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We present O(as 2) expressions for the invariant structure functions that describe the space 
orientation of O(c~ 2) 3-jet events in e+e--annihilation on and off the Z o. Our results are 
presented in a form which allows them to be easily incorporated into Monte-Carlo event genera- 
tion programs including beam-polarization effects. We present O(c~ 2) thrust distributions for the 
various helicity cross sections that can be determined from an angular analysis of 3-jet events. 

1. Introduction 

The measurement of the orientation of 2-jet events in e+e -annihilation relative 
to the beam axis has been of crucial importance in establishing the spin- ½ nature of 
quark partons [1]. The corresponding measurement of the space orientation of 3-jet 
events and a comparison with the QCD predictions is also very important for 
obvious reasons, but has not been attempted so far due to the lack of statistics. Such 
measurements will be possible in the near future with higher statistics coming from 
the final analysis of the PETRA data, from PEP, TRISTAN and in particular from 
SLC and LEP running on the Z 0. The orientation of O(c%) 3-jet events was studied 
in the work of Kramer, Schierholz and Willrodt [2]. In particular they calculated the 
thrust distributions of the various helicity cross sections that characterize the 
orientation of the 3-jet events. We extend this work by calculating the thrust 
distributions of the 3-jet helicity cross sections up to O(as2). Present Monte-Carlo 
3-jet event-generation programs are incomplete in the sense that the correct O(cL 2) 
3-jet orientation is not yet implemented. They (incorrectly) assign the O(a~) 3-jet 
orientation to the O(a~ 2) 3-jet events. This is correct for the leading y-terms 
(ln2y + In y terms), but not correct for the next-to-leading terms (y denotes the 
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scaled invariant mass cut-off). It is not clear whether this omission affects the 
O(as 2) analysis of the 3-jet events and thereby the as-determination much. How- 
ever, in view of the fact that a recent analysis has shown that it is difficult to 
account for the e+e - 3-jet and 4-jet data within perturbative QCD [3], one should 
a t tempt  to eliminate all possible sources of errors that go into such an analysis. One 
of the purposes of this paper is to provide the necessary O(as 2) formulas that allow 
one to generate O(as 2) 3-jet events with the correct orientation including the effects 
of longitudinal and transverse beam-polarization and parity-violating effects. Con- 
cerning the parity-conserving (p.c.) case longitudinal O(as 2) 3-jet cross sections have 
already been published by Kramer and Lampe [4, 5]. In principle these 3 longitudi- 
nal cross sections and the total O(as 2) cross section calculated in refs. [6,7] 
constitute a complete set of 3-jet p.c. cross sections. However, the results of refs. 
[4, 5] are beset with transcription mistakes including the Erratum on ref. [4] in ref. 
[5]. Thus we did a complete re-evaluation of the p.c. invariant structure functions 
and a number  of cross checks in order to be able to present correct formulas. The 
parity-violating (p.v.) invariant structure functions have already been given in [8] 
and are included here for completeness. 

The plan of the paper is as follows. In sect. 2 we briefly sketch the steps and state 
the definitions that have been used to arrive at our end-results in the later sections 
in order to provide the appropriate background sources. We are very brief on 
calculational and technical details since excellent expositions exist on the subject in 
the literature [6, 7]. In sect. 3 we define the invariant 3-jet cross section in terms of 
the invariant contraction of a lepton and a hadron tensor. Such a form is suitable 
for use in the All et al. Monte-Carlo event-generation program*. The 3-jet cross 
section includes the full structure of the standard electroweak model on and off the 
Z 0. We present explicit formulas for the unpolarized lepton tensor, while longitudi- 
nal and transverse beam polarization effects are deferred to appendix A. The 
hadron tensor is expanded into a standard set of invariant structure functions and 
their associated covariants. Explicit formulas are then given for the squared matrix 
element corresponding to the contraction of the lepton and hadron tensors. Sect. 4 
contains the QCD dynamics in terms of explicit expressions for the invariant 
structure functions up to O(as2). In sect. 5 we define helicity cross sections that 
appear  as angular coefficients in the angular distribution of 3-jet events relative to 
the beam axis. These are related to the standard set of invariant structure functions. 
One of the set of helicity cross sections (where the quark defines the z-axis and the 
antiquark lies in the positive (x, z) half plane) is useful for an implementation of the 
O(as  2) effects into the Lund Monte-Carlo event-generation program [10]. Since 
the Lund MC program has already incorporated the full electro-weak structure and 
beam polarization effects in terms of the helicity cross sections the inclusion of these 
effects is automatic if one works with the helicity cross sections. In sect. 5 we also 

* The so-called Ali-Monte-Carlo is based on a number of papers. See for some of these ref. [9]. 
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calculate O(as 2) thrust distributions of the helicity cross sections in the manner of 
ref. [2], which contains the O(as) results. The 0 ( %  2) thrust distribution of the 
longitudinal cross section corrects the result of ref. [5]. The thrust distributions 
d H u / d T  (unpolarized transverse), d H T / d T  (transverse-transverse interference) 
and d H 1 / d T  (transverse-longitudinal interference) are new. Sect. 6 contains our 
summary and the conclusions. 

In appendix A we write down the full polarization dependence of the 3-jet cross 
section in an invariant product form appropriate for an implementation in the Ali 
et al. Monte-Carlo program. In appendix B we write down O(as z) expressions for a 
set of longitudinal cross sections which have the merit of being very compact. These 
are related to the helicity cross sections used in the Lund Monte-Carlo program. 

2. Some brief technical remarks 

The calculation of the 0 ( %  2) QCD radiative corrections involves (i) the calcula- 
tion of loop-graph contributions and (ii) the calculation of the tree-graph contribu- 
tions integrated over the relevant infrared (IR) and mass (M)* singular regions. We 
regularize the infinities with dimensional regularization. The relevant details have 
been described in refs. [6, 7]. I R / M  singularities cancel among loop- and tree-graph 
contributions and the UV singularities are treated within a given subtraction scheme 
(in our case the MS scheme). Two methods have been used to calculate the loop 
contributions. In the first method one first does the loop integrations on the 
amplitude level and then folds these with the relevant Born term amplitudes to 
obtain the hadron tensor of interest [11]. In the second method one first folds in the 
relevant Born term amplitudes and then performs the loop integrations [4]. Techni- 
cally, the latter method is simpler although one looses some of the full spin 
information contained in the loop amplitudes of the former method. Since the two 
calculational methods are very different from one another they are useful for cross 
checking the loop results. We have rechecked the l-loop expressions of the 4 p.c. 
invariant structure functions written down by us in ref. [11] which were calculated 
using the first method. We then converted these to the 4-helicity cross sections 
Hu+ L, HLa, HL2 and HL3 and compared them to the corresponding expressions in 
refs. [4, 5] calculated by the second method. Discrepancies in the two results were 
traced to transcription errors in refs. [4, 5] by the authors of refs. [4, 5]. We also did a 
complete re-evaluation of Hv+ L using the second method and found agreement 
with the results of refs. [6,7]. We are therefore confident that the one-loop results 
for the p.c. invariant structure functions calculated in ref. [11] and used in this work 
are correct. The one-loop expressions for the two p.v. invariant structure functions 
were calculated from the same l-loop amplitudes used to calculate the p.c. structure 
functions. Since these were checked against an independent calculation in the p.c. 

* We work with mass-zero quarks. 
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case we are also confident that the p.v. l- loop results written down in ref. [11], used 
in ref. [8] and in this work are correct*. Concerning the tree-graph contributions we 
re-calculated the four p.c. helicity cross sections Hu+ L, HL1, Hm and HL3, which 
were also calculated in ref. [5]. The two p.v. tree-graph structure functions were 
calculated in ref. [8]. The tree-graph I R / M  integration regions are defined via an 
invariant mass cut-off y <~ (Pi +pj)2/q2 (i v~j = 1 . . . .  ,4). If  any of the 6 invariant 
masses s i j =  (pi+pj)2 is smaller than yq2 the event is called a 3-jet event. The 
integrations within this I R / M  region were then done up to O(y  °) accuracy, i.e. we 
included In y, In 2 y and constant terms in our result**. In the O(y  °) approximation 
the tree-graph contributions have a rather simple structure: one has an universal 
I R / M  factor which multiplies the Born term structure [5, 8]. We have checked that 
the integrand that leads to the universal I R / M  factor after I R / M  integration is 
identical to the corresponding integrand in the tree-graph calculation of the trace of 
the hadronic tensor in ref. [7]. It  is also important to state that the overlapping 
singularities occurring in the tree-graph integrand have been integrated using the 
"direct-dressing approach" of ref. [5] (see also ref. [12]), i.e. they have been 
integrated in the domain where for any pair of momenta  (pi+pj) 2 ~yq2 (i-4=j) 
without partial fractioning of the overlapping divergencies. It  is well-known that the 
"par t ia l  fractioning approach" differs from the direct-dressing approach by finite 
term contributions [12]. The two approaches differ by apportioning finite term 
contributions differently to the O(as 2) 3-jet and 4-jet domain [12]. The appropriate 
4-jet Monte Carlo that continuously fits on to our 3-jet definition is the usual one 
where the 4-jet domain is defined by (Pi +pj)2 >~yq2 for allpi and pj (i :g j ) .  

3. Lorentz invariant cross sections 

For  unpolar ized beams the 3-parton cross section e + ( q + ) e - ( q _ )  

q(Pl)q(Pz)g(P3) is given by (see e.g. ref. [13]) 

(4) ~,~ (3.1) d o =  (2~a/qZ)2[gll(Qf ]l(1)M~tv -t- g44(Qf)Lp,2,H14)] dLIPS  O) ! ~ t v  ** (1) 

The polarized-beam cross section is treated in appendix A. 
The Lorentz-invariant phase space in eq. (3.1) reads 

d3pl d3p2 d3p3 

dLIPS (3) = (2~r)4 8 ( Pl + P2 + P3 - q) (2rr)32E1 (2~r)32E2 (2~r)32E3 " (3.2) 

* Some printing errors in ref. [11] containing the p.v. case have been corrected in an Erratum [8]. 
** For the present discussion we assume that the invariant mass cut y is always chosen small enough so 

that the IR/M integration region is determined by the nominal y-cut and not by 4-body kinematics 
close to the 2-jet limit. See ref. [12] and the discussion in sect. 5. 
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The weak-isospin-dependent coupling coefficients gll(Qr) and g44(Q r ) specify the 
electroweak-model dependence. In the standard Weinberg-Salam model one has for 

Q , = 2 ( u , c , t )  

gal =4~ - ~(-14 +4s in2Ow)( l_~s inaOw)Rex  z 

+ [ ( - 1  + 4sin20w)2 + 1 ] [ ( 1 -  38sin20w) + 1]lXzl 2 

g44 = 4 R e x z -  4 ( - 1  + 4sin20w)(1 - 8sinZ Ow)lXzl2 (3.3) 

_ 1 b )  Q f -  - ~ ( d , s ,  

gl l  = 19 + 2 ( - - 1  + 4sin2Ow)(-1  + 34sin20w)Re Xz 

+ [ ( - 1  + 4sin20w)2 + 1] [ ( - 1  + 4sin20w)2 + 1][Xzl 2 

gnz= 2 R e x z + 4 ( - l  + n s i n 2 0 w ) ( - l  + asin20w)lXz12, (3.4) 

where 

gM2zq 2 G F 
Xz = q2 _ M27 + iMzF z , g 8~/2rra 

- -  --- 4,49 × 10 -5 GeV -2. (3.5,3.6) 

The parity-conserving lepton tensor L~  and the parity-violating lepton tensor 
L (4) are given by ,o.I, 

_ 1 2 L(1)-----,~u (2/q2)(q+~q-. + q-~q+. ~q g..) 

L(~ = ( -  2i/q 2) e.~l~q+" q ~_, (eox23 = +1).  (3.v) 

The p.c. hadron tensor H~ ) and the p.v. hadron tensor H~ 4) are defined by 

spins 

H~ 4)= ~ ( qUtg j v O ) ( q~gl JS ]O ) , (3.8) 
spins 
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We shall present our O(as) and O(a~) QCD results in sect. 4 using a standard set 
of hadron tensor invariants defined by the covariant expansion 

( - q~q--~ ) H~ 1)= g~ q2 111 + (I /q2)pl~Pl~H2 

+ (1//q2)/32t,~z~H3 + ( 1 / q  2) ( pl~/32~ +/31v/32~,) H4,  (3.9) 

H(~ ) = (1/q2 ) ie~,q~q"( pitH6 + p2¢H7 ) , (3.10) 

where /3i~ = P i ~ -  (piq/q2)q~. In the most general 3-particle final state case there 
are one more p.c. invariant H 5 (multiplying the covariant /31~/32~ -/31~2~) and two 
more p.v. invariants H 8 and H 9 (multiplying the covariants (~i,e,q~rp~p#p~ + I* "~ 
v), i = 1,2) in the general expansion (3.9) and (3.10). Their contributions are 
determined by the imaginary parts of the hadron tensor H~. These can be shown to 
vanish in massless QCD at O(a 2) [11,14]. It is now straightforward to evaluate the 
lepton-hadron contractions L~H ~'~ occurring in eq. (3.1). One has 

p.c. case: 

L(1)/4~ = - 2 H  1 + ( 4 / q 4 ) ( p t q + ) ( p l q ) H 2  + ( 4 / q ' ) ( p 2 q + ) ( p 2 q ) H 3  

+ (4 /q  4) [( Ptq-)(Pzq-)  + ( Plq-)( P2q+ )] 9 4 '  (3.11) 

p.v. case: 

t 4)/-l/*v = - (2/q2)[pt(q - q+)] H 6 - (2/q2)[p2(q - q+)] H 7. (3.12) 
/~v  " "  (4) 

4. Invariant structure functions up to O(a~) 

As described in sect. 2 one obtains the invariant structure functions from the sum 
of 1-10op and tree-graph contributions. I R / M  singularities cancel among the two 
contributions and the remaining UV singularities are subtracted using the MS 
renormalization scheme. One has (C v 4 = g, N c = 3, Nf = number of flavours) 

p.c. case 
i =  1,2,3: 

Hi=32~r2CFNcBi~{1+-~-~[½Nc(I~(tree)+-~I~i(loop)) 

+ (CF-- ½Nc) /4(tree) + ~Hi ( loop )  + ( ~ N f -  ~Nc)Hf( t ree )  , 

(4.1) 
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where the B; denote the Born term functions 
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x21+ x22 4 
B I =  --  ( 1 - - X 1 ) ( 1 - - X 2 )  ' B 2 = B 3 =  - ( 1 - x l ) ( 1 - x 2 ) '  (4 .2 ,4 .3)  

and where the remainders of the universal " I R / M "  factors (after removal of the 
singular pieces) are given by 

/4(tree) = 25 ~ 2 T + 3 ~ r  --ln2y13 ln2y23--41n2y--31ny+41nyln(y13Y23), 

/ ] ( tree)  = 7 + ~r 2 -- In Y12 - 21n2 Y -- 31n y + 41n y In Yx2, 

He(tree) = - _{ + In y .  (4.4) 

We have used the usual scaled energy variables x; with 2p;q = x i q  2 and 2p;pj = 
yijq e = ( 1  - xk)q 2 (k 4= i, j).  

For H a there is no 0 (%)  contribution and consequently also no O(a 2) "tree" 
contribution in the O(y °) approximation. One has 

2 

H4 = 32~r2CvNc(~--~ [½Nc/ ]4 ( loop)+  ( C F - - ½ N c ) / ] 4 ( l o o p ) ] .  (4.5) 

The "loop" contributions /4i(loop) and /]i(loop) are listed in tables 1 and 2. Note 
that the classification in terms of (tree) and (loop) contributions is somewhat 
arbitrary in that the finite contributions can be re-distributed among the two. In 

TABLE 1 

Q C D  loop contributions to 4 p.c .  structure functions H;. Entries denoted by ~ s are 
obtained from their left neighbours by interchanging 1 and 2. Entries denoted by 

? s are obtained from their upper neighbours by interchanging 1 a n d  2. 

The scaled energy variables x i and ))j are defined after eq .  (4 .4) .  

Q C D  In v23 lnyl3 r(Y13,.v23 ) 

'qs 

(1 x 3 ) ( x  I + x2) 
7 - B] + - 3  ~2 - In Y23B1 ~ s 2B l 

2 x 2 ( x  1 + X2) 2x~ 6 
7"B2÷ Xl(l Xl)(l x2) X~(1 -- X l ) ( l  -- X2) - In y23B2 (I ~l)(l v2) In .F13B2 

- 6  2x~ 
T s In Y23B2 In ),13B2 

(1 - - x l ) ( 1  - x2)  

x 1 + x 2 2 - 2  (1 x , ) ( 1  x2) + 

XlX2 x12(1 x l ) (1  x2)  

-- 2B 2 

3"s 
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exception are the y-dependent terms which truly come from the tree-graph contribu- 
tions. Following the terminology of ref. [4] the "tilde - "  contributions denote ^ 
QCD-type contributions and the "hat  " contributions denote QED-type contribu- 
tions. 

p.v. case 

H 6 = 32~r2CFNcB6(cq/27r) 1 + ~ ½Nc(/~(tree ) + (1/B6)/46(loop)) 

( 1A )]) 
× (C F - ~Nc) /~(tree) + ~66 H6(loop) + ( ~ N  e -  ~Nc)Hr( t ree)  

H 7(1,2) = - H  6(2,1) 

(4.6) 

(4.7) 

and the Born term function is given by 

2x 1 
B6 = (1 - Xl)(1 - x2) " (4.8) 

The H(tree) appearing in eq. (4.6) are the same universal " I R / M "  factors as given 
in eq. (4.4). The loop contributions are given by 

(1 -- X3)(2 -- X3) 
II6 (loop) = B 6 [7 + In 2 J13 q- ln2 Y23 q- 2r( Y13, Y23)] + 

x1(1 - xt)(1 -x2)  

5xlx 2 - 3(1 - x 3 )  

-l Y'3x=(1-x0(1 
X2(XIX 2 + 1 - x3) 

+ l n y 2 3 x ~ ( l _ x D ( l _ x 2  ) (4.9) 

&(loop) = -(9+l~Y12)B6 

x~(1 -x3)  + 2 0  -X l ) [X i (X ,  +x2) -x3(1 --X3)] + 
xlx3(1 - & ) ( 1  -x2)  

X2(1 -- X3) + X 3 --  X 1 

+21n Y12 x~(1 - x1)(1 - x2) 
+ l n y , 3 3 ( 1 - x D ( 1 - x 2 )  +2x2(1 --X3) 

x2(1 --Xl)(1 --x2) 

(1 -X l ) (1  - x 2 ) ( x  3 - x 1 )  - 2(1 - x 3 )  2 
+1n23 x?(1 -X l ) (1  - x 2 )  

( 1 - x 3 ) ( x  1 -x3)  
+2r(y l2 'Y l3)  (1 --x1)2(1 --x2) --2r(y12'Y23) 

2X1(1 --X2) +X2(1 --X3) 

(1 - & ) ( 1  - - X 2 )  2 

(4.1o) 
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r (x ,  y )  = l n x l n  y -  l n x l n ( 1  - x )  - l n y l n ( 1  - y )  - L 2 ( x  ) - L 2 ( y  ) + ~ r  2 

(4.11) 

and where L2(x ) is the Spence function defined by 

L 2 ( x ) =  - fo xdz ln(1-- (4.12) 

5. Thrust distributions of helicity cross sect ions 

For  the presentat ion of  experimental results and their compar ison with Q C D  
predict ions it is convenient to write down the cross section in the e+e c.m. frame 

in a noncovar ian t  frame-dependent  way. One chooses a hadronic  reference frame 
whose orientat ion relative to the beam ( ~- laboratory) frame is specified by three 
Euler angles 8 ,  X and % In the case where there is no  beam polarization the cross 

section does not  depend on the third (azimuthal) Euler angle % In  this case one has 

(see e.g. ref. [13])* 

do  

dcos 8 d x d x  1 d x  2 

_ 1 4rrot2{g11(Qf)[3(1.. + c o s 2 8 ) H  U 
64~r 2 3q 2 

+ 3sin28 H E + ] sin28 cos 2 X HT -- (3/2V~-)sin 2 8  cos X Hi] 

+gn4(Qf )  [3cos 8 H p - ( 3 / v r 2 - ) s i n  8 cos X HA] } . 

(5.1) 

The x~ are the scaled par ton energies in the c.m. frame 2p~q=xiq 2. For  the 
definit ion of  the Euler angles 8 and X we refer to refs. [13,15]**. These references 
also contain  complete beam-polarizat ion formulas. The helicity cross sections ap- 
pearing in eq. (5.1) are defined by linear combinat ions of the helicity components  of  

* Possible angular dependencies proportional to sinOsin X, sin2Osin2x and sin2Osin X are not 
included, because of the aforementioned vanishing of the contributions of the imaginary parts of the 
l-loop contributions for mass-zero quarks. 

** Note that refs. [10,15] have a different convention for X. The relation is X ~ ~r - X- 
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the hadron tensor in a given hadronic reference frame. They are 
(i) p.c. case 

H u = H+++ H_ = H11 + 922 

H L = Hoo = H33 

H. r = R e H + _ =  ½ ( - H l l  + H22 ) 

H I = ½Re(H+0 - H_0)  = ( -  1/2(2)(H31 +/-/13 ) , 

(ii) p.v. case 

567 

(5.2) 

He= H++- H__= - i (a l2 -  a21 ) 
- i  

H A = ½Re(H+o + H_0)  = 2 ~  (H23 - H32), (5.3) 

where H, , ,  = e~'(m)H~,~e*"(n), st(0 ) = (0;0,0,1) and ez(+)  = (1/~/2)(0; T-l, - i , 0 ) .  
Let us mention again that in massless QCD the above six helicity cross section 
suffice to specify the orientation of 3-jets up to O(a 2) even in the presence of beam 
polarization [11,14]. We shall present our numerical results in terms of the thrust 
distribution [16]. The thrust of a 3-jet event is determined by the scaled energy x i of 
the most energetic jet. The most energetic jet also defines the thrust axis. We discuss 
the thrust distributions of the four p.c. helicity cross sections in eq. (5.1) in the 
manner of ref. [2] which contains the O(as) results. O(a~ 2) thrust distributions of the 
p.v. helicity cross sections H e and H A have already been discussed in ref. [8] and 
will not be presented again in this work. We shall specify the hadronic system such 
that the thrust axis (most energetic parton) is the z-axis and the second most 
energetic parton determines the positive x-axis*. Such hadronic frame specification 
has the advantage of requiring no flavour identification. We need, however, to 
introduce the six helicity frames (i, j )  (i, j = 1, 2, 3) where the z-axis is along parton 
i and parton j lies in the positive (z, x) half plane. Next, we need to relate the 
helicity cross sections to the invariant structure functions in each of the six helicity 
frames. For the (1, 2) helicity frame (Lund system) one obtains 

X 
Uol  = - 2 n  1 + ~12 H3 , 

H ~  = - H ~  + aXlH~ + ¼ M~ + }Z3H4 , 

X 1 
H~n = - ~ x ~ / / 3 ,  

1 Z 3 1 
~ -  v/XH4 (5.4) 

2v~- x f  

* Hadronic event frames with the 3-axis in the event plane are referred to as helicity frames. 
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Z k = x i x j c o s 6 ) i j  = (1 - xi)(1 - x j )  - (1 - x , ) ,  

2 V ~  = x i x  j sin O i j =  2~(1 - xl)(1 - x2)(1 - x3) (5.5) 

and @ij is the angle between parton i and j .  The corresponding expression for the 
(1, 3) helicity frame is obtained from eq. (5.4) by vrX ~ - f X ,  i.e. o I ~ - o I. The 
frame dependence of the helicity cross section has been annotated by adding the 
3-axis as an index. H I requires specification also of the x-axis. In our notation 
Hn3 = - H I 1 2 .  The corresponding relations for the (2,1) and (2, 3) helicity frames 
are obtained from those of the (1, 2) and (1, 3) helicity frames by 1 ~ 2 exchange 
which also implies the exchange of H 2 and H 3. 

For  the (3,1) helicity frame we obtain 

x2Hu3 = - 2x2H1 + X (  H 2 + H 3 - 2H4) , 

1 2 1 2 1 
X2HL3 = - x 2 H 1  -}- ~ Z 2 H  2 q- ~ Z l H  3 q'- ~ Z 1 Z 2 H  4 , 

2X2HT3 = X ( - H  2 - H 3 + 2 H 4 )  , 

2~I2x2HI31= v / X ( - Z 2 H 2  + Z I H  3 - ( x ? -  x 2 2 ) H 4 ) .  (5.6) 

The corresponding expressions for the (3,2) system are obtained from (5.6) by 
f X  ---, - v/X *. We are now in a position to present and discuss the thrust distribu- 
tions of the various helicity cross sections. In the O(as)  case the necessary energy 
integration can be done analytically [2] whereas the complexity of the O(a  2) 
expressions requires a numerical integration. The numerical results depend of course 
on the choice of the I R / M  resolution parameter which is the invariant mass cut 
parameter  y in our case. We shall present curves for the two choices y = 0.01 and 
y = 0.04. The smaller value y --- 0.01 is a better choice since it minimizes two sources 
of errors that have been incurred in the QCD calculations leading to the analytical 
results in sect. 4. The first error is of O(y )  and derives from the accuracy with which 
the I R / M  tree-graph integrations have been done. The second error is kinematical 
in nature and is of O ( l n ( y i J y ) )  in those regions of phase space close to the 2-jet 
region where the I R / M  region is not bounded by the nominal invariant mass cut y, 
but by the kinematic boundary characterized by some invariant mass Yij < Y- These 
are the regions of phase space with high thrust values: high thrust values can be 

* In the Lund MC one also needs to evaluate the two p.v. helicity cross sections Hp and H A in terms 
of the invariant structure functions H 6 and H 7 in the (1,2) system. The relations are 
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realized by  par tons  only if energy goes into forward mot ion and not  into invariant 

mass. Since this second source of errors can become quite impor tant  for higher 

thrust  values and since this source of  errors is not  widely appreciated in the 
li terature we have to take a deeper look at the 4-parton kinematics in order to 

determine the range of validity of our approximate  tree-graph evaluations. The 
I R / M  integrations on the tree-graph contributions have been done in the respective 

c.m. systems of  the unresolved par ton pairs. For  definiteness we choose the ( p  t, P3) 
c.m. system. Le t /3  be the polar angle of par ton 4 relative to par ton 2. One has the 

kinematical  relation [7]: 

Y13Y24 

½ (1 - cos/3 ) = Y134Yl 2 3  - -  Y13 (1 -- Y24 ) ' (5.7) 

where Yijk = Yij + Yik + Yjk- The kinematical requirement cos/3 >/ - 1  translates into 

Y134Y123 >~ Y13" (5.8) 

Similar kinematical  conditions hold for the other c.m. systems corresponding to the 
other  5 unresolved par ton pairs. Using 3-parton variables these kinematic condi- 

t ions translate into 

( 1 - x i ) ( 1 - x j ) > ~ y ,  i =/=j = 1 , 2 , 3 ,  (5.9) 

where we have now substituted the nominal  invariant mass cut y for the respective 

par ton-pa i r  invariant masses. In  fig. 1 we have plotted the 3-parton phase space 

together  with the boundary  curves (5.9) for y = 0.01 and y = 0.04. We have also 

X2  

1.C 

0.5 - ~ . ~ \  i J I l L / T - - 0 . 9  

• N \  " I 

0.5 1.0 xl  

Fig. 1. 3-parton phase space. Full lines: Boundary curves of regions where invariant mass integrations 
on unresolved parton pairs in the 4-parton case are determined by nominal invariant mass cuts y = 0.01 

and y = 0.04. Dashed lines: Lines of constant thrust T = 0.8, 0.9 and 0.95. 
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drawn lines corresponding to the thrust values T = 0.8, 0.9 and 0.95. One can easily 
convince oneself that the kinematic constraint (5.9) is satisfied for thrust values 

T ~  1 -  V~-. (5.10) 

This implies that the second source of errors deriving from 4-parton kinematics 
close to the 2-jet limit sets in for T>~ 0.9 and T>_-0.8 for y = 0.01 and y = 0.04, 
respectively. Only a detailed MC study can reveal how large this thrust dependent 
error becomes for large thrust values. The calculations of ref. [12] indicate that these 
errors can become rather large (>_ 30%) for thrust values T/> 0.95. 

After this long but necessary detour we now proceed to present our results for the 
thrust distributions of the helicity cross sections HU+L, Hu, HE, H v and H I. In 
figs. 2a 2e we have drawn the O(a~) thrust distributions along with the O(a  2) 
curves for the two cut-off values y = 0 . 0 4  and y =0.01.  We have chosen to 
normalize the helicity cross sections to a normalization factor N which includes the 
total cross-section ratio calculated to O(as 2) in the MS scheme. We take 

N = 192~r 2 [1 + (aJrr) + (1.986 - 0 . 1 1 5  Nf)(as/rr) 2] (5.11) 

with Nf = 5 and a S = 0.18. Depending on the choice of the jet-resolution parameter  
y the O(as)  results are changed upward and downward for y = 0.04 and y = 0.01 
over most of the thrust range. The percentage changes of the cross-section values 
[HA(a 2) - Ha(as)]/HA(as) (A = U + L, U, L, T, I), for the above cut-off values 
are plotted in fig. 3. For y = 0.04 the biggest percentage change occurs for H I over 
most  of the thrust range, followed by H u, Hu+ L, H a, and H E in that order. For 
y = 0.01 this order in the percentage changes is reversed. This implies that those 
parts of the O(a  2) corrections that are independent of y are positive and their 
relative contributions are largest for H I, followed by Hu,  Hu+L, Ha- and H E in 
that order. A comparison of fig. 2c (HE) and 2d (HT) shows that the O(as)  result 
2 H  T = H E is not changed very much at the O(a  2) level. This was investigated in 
more detail in ref. [16] where the O(a  2) corrections to the O(as)  relation 2 H  T = H E 
were calculated and found to be very small (of O(l°/00)).  In particular, this implies 
that the polar-angle distribution of the normal to the 3-jet plane is 1 - ~ cos 2 0  to a 
very high level of accuracy (O(l°/00))  even at the O(a  2) level (O is the polar angle 
of the normal of the 3-jet plane w.r.t.: the beam axis) as explicitly calculated in ref. 
[17], In fig. 4 we present our O(a  2) results for the polar asymmetry parameter  
a (T) -  a(T) determines the polar-angle dependence of the cross section, i.e. o(O)  0c 
1 + a(T)cos 2 O, where O is the polar angle of the thrust axis relative to the beam 
axis. For y = 0.01 the O(a~) result is not very different from the O(as)  curve, 
whereas for y = 0.04 the asymmetry is corrected upwards by more than 10% over a 
significant range of thrust values. It is clear from what was said above that the 
O ( a  2) curves should not be trusted much beyond thrust values T >  0 . 9 -  0.95 for 
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y = 0.01 and not much beyond T>~ 0.8 - 0.85 for y = 0.04. Therefore the O(a~ 2) 
curves in figs. 2 and 3 are only drawn up to thrust values T =  0.95. The O(as)  
distributions drawn in figs. 2 and 3 are of course accurate beyond T = 0.95 and are 
drawn to their singular and nonsingular limits at T = 1. From a practical point of  
view the choice y = 0.01 or even a smaller value of y is to be preferred since it 
minimizes  the error of the O(y  °) approximation and extends the thrust range where 
the analytical O ( y  °) results may be applied. On the other hand, this choice may be 
smaller than the typical hadronization scale at a given energy and may thus be 
unjustified from the physics point of view. In such a case one would use our 
analytical results for a small cut-off value y =Ymi, and fill up the phase space 
between Ymin ~< Yi/~< Yphysical with Monte-Carlo generated events. 

We finally remark that it would be interesting in principle to study the depen- 
dence of the O((x~) 3ojet cross section on the resolution parameter y. However, at 
present energies, the experimental resolvability of jets is primarily determined by 
soft-hadronization effects and not  by the invariant mass criteria of  the parton pairs. 
Therefore it seems to be impossible to study the detailed cut-off dependence of our 
O((x~) predictions at present, except possibly for the overall features of  the y-depen- 
dence as indicated in figs. 2 and 3. 
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6. Summary and conclusion 

We have presented analytical formulas that allow one to describe the space 
orientation of O(a 2) 3-jet events. These formulas are simple enough to be easily 
incorporated into present Monte-Carlo event-generation programs. By generating 
oriented O(a~) 3-jet events one could account for detector inhomogeneities when 
analyzing experimental data on 3-jet events. Vice versa one could check the O(a~) 
QCD predictions for the orientation of 3-jet events. Using the results of this paper it 
is not difficult to calculate orientation effects in energy weighted cross sections or in 
energy-energy correlation. Results of calculating O(a 2) effects in the charge asym- 
metry of 3-jet production and for the gluon polarization have been given in ref. [18]. 

The present work completes the theoretical program of evaluating the O(a 2) 
corrections to oriented 3-jet events for massless quarks. The corresponding calcula- 
tion for massive quarks has not yet been done so far. Although technically difficult 
it would be a worthwhile undertaking since it would allow one to continuously join 
the O(a~) 3-jet and 4-jet regions where mass effects are routinely included. 

Our results are approximate in the sense that we evaluate tree contributions to 
O(y  °) in well-defined 3-jet regions. The additional theoretical effort necessary to 
include higher order y-contributions and to exactly account for the kinematic effects 
close to the 2-jet limit is forbidding and also not warranted since the errors of our 
approximations can be minimized by choosing small values for the invariant mass 
cut-off y. 

We would like to thank A. Ali, G. Ingelman, G. Kramer, B. Lampe and 
T. Sj6strand for informative discussions. 

Appendix A 

B E A M - P O L A R I Z A T I O N  EFFECTS 

In the presence of beam-polarization effects the 3-parton cross section formula 
eq. (3.1) has to be generalized to 

~ (r') ~v do = (2~re~/q2) 2 gra(Qf)L,~ H~I ) 
[ r ' = 1 , 2 , 3 , 4  

+ E gr'4(Qr)L~'~H~ 1 dLIPS°) (A.1) 
r ' = 1 , 4  
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The components  of the electroweak coupling matrix needed in (A.1) read 

_ a 2 2 gll = Q2 2 O e v v f R e x z  + (v2 + a2) (v~  + f)lxzl , 

g14 = 2Qf v a f R e x z  - (0 2 + a2)2vr ar lxz[  2 , 

a 2 2 g21 = Q~ - 2Qfvv f  Re  x z  + ( v 2 - a2)(v~ + f )lxzl , 

g31 -- - 2 Q e  aVr Im Xz,  

a 2 2 
g41 = 2Qf avf Re Xz - 2va (v~ + f )lxzl , 

g44 = - 2Qe aa r Re Xz + 4vavf a r l x z l  2 , (A.2) 

where we have not yet specified the electroweak parameters v, a, of and af in terms 
of the Weinberg-Salam model as in sect. 2. v and a, and vf and af are the 
electroweak vector and axial-vector coupling constants of the leptons and quarks, 
respectively. In the standard Weinberg-Salam model one has v = - 1  + 4sin 2 0  w 
and a = - 1  for the leptons, uf = 1 - -  ~sin20w and a f =  1 for u ,c , t  quarks ( Q f  = 2) ,  

and v f=  - 1  + ~sin20w and a t =  - 1  for d ,s ,b  quarks ( Q f =  - !)3" The Z 0 propa- 
gator factor Xz is defined in eq. (3.5). 

We have written the cross section (A.1) in a form which is more general than 
needed for the present discussion of mass-zero quarks. The form (A.1) facilitates the 
inclusion of massive-quark effects which can be easily accomplished using eq. (A.1), 

(see ref. [13]). The lepton tensors L~ ~2 take their simplest form in the laboratory 
beam system ( - o v e r a l l  c.m. system). We specify the laboratory beam system as 
follows: z-axis in e--direction, x-axis in the accelerator plane pointing inward 
(along the Lorentz force). The lepton tensor has only (x, y )  components in this 
system due to current conservation and due to the chirality-preserving vector and 
axial-vector current interactions. The nonvanishing components of the lepton tensor 

read 

L 1, = L~2 = (1 + ~;fz+),  

L]2=  - L a l = - i ( f z + 4  +) ,  

L11 = - L2~ = - ( ; ;  f~ + -  f ; ~ ; ) ,  

L~2 = L 2 ~ :  - ( f ;  fy  + f ; f ; ) ,  

L~I = - L~2 = ( f ;  f ;  + fy  f~ + ) ,  

-- 4- -- + 

L141 = L 4 2  = ( f z  q- f f ) ,  

LI: = -Lg~ = - i ( 1  + ; ; ~ + ) .  (A.3) 
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The ~ ±= ( f+ ,  fy+, f+)  are the polarization vectors of e + in the laboratory beam 
frame as specified above. Thus ~+ and f+  denote the transverse beam polarization 
in and out of the accelerator plane and f3±(- -- T h -+) the longitudinal polarization 
(helicity) of e +. For natural transverse beam polarization of degree P one has 

+ = (0, _+ P, 0). This explicit representation of the lepton tensor can then be used to 
evaluate the invariant product L,~H ~ in the laboratory beam system using the 
O(a 2) hadron tensor components as specified in sect. 3. 

Appendix B 
LONGITUDINAL CROSS SECTIONS 

The Lund MC requires the dynamical QCD input in terms of the helicity cross 
section in the (1, 2)-system (q along z; C 1 in the pos. (x, z) half plane) [10]. These can 
be calculated from the invariant cross sections as described in sect. 5. It turns out 
that a much more compact form exists for the p.c. O(a 2) results in terms of Hu+ L 
and the longitudinal cross sections HLI, HL2 and HL3 along q, ~ and g as defined 

in sect. 5 
Hal = H,,.p¢p~/E, 2 . (B.1) 

These scalar cross sections arise naturally in the O(a 2) 3-jet calculation when tensor 
integrands have to be scalarized. 

The (1, 2) helicity cross sections are related to Hu+ L and the HLi in the following 
manner 

Hu1 = Hu + L - HL1, 

HL1 = HL1, 

1 HT1 = 5 a u +  L + ( 1 / 4 X ) [ ( x ~ Z  1 + 2 X )  HL1 + x2Z2HL2 -k x2Z3HL3], 

H n 2 =  ( -  1 /4  2v/2v/2¢~-X) [ (x2 2 -  x 2 ) H L I -  x2HL2 + X2HL3], (B.2) 

where Z i and X are defined in (5.5). 
For the Ho+ L and HLi one has (A = U + L, L1, L2, L3) 

O/s O~ s 
= 32rr 2CFNc B A ~ -  {1 + ~ - [  1Nc(H(tree) + HA (loop)) 

+ ( C  v - }Nc) (/~(tree) +/~A (loop)) + (½N F - ~Nc)Hr( t ree) ]  }, 

where the Born term functions B A are given by 

By+ L = 2(x 2 + x2) / (1  - xl)(1 - x2), BL1 = 4(1 -- x 3 ) / x  ~, 

BL2(] , 2) = BLI(2, 1), BL3 = 8(1 -- X 3 ) / x  2. 

The tree-graph contributions appearing in eq. (B.3) are listed in eq. (4.4). 

(B.3) 

(B.4) 
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For the loop contributions one has (Yij = 1 - xk) 

/-Iv + u(lOop) = ~,/Bu+e, 

2/~L, (loop) = 2 HL2 (loop) = 1, 

2/1L3 (loop) 
Y13+Y23 Y~3 Y~3 

m 

2y12 2Y12(Y12 +Y13) 2y12(Y12 +Y23) 

+ ½In Y13 
Y13Y23 + 2( Y12 + Y23)( Y23 -- Y13) 

(Y12 +Y23) 2 

+ ½In Y23 
Ya3Y23 + 2(Y12 +Y13)(Ya3 -Y23) 

(Y12 +Y13) 2 

/~u + L (loop) = ~,/B U + L, 

2/4el(loop) = -- 1 + 21n Y23 + - -  
2y13 Y13 

+ 2 In Y12 
Y13 + Y23 

--2r(Yt2, Y13) + 2Y12r(Y12, Y23), 
Y13 

( Y13 + Y23 )2 

/~L2(loop; 1,2) = /-}el(lOop ; 2, 1), 

2/~L3 (loop) = 2 In 712 + 
YI3+Y23 Y~3 

2y12 2y12(Y12 +Y13) 

y2 

2y12 (Yl2 +Y23) 

(2 - Y13 ) Y23 
+ ½1n Y13 

(Yl2 +Y23) 2 

(2 - Y23) Y13 
+ ½1n Y23 (Ya2 +Y13) 2 

-r(y12, Y13) - r(Y12, Y23), (B.S) 

where r(x, y) is defined in eq. (4.11) and where the functions g and ~ are given by 

[ Y12 q- Y13 
g(Y13' Yz3)=ln y1314-~12+ y23 

[ Y12 + Y23 
+ In Y23 [4y-~12 + ya3 

+ b 

Y13Y23 ] 
(Y12 +Y23) 2 

Y13Y23 

(Y12 +Y13) 2 

Y12 Y12 Y12 Y12 + - - + - - + - -  
Y12 + Y13 Yl2 + Y23 Y13 Y23 

Y13 Y23 + - - + - - ,  
Y23 Y13 
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2y12 
g(Yl3, Y23) = 41n [ [Y13 Y12 - - -  

+Y23 

4y12 
+ In Y13 

712 + Y23 

- - +  

m +  

(Y13 +Y23) 2 

2y13 

Y12 + Y23 

Ya3Y23 ] 

(Y12 +Y23) 2 

4y12 2y23 Y13Y23 ] 
+ In  Y23 

Y12 q-Y13 Y12 q-Y13 (Y12 q- Y13) 2 

Y122 + (Y12 +Y23) 2 
- 2 r (y t2 ,  Y13) Y13 

Y13Y23 

Y22 + (Y12 +Y13) 2 Y12 
-2 r ( y12 ,  Y23) + - -  

Y13Y23 Y12 -1- Y13 

Y12 4Y12 Y12 Y12 YI3 Y23 + - - + - -  
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(B.6) 
Y12 + Y23 Y13 + Y23 Y13 );23 Y23 Y13 

Since (B.6) is already contained in the present O(a  2) MC programs the inclusion 
of  the correct  O(a~)  beam-orientat ion and beam-polarizat ion effects requires as an 
addi t ional  Q C D  input only the rather compact  expressions (B.5). 

The  invariant  structure functions H i (i = 1 . . . .  4) needed for the Ali et al. Monte  
Carlo can in fact also be calculated from the set HU+L, HL1 , HE2 and HL3 by 
invert ing the appropriate  relations in sect. 5. One obtains 

H 1 = - n u +  L - ( 1 /4X) (x2Z1HL1  -{- x 2 Z 2 H L 2  q- x 2 Z 3 H L 3 ) ,  

H 2 = ( x 2 / 2 X 2 ) [  - 2XHu+ L - -  x ? Z I H L 1 -  (x22Z2 -Jr 2X)HL2- x 2 Z 3 H L 3 ] ,  

H 3 = ( X 2 / 2 X 2 ) [ - 2 X H u + L - ( X 2 Z I  + 2 X ) H L I - X Z Z 2 H L 2 - X Z Z 3 H L 3 ] ,  

114= ( 1 / 2 X 2 ) [ 2 Z 3 X H u + L  + x2 (3X  + x2Z2)HL1 -b x2(3X + x2Z1)HL2 

x?x )MLd. 
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