effects. Possible deviations from standard big bang cosmology for the late 
evolution of the universe could provide important hints about properties of the 

fundamental theory. 

The author would like to thank R. D. Peccei and J. Sol& for the fruitful 
collaboration on important aspects of this work. He thanks W. Buchmiiller, N. 
Dragon, M. Liischer and M. Reuter for interesting discussions. 

Appendix 

In order to account for possible dilatation anomalies in the gravitational sector 
we generalize the gravitational piece of the effective action 

SG = -- f d4xgl/2hx2R (A.1) 

with h a dimensionless function of ~ and X, depending on ~ if there is a dilatation 
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anomaly in the gravitational sector 

h = h( (P, X; tz, gi(Iz ) ) . (A.2) 

The action (1.1) and the field equations of I are recovered for h = 1. This modifica- 
tion of the gravitational interactions changes the dilatation current 

J~)=2gl/2ff  "~ 4~o+6h+3x Xcg~X+ 1 + - - - -  
3x2 h)) 
ee aee eea~ 

=2gl/2g ~" 4¢o+6h+ ~ 5  +3M-~o MO.o+ 1+ 
3M 2 Oh ) ) 

a~ ¢ea,~ . (A.3) 

The gravitational contribution to the dilatation anomaly is 

2 ~ [ Oh Oh ) 
 o=-x , (A.4) 

~G=exp  -- ~ c = - M  ffoo R + - - o .  ~ o.~o.~ . M '~ M2 , , (A.5) 

(One may remove a total divergence from 0 o and add a corresponding piece to J~). 
For h independent of/z, h = h(c~/X), one has OG = OO = 0. The equation of motion 
for o can be derived from the dilatation current (A.3) in the Weyl scaled version 
(assuming 0,¢p = 0, q o = 0), 

( ah 2%2 ) (ah a2h~ 
8o~+12h+12M--+0o ~-y o ; ~ + 6  -~o + M ~ )  °;~'°;~ 

3W Oh 
Oo M2-~oR" (A.6) 

Here we define W(o) = W(o, %) and similar for h(o). 
The modified gravitational equation from (A.1) is 

1 

~ ~ M  + 8~oX;~,X;,- 4¢oX;PX;pff~, + V ~  + T~ + Tu~ ) (A.7) 
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From this we compute the curvature scalar in the Weyl scaled version 
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1{ ( 2 2) 
R - 2hM2 4 W -  2cp;~,q0; ~'- 8*0 + 12h + ~ o;~o; ~' 

0 In h 02 In h 
-4~cp;~,o~'+ T~ M~' + 3 ~ - - o  o;" + 3~T-oz  o;.o;~'. (A.8) 

Inserting into (A.6) gives (for ~ constant) 

OW 81nh 1 0 l n h  1 
f ( ° ) ° ; " + g ( o ) a ; " ° ; "  0 ~ - + 2 ~ o - - o  W + 2  Oo T~M"=M ~ ( ° ) '  (A.9) 

f ( o )  = 8~o + 12h + 2 cp2 Oh + 12M-~o + 3M 2 
Oh Olnh 

0 o  Oo 
(A.10) 

Oh O2h ( q~2 t Olnh 
g (o )  = 12-0-~ ° + 6M~5o2 + 4~ + M2 ] Oo 

Oh 0 21n h 
- - + 3 M 2 0 o  002 (A.11) 

We note that for Oh/Oo 4:0 Newton's "constant" still varies in the Weyl scaled 
version if d 4: 0. Also ~(o) has a contribution from the trace of the energy-momen- 
tum tensor of matter T~ M". Such features could be removed using a different Weyl 
scaling and a new variable o'. In the new scaling, however, q" = 0 would correspond 
to nonvanishing q°' and the energy momentum tensor would no longer be con- 
served in the matter dominated period for d' 4= 0. Although we will not discuss this 
effect in detail in this paper it may have interesting consequences for cosmology in 
the matter dominated period. 
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