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Abstract. It is shown that for non-vanishing lattice spacing, conventional
infrared power counting conditions are sufficient for convergence of lattice
Feynman integrals with zero-mass propagators. If these conditions are supple-
mented by ultraviolet convergence conditions, the continuum limit of such a
diagram exists and is universal.

1. Introduction

In a recent paper [1] we have proposed a convergence theorem, which states
existence of the continuum limit for a wide class of Feynman integrals with a lattice
cutoff if certain ultraviolet (UV) power counting conditions are satisfied. What is
counted are lattice divergence degrees in Zimmermann subspaces, ie. in affine
subspaces of the integration momenta. To avoid infrared (IR) singularities, we had
assumed all propagators to be massive. In the present article we extend the
considerations to integrals containing zero-mass propagators. While the lattice
provides a UV-cutoff, IR-singularities are expected to be quite the same as for
continyum diagrams. As will be shown, IR-power counting conditions similar as
for continuum diagrams [2—5] are sufficient to guarantee the convergence of lattice
Feynman integrals, at least for non-vanishing lattice spacing. If these conditions
are supplemented by the UV-power counting conditions of [1], the continuum
limit of the Feynman integral exists and coincides with the formal limit, i.e. it is
given by the integral resulting from the ¢ — 0-limit in the integrand.

This article is organized as follows. At first, in Sect. 2, the notion of an IR-degree
is introduced in a form which is similar to the definition of a UV-degree in [1].
The power counting theorem for Feynman integrals with zero-mass propagators
is formulated in Sect. 3. As in the massive case, the denominator of a Feynman
integrand can easily be treated, whereas the numerator must be estimated in such
a way that UV- as well as IR-power counting conditions are taken into account
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{Sect. 5), and such that the corresponding estimates have a well defined cutoff
behavior. This behavior can be determined using the auxiliary theorem stated in
Sect. 4. Applying the auxiliary theorem and using the estimate of the numerator,
the proof of the power counting theorem is given in Sect. 6. Finally, the last two
sections are devoted to the proof of the auxiliary theorem.

2. IR-Degrees on the Lattice

Throughout this paper we will use the notations, definitions and statements of [1],
especially the function classes %,,, ¥ and %;,, ¢° and #. We shall use multi-indices
to simplify the notation. Set Ny =Nu {0} ={0,1,2,...}. For beN}, uecR" define

n
bl=b,-b L, ub=uli1"‘u2", |b|sz;
i=1

We now define an IR-degree for functions in %, depending on variables u (“internal”
momenta), v, g (“external” momenta) and the lattice spacing a.

Definition 2.1. 1. Let meZ and V(u,v,q; a)e¥,, of the form
Viu,v,q;a) = a—lmF (ua, va, qa). 2-1)
For given g let s, be the largest non-negative integer such that
(%F(ua, va, qa))Fo =0 inmvand a>0, forall ceNj, |cj<s,. (2-2)

Then the IR-degree of V' with respect to u is defined by
degr,,V=s,. (2-3)
2. Let Ve¥%, V=> V, V%, for some meZ, m; #m, for i # k. Then we define

ief

degr,, V= mlln degr,, V. (2-4)

An equivalent definition is the following. For Ve%, s, = degr,, V if and only

if
V(Zu,v,4;0) = B(u, v, a) 2% + O(4* "), A-0, (2-5)

where B{u,v,q;a) % 0 in u, v, a, for fixed ¢ (B is a polynomial in 4 and C® in v).

It is important to note that this IR-degree may depend on the external momenta
g. Following common use, we write all momentum variables which are not fixed
as subscript in degr, e.g. u,v in (2-3). If 8°F(ua,va, qa)/ou’),—, =0 in v and «q for
all ceNy, we set degr,, V= + 0. If V(u,v,4;a)#0 in u,v,4 and independent of
u, then degr,, V' =0.

From the definition of an IR-degree, we easily get

Lemma 2.1, Let Vi,eo., V€6, Then

p
1. degr,, > V;2 min degr,,V,, (2-6)
i i= —

Liop



Lattice Feynman Integrals with Massless Propagators 575

r P
2. degr,, H v,z Z degry, Vi, (2-7)
— i1 =
6!
3. degry, = E» V2 degr,, V-1, (2-8)
al
4. degry, pw =V zdegr,, V. (2-9)

Next, we consider functions in the classes 45, and %°, i.c. functions in ¥,, and
% whose continuum limits exist. Every Ve®:, has an expansion for small lattice
spacing a of the form

1
Viw,v,q;0) =3 F(ua, va, qa) = P(u,v,9) + R(u, v, g; a),

where the continuum limit P of V is a homogeneous polynomial in u,v,4 and R
vanishes for a =0. In general,

degr,, P = degr,, V, (2-10a)

where the IR-degree of a polynomia!l is defined in Appendix A. In particular, with
respect to all momentum variables u,v and g

degr,,, P =degrz V' il P(u,v,q) £0. (2-10b)

In Sect. 5 we will state a general estimate on the remainder R which respects the
IR-and UV-properties of the function ¥ and allows to determine the cutoff behavior
of Feynman integrals having R as the numerator of the integrand, by application
of an auxiliary theorem stated in Sect. 4, which is a generalization of the auxiliary
power counting theorem in [1] to diagrams with massless propagators.

The integrand of a Feynman integral on the lattice belongs to the function
class # [1]. For Fe# an IR-degree is defined as follows.

Definition 2.2. Let Fe#F,

Flu, v, 4; 1, a) =§% (2-11)

Then the IR-degree of F with respect to u is defined by
degr,, F =degr,, V —degr,, C. (2-12)

Recall that the denominator in (2-11) is of the form
C=H(%‘Q+u> K20 (-132)

where the four-vectors [; # 0 are given by

d r w
li(u,v,q)= kZ'1 by vy + kZ1 Cypcly + kZ1 di Gy (2-13b)
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The IR-degree of the denominator is already determined by the IR-degree of its
continuum limit:

i(lia
degty ")+ 42 ) = s, 7 + )

0 if p?>0 or (by,....hy)#0 or Y dyg#0
k=1

2 if u?=0 and (by,...,by)=0 and Y dyq,=0. (2-14)
k=1

il (0
degry,, H (ﬂfl i4) ) Z degrmv(” 512 9 + ﬂ?‘),

and for every Fe#,

Note that

degr

ulv

lim F(u,v,q; p, a) = degr,, F(u, v, q; 4, a). (2-15)
'm degr,

Finally, as a corollary of Lemma 2.1, we state
Lemma 2.2. Let F,F,,...,F,e%. Then

P

L degrmz Fig__‘min degr,, F;, (2-16)

P

2. degry, H 2 Z degr,, F (2-17)
al

3. degrﬁl,}a 7F 2 degr,, F—|I], (2-18)
Py

4. degrmbé—?F = degr, F. (2-19)

3. The Power Counting Theorem for Feynman Integrals with Massless Propagators
We consider

Hgua)= fd“kl -d*k, F(k, q; , a), 3-1)

where
F(k,q;p,0) =V(k,q; 1, 0)/C(k, q; b, ) F,

(L, g)a
Ck, g; pt, a) = II[Q'((—an+“‘ } =0
(vanishing masses are allowed). Furthermore, let % be a natural set of four-
momenta containing l,,..., 1, [1]. At first, we repeat the definition of UV-divergence
degrees [1] and then define IR-divergence degrees.

1. Let

u‘l-—-l“, udmlid, Dlzljl""’vm—d:ljm-d

(3-2)
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be an arbitrary basis of £ with respect to k*, 1 £d < m. By fixing v,...,0,,_4, On€
defines a class H of affine subspaces of the space of integration momenta k.
(uy=(uy,...,u;) is called the parametrization of H, and (v)=(vy,...,v,) are
the complementary parameters of H. As in [17, we define for F(k, g; u, a)e &,

degry I(q; 4, a) = 4d + degr, F (k(u, v, 9), g; 1, @) (3-3)
The set of all such H, for all bases (3-2), is denoted by #UY (this is the set # of
Zimmermann subspaces of [1]. Here we write #YY to distinguish this set of
subspaces from the set #™® defined below).
2. Let M ={L|p;=0;i=1,...,n} = Z. For every basis (3-2) such that
Liseos et (3-4)
and d = 1, we define a subspace H as above. The set of all these H is denoted by
'R, Obviously, #™® < #VY. For He#™ we define the IR-divergence degree
degry 1(g; i1, ) = 4d + degr,, F (k(,v,9), ¢; 1, ). (3-5)
We now state the power counting theorem which applies to lattice Feynman
integrals with massless propagators.
Theorem 1. Power Counting Theorem. Consider the integral
. Ttja
Hgma)= | d*k,---d*k,F(k g pa), (3-1)
—zja
and suppose the integrand is of the form
V -
kgpna 7,
Clk,q; 1, a)
where Ve¥* is 2r/a)-periodic in every component of k, and
n [ p.(ek,
Cw%m@=ﬂ[@%;@@+ﬁ} = 0.

i=1

F(k,q;u,a)=

Suppose, furthermore, the line momenta l; are contained in a natural set & of momenta
and assume that for every He #™

~

degrs I(g; 4, @) > 0. (3-6)

Then the integral (3-1) is absolutely convergent for every a > 0. If, in addition, for
every He#'UV we have

degry I(g; . @) <0, (3-7)
the continuum limit of I(g; p, a) exists absolutely and is given by
s T T P(ki 4q, .u’)
limIgua= { d*k --d*k,———, (3-8)
a—+0 (q K ) *j‘oo ! E(ky ‘1: ﬂ)

U ep. [17 or Sect, 4 below. ty,..., Uz 0y,...,V,—q€%, and the Jacobian satisfies det[8(u,v)/0k] #0.
There is at least one basis of & with respect to k
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where
P(k,q, ) =lim V(k, q; u, a),

a-0

E(k,q, ) =lim C(k, q; u, a).
a—0

Note that vanishing masses are allowed, and that convergence is stated for
given (fixed) external momenta ¢g. Furthermore, the integrand is always assumed
to be periodic. As in the massive case [1], if P # 0, the set &' = {I,...,1,} contains
a basis of ¥ with respect to k (otherwise (3-8} would be UV-divergent). Hence, in
this case it is sufficient to consider %" instead of #. Note that

degr, lim F(u, v, g; 4, a) = degr, F(u, v, ; 4, @) (3-9)
a=>0
and
degru\v lim F(Ll, U, q; |, Cl) 2 degrﬂ[v F(u’ v, q; U, a)' (3"]0)
a—0 B

Hence, by (3-6), (3-7) and the power counting theorem of Lowenstein and
Zimmermann [2,3]?, (3-8) is absolutely convergent.

The idea of proof is quite similar to that of the power counting theorem for
Feynman integrals with massive propagators [1]. Again, it will be sufficient to
consider

= " Vik,q;a)

lguay= | d*k,---d*k,
—nja 2 ”;(la)
A"

(3-11)

where Ve¥;, for some myeZ. Without loss of generality we also assume & to be
of the form {I,...,ly} for some N = n, and that k4,..., k,, belong to Z.

In the first step of the proof, the integration domain of (3-12) is partitioned in
a way depending on the configuration of the line momenta [,. It is distinguished
between {; in neighborhoods of the poles of propagators and outside of them. A
propagator can be estimated by its continuum limit or some power of the lattice
spacing a, respectively. Again, the numerator causes some technical problems, and
we need an estimation which respects UV- as well as IR-degrees. In the next section
we state an auxiliary theorem which describes the cutoff dependence of generalized
continuum Feynman integrals with zero-mass propagators. Then, in Sect. 5 it is
shown that the numerator of (3-11) admits an estimate such that this auxiliary
theorem applies to the integrals resulting from the partition of (3-11) explained
above.

4. A Power Counting Theorem for Generalized Continuum Feynman
Integrals with Zero-Mass Propagators

To formulate the auxiliary theorem, we will use the notations of the auxiliary power
counting theorem of [1]. For completeness, they will be repeated here.

% Or by the auxiliary theorem below
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Let k=(k,,...,k,) (loop momenta) and g=(q,,...,q,) (external momenta),
k;,q,€R*, and let L denote the space of linear mappings [:R*™ x R*¥ - R* of the
form

Ik, q) = K(k) + Q(q), @1

K®)=Y ak; aeR, i=1,...m, (4-2)
i=1
M

Q@=Z¥ﬂﬁbﬁ& i=1..,M. 4-3)
2

Elements [,...,l; are called linearly independent with respect to k if their
homogeneous parts in k are linearly independent. {I;,...,I;} =.# < L is called a
basis of .# with respect to k if every le.# has a unique representation

i) = Y, cihlle)+ () @4

where c;eR;i=1,...,s and Q is linear. We define rank, .4 =s.

Let & < L be a finite subset

3=={l,-(k,q)= Z Cijkj—i—Qi(q)li:l,...,N}, (4-5a)
where =
rank(C;;) =m,
(Ci1s.. .. Cin)#0 forall i=1,...,N, {4-5b)
B£P2 if i#],
so that rank, ¥ =m. Let 4/ < %. We consider the behavior of the integral

- L ZAk,q)
Fig = | d*k, - d*k,—— 4-6
for large 4. Here
E(k,q, 1) =10 (k@) + 1), uiz0, meN={1,2,.}, 4-7)
ra

and H means the product over all ,e#". Note that vanishing masses are allowed.

N
The integration runs over all keR*™ constrained by Z(k,q) < A%,i=1,...,N. The
numerator is of the form

Z(k g = min(lnin | M;(k, @)l min A7 7| Cyy(k, Q)}>, (4-8)
iel jeJ; leK;

where 1, J;, K; are finite sets, p,eNy = {0,1,2,...}, and M,;,C; are polynomials.
I subscripts the set of all ¥ < &, (including & = @), where

Lo={heN = 0}. 4-9)

In the following, a function which is of the form {4-8) will be called a nominator
function.
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Next, we define the sets #YY and #'™® as in Sect. 3, but instead of (3-4) we
now let I, ,...,l,,€%, for defining #™®, and & is given by (4-5). Note that we do
not assume ¥ to be natural here.

We now refine the notion of ordered sequences of Zimmermann subspaces as
defined in [1], Sect. 5.

Definition 4.1. Let
uD L U gm 4-10)

be an arbitrary basis of % with respect to k. A sequence Hy,..., H, of subspaces
in VY is called ordered in u with respect to the basis (4-10) if
1. H,,...,H, is ordered with respect to the basis (4-10), and

. 4-11
2. The parameters of every H, are contained in (u'V,...,u®). @-11)

This notion will be very useful below when we define an “admissible” numerator
Z(Ak, ). To this end, we first introduce sets %, and %, defined as follows.

1. %, is the set of all pairs (H, &) such that

a. HeA"W, ¥ c ¥,.
b. The complementary parameters of H contain a basis of & with respect to k.
4-12)
2. U, is the set of pairs (H, %) such that
a. HeAR S <P,
b. The parameters of H are contained in a basis of % with respect to k.

4-13)
A set of two maps
U, -7, (H,F)—o6(H,S), (4-14a)
and
U,~Z, (H,S)-pH,Z) (4-14b)

is called a degree set. In connection with the following definition it generalizes the
notion of a UV-set as defined in [1].

We want to state the cutoff dependence of the integral (4-6). We assume that
the numerator Z(4,k, q) is admissible with respect to a given degree set:

Definition 4.2. Suppose 6(H, %), p(H,¥) is a degree set. A nominator function
Z(4,k, q) is then called admissible with respect to the degree set, if for every & = &,
thereis an iel, so that for every basis (4-10) of .# with respect to k, where u®, ..., u®
is a basis of & with respect to %, the following conditions hold.

1. Mk, q) = M;;(u, q) for every jeJ,, ie. the polynomials M;; depend only on the
basis of & and on the external momenta g3.

2. For every sequence H,,..., H, of subspaces of #™® which is ordered in u with
respect to the basis (4-10), there exists jeJ;, so that*

% If this holds for one basis of &, it holds for any other basis of & also
# For the definition of degr,see Appendix A
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degrxggng,-j Z2pH, ) forall g=1,...,¢t (4-15)

Here (x,) denotes the parameters of H, and (x,, w,) = (u,v).
3. For every sequence K,,..., K, of subspaces of #VY which is ordered in v with
respect to the basis (4-10), there is a e K, so that

degr, , Cy—py<0(H,,¥) forall g=1,...,s, (4-16)

Yqlzg
where (y,) denotes the parameters of H, and (y,,z,) = (u, v).

The notion of an admissible numerator with respect to a given degree set
generalizes the idea of an ultraviolet set of [ 17. It enables us to control the ultraviolet
as well as the infrared behavior of the integral (4-6).

We now define IR- and UV-divergence degrees for integrals of the form (4-6)
with a numerator Z(4, k, q) which is admissible with respect to a given degree set
(4-14). For He 'Y, parametrized by (v) = (v,,...,v,), a UV-divergence degree is
defined by

o(H) = degry #, = 4d + 5(H) — degr, E(k, g, 1), (4-17)
5(H) =max 6(H, &). (4-18)

The maximum is over all & with (H, #)e% ;. Furthermore, for a basis
u1 =li1,...,ur=l,~r, wl:ljl""’w’""’:ljm..,’ (4'19)

we define for every He #™®, parametrized by (1) = (u,,...,4,), an IR-divergence
degree by
r(H) = degry F, = 4r + p(H) — degr,, E(k(u, w,9), ¢, 1), (4-20)

p(H) = min p(H, &). (4-21)

The minimum is over all & with (H, ¥)e,.
The following theorem states the cutoff dependence of integrals (4-6) if a degree
set is given with respect to which the numerator Z(4,k, ) is admissible.

Theorem 2. Auxiliary Theorem. Suppose the nominator function Z(2,k,q) of (4-6)
is admissible with respect to a given degree set. Denote the corresponding divergence
degrees by w(H), He#Y, and by r(H), He #'®. Suppose that for every He A™

r(H) > 0. (4-22)

Then the integral F ,(q, u) exists for every finite i. Furthermore, there exist constants
K(u,q)>0 and c(u,q) >0, so that for 1> K(u,q),

FilgmSclpq)
1 if max o(H)<0
HeatVY
4 A" og™ A if max w(H)<0 andall p;=1  (4-23)
HeVY

JmaxgeVV{o(H)] log™ A if max w(H)20
HexVV
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The proof of the auxiliary theorem is postponed to Sects. 7 and 8.
We now state a corollary to the auxiliary theorem which will also be needed
later on. Let

|P(k, g)|
"E(k,q,n)’
where P(k,q) is a polynomial and E(k, ¢, 1) is given by (4-7). For such an integral
divergence degrees are defined as follows. Let #VY and #™ as above. For

He#V, parametrized by (v) = (vy,...,v,) and with complementary parameters
@) =(21,...,2Zm-q), 50 that k= k(v, z, q), we define a UV-divergence degree by

o(H) = degry £, = 4d + degr,,, P(k, q) — degt,, E(k, g, ). (4-25)

An IR-divergence degree for He#™®, parametrized by (4)=(u,,...,u,) and with
complementary parameters (w) = (wy,..., W,,), so that k = k(u, w, g), is defined by

i
Filgw= [ d*k,---d*k (4-24)

r(H)=degry 7, =4r + degr,, P(k, q) — degr,, E(k,q, ). (4-26)
Corollary. Let
= = |P(k, q)|
)= [ dtkyedt, 0D 4-24
Iilg,pm= | d*k, Ehap) (4-24)
Suppose that for every He #™®
r(H) > 0. @27

Then £ ,(q, 1Y) converges for every finite A, and there exist constants K (u, q) >0 and
c(p, q) >0, so that for 1> K(u,q)

1 if max w(H)<0
Vi < . o Hes"Y _ 4-2
Filg W=l q) Jmaxsear Y LOlH)] log™/ if max w(H)=0 (4-28)
Hex"V

This is a direct consequence of the auxiliary theorem and is proved in
Appendix B. Both the auxiliary theorem and its corollary will be used below to
determine the cutoff dependence of the integrals into which the lattice Feynman
integrals (3-12) are partitioned, as described at the end of Sect. 3.

5. Bounds on the Numerator of a Lattice Feynman Integrand

We now state an estimate for the numerator of a Feynman integrand (3-11) which
allows an application of the auxiliary theorem of Sect. 4. To this end, let & again
denote a natural set of line momenta and /4 ¢ &.

Define a degree set 2 as the set of the following two maps.

1. For every He#Y and every & < .4, set §(H,¥) = degr, V, where (v) is the
parametrization of H.

2. For every He#™ and every & = .4, set p(H, ¥) = degr,,, V, where (u) are the
parameters and (v) the complementary parameters of H.



Lattice Feynman Integrals with Massless Propagators 583

Theorem 3. Let V(k, q; a)e¥;,, for some myeZ and (ka, qa) be bounded. Then V can
be estimated by

[Vik,q;a) — Pk, g)| = aprBZb(ka 9, (5-1)

where B is a finite set and peN. For every beB,a’Z,(k,q) is a nominator
function which is admissible with respect to the degree set 9. Furthermore,
P(k,q) = lim V(k, q; a). For every He #™®, the inequality

a—-0

degr,, P = degr,  V 5-2)
holds, and for every He#'YY, we have
degrulvp é degrﬁ Va (5'3)

where (1) denotes the parameters of H and (v) the complementary parameters.
Every function a?Z, is of the form (4-8) with / replaced by a ~*, where all powers
of a are equal to p. If P(k,q)%0,p can be chosen to be 1. If P{k,q)=0, p is the
largest natural number such that lim V(k, q; a)/a” = exists. Note that all the § and
a—0
p of the degree set @ are independent of subsets & < .# (cp. (3-4) and (4.12)). The
J are independent also of the external momenta ¢g. However, the IR-degrees are
not so. The theorem looks like Theorem 3 in [1], the only difference being that
we are now able to control also the IR-behavior.
The proof of Theorem 3 is postponed to Appendix C. We now start to prove
the power counting theorem using this estimation and the auxiliary theorem.

6. Proof of the Power Counting Theorem

At first, the integration domain of (3-11) will be partitioned as indicated at the end
of Sect. 3,

Igpro= Y YI.(@ra), (6-1)

Je{l,..n Z

where for every J the sum over z is finite, and for every sector J,z = (z;eZ*|ieJ),

2 e Vik,q; 1, a)
. = 4 s e 4
L (gua= | d*k;---d*k,— na) |

~mja U(
(el

2x
Here, @is the Heaviside step function, @(x) = 1for x =2 0 and ®(x) = 0for x < 0,and

—Z >)H e.(). (6-2)

igf

2r

0 if Hl«——z
a

<Z¢ for some zeZ*
o.()= a (6-3)

1 otherwise,

and ¢ is a positive constant. If ¢ > 0 is small enough, for every J,z one can find a
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translation k;—k; + (2r/a)d;, j=1,...,m, so that
L—L+ —?gzi for all ieJ. (6-4)

This is a direct consequence of the naturalness of line momenta ([ 1], Appendix D).
Hence

- Vik,q;
L@ume)= [ d*k - d*k,— (z %9 (H@(—e~—lll N))-l’[@a(ll-),
oy H(’?z( i) ) il ig]
(6-5)
where
Gy= {(klﬂ‘ m)ER4m _g_%l(éj)l—_ (k )z
<§—?f(5,)‘, j=1,...,m;i=1,...,4}. (6-6)

Using Theorem 3, we write V(k, q; @) = P(k,q) + R(k,q; a) and I;, = I9_ + I} , where

19, = [ d*ky - d*ky— f(%q) (f;@( e-—llltl))ﬂ@(l), (6-7)
T ()

and

PE = [ d*ky o d¥hep R(gj;“) (H@( na-n))-n@a(z,-). 6-9)
. I—I('?z ) i¢J

R(k, g;a) admits an estimate of the form
[R(k,q;a)| < a” ;;Zb(k, 9, (6-9)

where peN, Bis a finite set, and for every be B the function a? Z, (k, g) is a nominator
function which is admissible with respect to the degree set &, defined at the
beginning of Sect. 5.

As an elementary property of the propagators, for small enough ¢ there are
constants « and 7y, so that

1 o

< a

PR (610
e TH
for all ||| <(m/a)s, and
1

<va? -

=" (1D

a® ‘
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whenever |l — (2n/a)z || Z (n/a)s for all zeZ*. Let h be the number of elements of
J. Using the bounds (6-10), (6-11), we get the estimates

- - Pik,
8. ST (0.0 0) = 0™ | Bl B, (610
K’ o '
and
(qa H, a)l = Z I(b)(qs Hs a), (6-13&)
where
P
(b)(q,#,a) o£h(,yaZ)n 1] j‘ d4k1 d4kmi_zzl7£%)_ (6-13b)
Ky HJ(Iz +
$J={ZJ|]EJ}U{k1,...,k }Eg (6'15)
6= max (n3,47c(1 + Hi il )) (6-16)
i=1,..., m

To every integral in (6-12) or (6-13) we now apply the auxiliary theorem or its
corollary, respectively. All the integrals are of the form needed, 4 being replaced
by 6/a and £ by £,. The corresponding sets of subspaces #°5¥ and H#7} are
defined by basis of .#, with respect to k. By (6-15), #YY < #YY and #} < #™.

We first consider the integrals I'?). Every integral in (6-13) satisfies the conditions
to apply the auxiliary theorem with the degree set

p(H,&)=degr,,V, and S(H,)=degr,V (6-17)

for He #'R with parametrization (1) = u'™),...,u") with respect to a basis (1, w) of
#; and for He#YV with parametrization (v), respectively. Remember that the 6
and p are independent of the subsets ¥ < .#. In the notation (4-20), for every
He#'}, parametrized by (u) = @'Y,...,u") and with complementary parameters

W),
degry I9)(q, p, @) = 4r + p(H) — degr,, [ [ (7 + 17
¥ £
= [4r + degr,, V —degr,, C] +degr, [ [(F + 47)>0, (6-18)
i¢J
where we have used (3-6). Hence, using the auxiliary theorem, all integrals in (6-13)

are convergent, for every finite lattice spacing a. Furthermore, for every H eV
with parametrization (v) = (vy,...,,)

degr, IP(q, u,a) = 4d + 8(H) — degr, [ [(# + u?)
et

= [4d + degr, V — degr, C] + degr, [ [ (7 + 1f)

i¢J

<2n—h), (6-19)
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where we have used (3-7), i.e.
degry I®(q, u,0) <21 —h)—1 for all Hes#yV. (6-20)
Using the auxiliary theorem, there exist positive K and ¢, so that for alla <K ™1,
a ifn—h>0, IP(qua)<c(@®) "a Pe-W"og"g=calog™a. (6-21)
b. ifn—h=0, I—‘}’z)(q, uway<calog™a (because of p = 1). (6-22)

This means that the remainder I¥ does not contribute in the continuum limit. If
P(k,q)=0,all I' 9. vanish, and the proof of the power counting theorem is complete.

Thus, let us assume that P(k,q) #0. For every He#'} with parametrization
() =(uy,...,4,) (and complementary variables (w) = (w,,...,w,,_,) with respect to
a basis (u, w) of &Z;),

degr,

IS ulw

P =degr, V. (6-23)
Hence, in the notation of (4-26), using (3-6),

degry I9,(q, 4, @) = 4r + degr,, P(k,q) — degr,, [T + 1)

— - —  ieJ

2 [4r + degr,, V — degr, , C] + degr,, [ [(Z + 1) > 0. (6-24)
4w flw |

i¢J

Hence, by the corollary to the auxiliary theorem, I5, (g, 4, a) is absolutely convergent
for evey finite a>0. If in addition (3-7) holds, then for every He#YV with
parametrization (v) = (v;,...,0;), (z) being the complementary parameters of H,

deng I_.?z(q’ i, a) = 4d + degrvizp(kr Q) - degrs{zH(liz + #12)
ieJ

< [4d + degr, V — degr, C] + degr, [ [ (? + u})<2(n—h),  (6-25)
i¢J
hence L
degry I3, (g, u @) < 2(n— h)— 1 (6-26)

for every He#’YV. Again applying the corollary to the auxiliary theorem, there
are constants K and ¢, so that for all a < 1/K,

a. ifn—h>0, I9(qpua)Scl@®) "a 20~ 0-log"g=calogma, (6-27)
b.ifn—h=0, I (gpa)<c (6-28)

We thus see that the continuum limit of I(g; 4, @) exists. As in the massive case,
by the naturalness of line momenta, there is only one sector which contributes in
this limit, given by J={1,...,n} and z=0. Using the dominated convergence
theorem of Lebesgue, we get

_ Plkg
116 + )

This completely proves the power counting theorem for Feynman integrals with
massless propagators.

limI(gpa)= | d*k,---d*k, (6-29)
a—->0 — o0
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7. A Lemma about IR-Behavior

To prove the auxiliary theorem we need a statement about the IR-behavior of
generalized continuum Feynman integrals. The integrals considered in this section
are of the general form

min | M;(u)|
- - d4 "‘ddf tel , 7-1
lizgifinﬂllf . urn(lj(“)z)"j -
k2

where u,,...,u,eR*, # = {l;(u)|j=1,...,w}, and the [;’s are linear combinations
of u;,...,u, in such a way that rank, #" =r. Without loss of generality we assume
the /2 to be mutually different. ¥ is a subset of #, and for [,e7” we assume n;eN.
I is a finite set, and all M, are polynomials in the components of u,,...,u,. The
integration domain consists of those u satisfying [Z(u) < 1 for all e

A set #™® of equivalence classes of affine subspaces of (u,,...,4,) is defined as
in Sect. 3 (with # for #, ¥ for .4/ and u instead of k). To make a statement about
the convergence of (7-1), we introduce the notion of an IR-set for the family of
polynomials M;°.

Definition 7.1. The set {p(H)|He#™} is called an infrared-set (IR-set), if

1. p(H)eZ for all He#™.
2. For any basis (x,,...,x,) of # with respect to u and any sequence Hq,..., H,
of subspaces in #™ which is ordered with respect to this basis, there is an iel so that

degr,,, M;2p(H;) forall j=1,...,1 (7.2)

—= 2wy
where (z;) are the parameters of H; and (z;, w;) = (x4,...,%,), j=1,...,t

The integral (7-1) does not depend on external momenta. In (7-2), no momenta
are fixed (in the sense of Appendix A). For this reason we will omit the
complementary variables throughout this section (and only here) once a basis is
given, i.e. we write

d_e.g_{zi Mi = @g_{zﬁwj Mi'

Depending on an IR-set, we define divergence degrees of (7-1) for arbitrary He #™®
as follows. Let

(7-3)

be a basis of # with respect to u, where I ,...,]; €¥". Then for He#™,
parametrized by (z) ={(z,,...,2,), we define an IR-degree of (7-1) by

r(H) = 4s + p(H) — degr, [ [ (F} (u(z, w)))". (7-4)

v

Zl=Ii‘,...,Zs=f,-E, W1={j‘,...,w,._s=l

s

Lemma 7.1. IR-Lemma. Assume that an IR-set is given. Let {rf(H)|HeA#™} be
the corresponding set of IR-divergence degrees. Suppose that for every He A,

r(H) > 0. (7-5)

5 cp. the notion of a UV-set in [1]
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Then the integral
mmIM w)|
_ " .
7= H( 10wy =D
is convergent.

We now prove the lemma by induction on the number r of four-dimensional
integrations. The idea of proof is similar to that of the auxiliary power counting
theorem of [1]. The integration domain is decomposed into various parts and the
resulting section integrals are split appropriately with the aim to do one integration
in an elementary way and to apply the induction hypothesis to the other
integrations.

The case r=0 is trivial. Hence let r 2 1. For every £=1,...,w we define a
sector X; = R*" as the set of those u satisfying

Puslwsl forall i=1,...,w (7-6)

Next, we make a linear non-singular transformation

= ]_erl (Ao (AyeRs ij=1,...,r (7-72)

so that
ty=1() and det(d,)=1. (7-7b)
Define #'y = #"\{l;} and ¥"y = #"\{I.}. For every ¢ and ¥ < ¥, we choose a basis
ZyseeisZgy Vgseeeslpog g (7-8a)

of #, with respect to (t,,...,t,) such that z,...,z; is a basis of & with respect to
(t2,...,t,). Then vy,...,0,__ €# \Y and

u=u(Z’ vatl)Efé.Sf’(z’ vatl) (7"8b)
is a linear function. Every ;e % has a (&, #-dependent) representation

l(Z, tl) — Z Cl] ] + d tl (7"9)

Let #, be the sct of all He#™ which are parametrized by a basis of ¥~ with
respect to (uq,...,4,). Set

A= min p(H). (7-10)

HE.#V

Forevery {, % = v, let H,,..., H, be an arbitrary, ordered sequence of spaces of
HR, 50 that

a. for j=1,...,t—1,H; is parametrized by (k;) = .
b. H, is parametrized by a basis (k,} of ¥ (2 %) with respect to {u,,...,u,).
7-11)

By assumption, for every such sequence there is an iel, so that
degr, M; = p(H;) forall j=1,...,z (7-12)
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The set of all these iel is denoted by I(€, &). _
We now give an appropriate estimation for the integral ¢ (Lemma 7.2) which
allows us to apply the hypothesis of induction (Lemma 7.3).

Lemma 7.2. For any 0 <& < 1, the integral (7-1) admits an estimate

F<3 T Y dtlnn g ), (7-13)

$=lycy, yeYC <t
where Y(&,F) are finite sets, n> —4 and

-, 1
jmt (Z ): dzLZr '"d4Z;_'-_‘7"_/'_n—-'
Gl z?a’,t’ﬁgyeziny ! H(IJZ (', L))"
I
mh;) [Py (v, £1) Ty (2)]
. d4v - dt_ — (7-14)
n’(&(,sf) ' T G, v, )y
N\

where t1=1t,/Ilt, |,

Ql(és L= {(Ulla"'av;'—s~1)

1Z Bz, v,0)) 2 i leV \F (7-15)
12 Blu(z, v, 0,)ifeW \V ’

and for every &, &, u(Z, v, 1)) = fr (2,0, 1)), where f,, is defined in (7-8b). For every
iel(¢, &) and every ye Y(E, &), Py, and Ty, are polynomials, and for any affine subspace
of the (Z')-variables, parametrized by (2) say, we have

degr, T, () 2 degr, My(u(z, v, 14). (7-16)

Proof. Applying the transformations (7-7) and (7-8) to # for every £ and & and
noticing that

U Xe= {(uy,...,u,)eR¥|E(u) <1 for all Lew},
=1

we get
]g Z }6,9” (7'17)
E=tycy,
where
- 1
= d*t Atz - d* 2,
jé’y t{Ll ' 7 éezj;finsﬁ ' I;,I(lf )n,
min | M;(u(z, v, t,))!
o dtogedto_ - , (7-18)
mé(,y) ' ! IT @&
d NF
an

2 Fuzot)) z et if liE“V.g\S’}

Q(é, y) = {(vl" . ~>Ur-s—1) t% g IIZ(u(Z, v, tl)) if lle,W-{\,V-g

Here we have used (7-9) for every ;. We now decompose the polynomials in
the numerator into linearly independent homogeneous polynomials M;, of the
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order win u
M;(u) = 2 M, (u), (7-19a)

az0
and furthermore, every M,, is decomposed into linearly independent homogeneous
polynomials Ty(z) in z,

M, (w)= %\.Piaﬁ(v, t1)T5(Z)s Pios(v, t)#0 (7-19b)

in such a way that the polynomials P, for fixed i, « are linearly independent.
Lemma A.1 in the Appendix states that this is always possible. Hence

M;(u)= %Piat,(v, 11) Ty(2). (7-19¢)

Using the linear independence of the M, for fixed i and Lemma A.1 again, for
any affine subspace of the (z)-variables, parametrized by (Z) say, we get

degrz” Tﬂ(z) ; El_?_g{i Mi(u(za v, tl ))7 (7_20)
for every T, in (7-19¢). Hence, for every &, %,

(s, 1) for all iel r% <1 Pséling

= 1
Fog< d*t LI L . —
&F Z jl 1 j 1 I l(l%(z’tl))n,
4

min |Pi(tiﬂi(v’ tl)Tﬂi(Z)l

. d*v --dby,_,. EED , 7-21
Q(éf,m ' VT Butz vty (7-21)
I\

where the minimum has been restricted to I(, &). Let r, = degr, M;(u) for every
iel{¢, &). By definition (7-10) of 4,

r,—AZ0. (7-22)
Substituting

(ZI:"'sZs)z(ZflaH-;Z;)'”tl ”’ (Ulau-’vr—s-l)=(vtla"wv;-—r—l)‘” tl “: (7'23)

and writing ), =t/ ¢, ||, we get

_ 1
F..< d*ty | 2, ||" R A S T TERANT]
o ysy%mtgfgl 1in ll_zéaginy ! IEEADE
b

1}2; ey 77 Py (0, £1) T (2)]
. d*v, . d4y G 7-24
S | [{EXA)

N

where we have collected indices, and # = 4(r — 1) — @un(lf(u))"f + A. Choose
any HeJ# ., parametrized by (w)=(w(,...,w,) say, such tf:at p(H)=A. Then
n=4( —1)—degr, [ [(F )" + Az 4(b— 1) — degr, [ [ ()" + p(H) > — 4.
" " (7-25)
Because of (7-22), Lemma 7.2 is completely proved. [
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All what remains to show is the following

Lemma 7.3. There is an &, > 0 such that the following statement holds: For all
O<e<eg, forall, S =¥ ;and all ye Y(E, &) there exists a constant ¢, , , SO that

IEry S oy (7-26)
Combining this statement with Lemma 7.2, the IR-lemma follows directly.
Proof of Lemma 7.3. At first, note that
min [P, (v, 1]) T,,(2)| £ min |T,(z)]- max  [Py(,13)].  (7-27)

ielie.¥) iel$.%) ye¥E.5)ielil.?)

By [fi] =1L |lvi £l foralli=1,...,r —s— 1, the inner integrals in (7-14) can be
estimated by

COBS‘L‘

n | T,

ek zel(é y)

where L is a non-negative integer. Consequently, for an appropriate constant ¢, ,,

Iﬁ;iwwn

I (t)Sc dézedt =D 7-28

E.Vy( 1) = “LY lz(z’,t’l)‘igzmy H(IZ( tll))n, ( )
¥

It can easily be seen that for small enough ¢> 0, the integral (7-28) vanishes
whenever one can find L, so that d; £ 0 in the representation

li(zl, tll) == Z Cijz} + ditil . (7'29)

=1
This follows from z},.. ., Z,e&. For, the set of z' satisfying z;” < ¢’ forall j=1,...,s
and [?(7,t)) £ & for some [,e¥ is empty if d; # 0 and & > 0 is small enough. More
precisely, let (x},...,x;) be a point of the integration domain of (7-28). Then, for

gvery l[e¥

il = lld;ty | S 1L 1) + ‘; eyl 1x51 = (1 + sic)), (7-30)

where [c| =max, ;|c;|, hence

£= |4l for all le%. (7-31)
1+ s|c]
If there is [, with d; # 0, set
1 |dy
<
O<e=s s

Then the integration domain is empty. Consequently it is sufficient to discuss only
those & such that d;=0 for all e, ie. |;=1,(7) for all /,e&. In particular, all
integrals (7-28) are constant.

Finally we show that all conditions to apply the hypothesis of induction are
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satisfied by (7-28). Let
W=i,...,29=] (7-32)
be a basis of & with respect to (z') =(z},...,z.) and let H,,..., H, be a sequence
of classes of affine subspaces of (z') which is ordered with respect to this basis, i.e.
a. Hjis parametrized by (k) < {z",...,29} =& for j=1,...,t.
b. The (k;) contain the (k) for j>h. (7-33)
Every basis (7-32) can be completed with w =l and v,,...,v,_,_, of (7-8a) to a basis
Livoolis woog, o0y

of #~ with respect to (u) = (uy,...,14,), u= f.,(z,v,w) (cp. (7-8b)). To every H; in
(7-33) we associate in this way an affine subspace of () which is parametrized by
(k;), and we associate a corresponding p(H;)eZ. By construction of I({, &) and by

degr,;j T,(z)z degr,;j M (u(z,v,w)), forall j=1,...,t andall iel
(Lemma 7.2), there is iel(¢, &), so that
dcgr;j T,(z) =z degr;j Mwzp(H; forall j=1,...,1 (7-34)

Hence the given IR-set, restricted to subspaces H of the above form, is also one
with respect to the numerator of (7-28).

Let
X1=li1,...,xp=lip, y1=lk17"'7ys—p=lk (7'35)

s=p
be an arbitrary basis of & with respect to (z},...,2;), so that 2/ =2'(x,y). Let H
be the affine subspace of (z},...,2;) which is parametrized by x;,...,x,, and
V1s--+»Ys—p are held fixed. Then

4p + p(H) —degr, [ [ (2 (x, )™
&
2 4p + p(H) — degr, [ [ (5 (u(z', v, W)y (7-36)

>0

by assumption. Hence the hypothesis of induction applies to the integrals (7-28),
and consequently they are convergent. This completes the proof of Lemma 7.3 and
of the IR-lemma. [

8. Proof of the Auxiliary Theorem

The idea of proof is rather simple. The integral (4-6) is divided into a sum of
integrations over appropriate sections. In every sector the numerator is estimated
by one argument of the outer minimum of (4-8). The resulting integrals are of a
form which allows application of Lemma 7.1 and the auxiliary power counting
theorem of [1], giving the desired cutoff dependence.

At first, ., is written as
S, = Z 1o (8-1)

¥ =Py
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where the sum goes over all subsets & = ¥, = {l,e /| p; =0}, and

_ Wt Z(i k q)
Z g 0= d*ky o dH 8-2
d ﬂ) l,-2§cj;in9’ ! H(lz + lu]) ’ ( )
32>s ing

where we have written 7 = &\ %, and ¢ > 0 is a constant. The integration domain
is restricted to those k satisfying I?(k,q) < &? for all ,e& and I?(k,q) = &? for all
l,e7 . For every & choose a basis

u1=lil,...,u,=l~

r

(8-3a)
of & with respect to k and complete it by
vi=he s O =1, (8-3b)

to a basis of & with respect to k. We write ;=1(u,v,9). Every ;6% has a
representation

L=U+0dq, U;= '21 éijuj' (8-4)
=
Without loss of generality let the Jacobian for k—u, v be equal to one. Then
_ LT Z(, ,
Iams [ dtugd*u, [ dboy--dto,, ( kz(u v ;l)nq). (8-5)
2zling Pzeting 1:/[(1 ui

As in Sect. 7 it can easily be seen that there is &, = £,(Q, C,r) >0, so that for
0<e<tp,F,4(¢,4)=0if J;#0 for some ;e In the following we assume that
Q;=0 whenever [, so that [; = [;(u).

By assumption, the numerator Z(4, k, g) is admissible with respect to the given
degree set. For any & we take the iel of (4-8) which corresponds to & by
Definition 4.2. Then

mijn !Mij(us Q)|
I g0 d*uy e dru B
B E li2§zj;in9’ ' [T @y
&
LA min 27| Cy(k(u, v, 9), 9)]
j' d4i)1 '.‘d4vm.—r lEKl .
tats (MGwsor ) 1T Guso+ir)
T Ny

(8-6)

To the inner integral we now apply the auxiliary power counting theorem of [1],
while the outer integral will be estimated by the IR-lemma.

Lemma 8.1, Set

LAZ min 27| Cy(k(u, v, ), 9)|
Fe(q,u ) = d*v,---d*v,_, oKy - —.
awiy= | o [0 a7 11 Gwnd + @)
e T N

@7
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There exist K (i, q) >0 and c,(u,q) >0, so that for all (uy,...,u,)eR*, satisfying
2(u) < &2 for all l,eS, we have

I u ) <1 q)
1 if maxg_,uwolH)<0
A" log™ A if max, ,wvo(H)<0 andifall p,=1 (8-8)
Amaraex? ol joom ) if  maxy, oveo(H) =0
for all A > K ,(u, q), where the ultraviolet divergence degrees w(H) are given by (4-17).
Proof. Let Z be the set of all e 4\ which depend only on u and g. Then
1 1
[ (u, 9) 1

A

e for Lied n& (8-9)
8 J

and
1 1
2 27n; é 2ynj
L q) + pi 1~ (ug)™
Hence without loss of generality we assume £ ={. For ;e we have

for Le(\F)nR (42> 0)). (8-10)

2 2 2
URL EPSIL 8-11)
L 3
for any #2 > 0. Consequently
LS rflflcn 7P Cyy(k(u, v, q), 9)|
Fe(qupsc d*vy o d* vy et — py
Ay(q W= l?zsj;iny' 1 H(l.lz + ,12) 5. n (112 —I—,uf) j
tE T M\Fy
LS Iln}(n A7P Cy(k(u, v, 9), @)
<c d*v, - d*v,,_, == — ot
se I ot e g v [ Clund+@F
T M\ o (8-12)
where ¢ = ¢{¢) is a constant. Now let
Wl=li1,...,wd=lid, Zl=lz‘é+1=""zm—r~d=lim,,_ (8'13)

be an arbitrary basis of £\ & with respect to (v,,...,v,_,). Variable w and constant
z define a class H of affine subspaces of (v4,...,1,,,). The set of all such H, for all
bases (8-13), is denoted by #%". Every basis (8-13) of #\& can be completed
to a basis of ¥ with respect to k by adding u,,...,u, of (8-3a). In this way, every
He#YY is considered as a subspace of (k), where (z) and (u) are held fixed. This
means #YY < #YY. To every He#'y' we associate the corresponding 6(H, &)
of the given degree set.

Every sequence H,,...,H.e#y' which is ordered with respect to the basis
(8-13) of ¥\ & is a sequence of subspaces which is ordered in (w, z} with respect
to the basis (w,z,u) of #. Hence, by assumption, for every such sequence there
exists /e K so that

degr, ., C;—pySdegr Cy—py<d(H,S) forall g=1,...,s, (8-14)

xgiyg i xglygzx1 ety
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where (x,) are the parameters and (y,) are the complementary parameters of H, with
respect to (8-13), ie. (x,,y,) = (w,z). This means that the set {6(H, %) HeH#3" }
is a UV-set for the numerator of (8-12) in the sense of [1] which is independent
of u. Furthermore, for any He#'YY, parametrized by (x) = (xy,...,x.), we have

oy (H)y=4e+ 6(H, &)~ degr, [ (3 + 3y —degr, T] (3 +udy
T v
< w(H), (8-15)
because of 3(H, ) < 6(H), where w(H) and §(H) are given by (4-17) and (4-18),
respectively. Thus, all the conditions are met to apply the power counting theorem
of [1] to (8-12). Hence, there exist K, (4, g) >0 and c,(y,q) > 0° so that for all

A‘ > K.?’(,ua q)
j;y(% u, ﬂ) g cy(ﬂ» Q)

1 if max, ,uvo(H)<0
A" og™ A if max, ,yo(H)<0 andifall p;21, (8-16)
Jmaspe i o] logm A if MaX, o C{}( H) >0
é C.?‘(aua 4)
1 if maxg_,uvo(H)<0
A7 og™ A if maxy_,wvo(H)<0 andifall p;=1.
Jmesser 0BT ogm 2 if max,,_ v o(H) =0 (8-17)

O

Having determined the cutoff dependence of the inner integrals, we now turn
to the remaining integrations.

Lemma 8.2. The integral

min lMij(ua 9)|

F,(q) = du - dtu (8-18)
A0 #s aj; wy TG @y
&

is convergent for every &.
Combined with Lemma 8.1 this means that there are K{(y, g) > 0 and c(u, g) > 0,
so that

FeW e g
1 if maxy, vo(H)<0
A" log™ A if max,_,wvo(H)<0 andall p,21 (8-19)

AmaxHeng[w(H)] logm A if maxye »vv Cl)(H) Z 0

for all 4> K(u,q), which completes the proof of the auxiliary theorem.

6 yis bounded and {8(H, &)} is independent of u, hence K, and c,, can be chosen to be independent of u
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Proof of Lemma 8.2. We use the IR-lemma of Sect. 7. Every integral (8-18) is of the
form (7-1), where & stand for # =" and .7, for ¢.
Let

(8-20)

be a basis of & with respect to (uy,...,u,). We define s#’% as the set of all
classes H of affine subspaces of (u,,...,u,) which are given by constant w,,...,w,_g,
for arbitrary bases (8-20). Every such basis of & can be completed with
Viseres Uy €L\F of (8-3Db) to a basis of ¥ with respect to k. In this way, every
HeA#™® can be identified with a subspace of (k) and we can associate to H the
corresponding p(H, &).

Every sequence H,,...,H,e "% which is ordered with respect to the basis
(8-20) of & is a sequence of subspaces which is ordered in (z, w) with respect to
the basis (z, w,v) of &#. By assumption, there is a jeJ;, so that
M;; = degr MyzpH,, &) forall g=1,....t, (8-21)

Xgl Vg1 Ve

W e=1,

i

Zl—’—‘lil,...,ZS:l,-S} W1=lis+1,..

ie_g_rxglyg

where (x,) are the parameters and (y,) are the complementary parameters of H,.
Hence, {p(H,¥)|He#'%} is an IR-set for the numerator of (8-18) in the sense of
Definition 7.1. For every He#'%, parametrized by (z) = (z4,...,2,),

ry(H)=4s+p(H, &) - fl_ggzg [ (u(z, v))1"
Z 4s -+ p(H) — degr. [ [ ()
N

>0

by assumption of the auxiliary theorem, where p(H)is given by (4-21). Consequently,
all conditions to apply the IR-lemma are satisfied, and Lemma 8.2 is proved. [

Conclusions

We have generalized the convergence theorem for Feynman integrals with a lattice
cutoff of [1] to lattice field theories with massless fields. Infrared power counting
conditions are sufficient for the convergence of diagrams with finite lattice cutoff.
If these conditions are supplemented by the ultraviolet power counting conditions
of [1], the continuum limit of a lattice Feynman integral exists and is equal to the
formal limit, i.e. the integral over the continuum limit of the integrand. Apart from
the possibility of zero-mass propagators, the general assumptions on the structure
of the lattice integrand are the same as in the massive case [1]. It should be periodic
with the Brillouin zone in every loop momentum, the propagators should have
only one pole in the Brillouin zone, and the line momenta should be natural. While
the last condition can always be satisfied by an appropriate choice of the loop
momenta, the pole condition is a genuine restriction. In particular, the power
counting theorem does not apply to fermions with propagators having poles on
the boundary of the Brillouin zone. Such propagators would require stronger
assumptions to be made on the structure of Feynman integrands on the lattice,
in addition to the periodicity.
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In a forthcoming paper, following the ideas of Lowenstein and Zimmermann,
the power counting theorem will be used to construct a renormalization scheme
for a wide class of lattice field theories containing massless fields [6].

Appendix A. UV- and IR-Degrees for Polynomials

Let P be a polynomial in variables u,w and ¢. P can be written as
P(ua W, q) = Z Qa(w’ q) Ma(u)s (A'l)

where M, are linearly independent homogeneous polynomials and

0,w,q)#0 in w (g fixed!).
The UV-degree of P with respect to u is defined by

degr,,,, P = maxdegr M,, (A-2a)
and the IR-degree is defined by
degr,,, P =mindegr M, (A-2b)

where degr M, is the homogeneity degree of M. Note that the degrees defined in
this way depend on the external momenta g. Sometimes for the UV-degree we will
use the shorthand notation

degru P (ua w, q) = degrulwq p (u’ w, Q)
In general,

degr . P(u,w,q) < degr

ulwg

P(u,w,q)

ulw

and

degr, P(u,w,q).

ujw

P(u,w,q) z degr,

ulwg
For “exceptional” momenta g, the latter is a strict inequality. If P is the denominator
of a momentum space Feynman integrand, these momenta destroy the convergence
of the Feynman integral, hence they must be excluded.

We list the most important properties of degr and degr. Let F,F,,...,F,
be polynomials in u, w, g. Then T

degr,,, F" =ndegr,, F, (A-3)
degr, , F" =ndegr, F, (A-4)
degr,, [[ F;= ), degr,,F;, (A-5)
j=1 =1
degr,, [ F;= Y degr,,F;, (A-6)
SEBLuw LL Pt
degr,, > F;< max degr, F;, (A-7)
Jj=1 ji=1,.., r
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. ulw* j-

r
degr,, > F;= min degr, F (A.8)
T =1 Ji=1,e., T
At two stages of this paper we need the following

Lemma A.1. Let P be a polynomial in variables u,v. P can be written as
P(u,v) =} R, w)Q,(v), Q,%#0, (A-9)

where R, are linearly independent homogeneous polynomials, so that all polynomials
Q, for o with the same degr R, are linearly independent.
Let u= f(ii, 4) be linear and homogeneous. Then

degr,, R,(u) = degr,, P(u,v) for all «. (A-10)

Proof. P can always be decomposed into linearly independent homogeneous
polynomials M (u):

P(u,0) =} M,)Q,(0), 2, #0.

For any § let
p=degt M, = =degr M,

with #» maximal and
Qalﬂ'-'aQazt’ tén

be linearly independent with t maximal, so that

Q.= i ¢,;jQ,, foralliwith t<ign
Then 7=t
Z My, () Qs () = 2 R, (4) Q.. (0),
where
R=M 0+ 3 e,

S

The R,,,i=1,...,t are linearly independent and homogeneous of degree f. Doing
so for all B, the first part of the lemma follows.
Letu = f{ii, ) be linear and homogeneous. Write every R, in a partition (A-9) as

Ru(u) = ; Sﬁ (12) Vaﬂ (ﬁ), Vtzﬂ (ﬁ) ?é 09

where S, are linearly independent homogeneous polynomials in ii. Every V,,(d) is
homogeneous in 4 of degree degr R, — degr S;. Inserting this in (A-9) yields

P(u,v)= ;S 5(#) ), 0(v) V,p ().
The first sum is over all g for which « exists with V,,(4) # 0. For every

;Qa(v) Vaﬁ (ﬁ) $ 0,

because of the linear independence of the @, for « having the same degr R,. Hence
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degr,, R,(u) = degr,,, P(u,v)  for all a. O

Appendix B. Proof of the Corollary to the Auxiliary Theorem

To prove the corollary of Sect. 4, the integral #,, (4-24), will be estimated by a

finite sum of integrals of the form {4-6) to which the auxiliary theorem applies,

and such that the numerators of the integrands are admissible with respect to the

degree set &, consisting of all 6(H, #)=degr,, P, He#"Y, and of all p(H,¥) =

degr,, P, He #™ (cp. (4-24)f). Note that the p and J are independent of ¥ = &,
We first mention the following fact. Let P(u,v,g) be a polynomial and

P(u7 v, Q) = ZRg(u) Qg(v, Q)» Qg(v’ ‘I) 'fi' 0 iny, (B'I)

a decomposition of P into linearly independent homogeneous polynomials R, in
u. Let
W=Du+Eq, v=Av+Bu+Cq (B-2)

be an arbitrary linear transformation, where 4 and D are invertible matrices. Then,
for every partition (v') = (¥, v'?), we get

degr,w, @, Q, < degrm @, P forallg. (B-3)

Using the linear independence of the R, this follows directly from
degr,m,@, 0, (v, q) = degr,m o, R, ()0, (v, q)
=< 8%50(1),00),, P(u,v,q).
To prove the corollary, let first & < & be an arbitrary subset (cf. (4-9)). Let
Uppeenollpy Dysennylpey (B-4)

be a basis of . with respect to k such that u,,...,u, is a basis of & with respect
to k. Then there exists a decomposition of the numerator P of (4-24) into linearly
independent homogeneous polynomials R,

P(k(u,v,9),9) =} R, Q,(v,q) with Q,(,9)#0 inv, (B-3)

so that for every partition (1) = (u*, u?)
degr,m, @ R, 2 degr,m @, P for all geG. (B-6)

This is proved in Appendix A. A decomposition (B-5) is possible for every basis
(B-4) of .Z with respect to k, for fixed &¥ = &%,,. Hence, with an appropriate set J,

|P(k,q)| < min 2(; IRk, )|, (k. ).

jel geGj

Writing G = ®,.; G,” and setting for (¢;);.,€G:R;, = R,,, 0;,= Q,,, we get

7 This notation is explained in Appendix B of refs. [1]
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[Pk, )| = Z mm(iRjg(k DI'1Qyk, D)

geG jeJ

< Z (mlanJy(k q)‘)z ]ng(k q)|

geG
-3 ,Z,:{(“.‘i,n | M (K, q)])-IC,(k, 9l (B-7)

where X = G®J and for I = (g, h)e X we have written M, = R;, and C; = Q,.
Let

F

! 7 7
Uiyeoisthy Ulyeees Uy

be another basis of # with respect to k such that u},...,u, is a basis of &. Such
a basis is related to (B-4) by a transformation of the form (B-2). Writing
(') = ('Y, v'?) and using (B-3), we have for all C, of (B-7),

degr,m @, C; < degr,an@, P forall leX.

Furthermore, by construction, all M} of (B-7) depend on «’ and g only, and one
can always find a jeJ, so that for each partition (') = (u™, u'®),

degr,w», M, = degr,w, 0, P forall leX.
Until now, & is held fixed. Taking the minimum of (B-7) over all & < &, we get

where
Z,(k,q)= mi}n(| Culk, )| min | My q>|>. (B-9)

I is an appropriate finite set, Y = ®,,X;, and for (};),;€Y, we have written
Mk, q) = My, (k,q), Cylk,q)= C,,(k,q). Every Z, is a nominator function which
is admissible with respect to the degree set &, consisting of all 6(H, %) = degrulz
He#YY ((v) being the parametrization of H and (z) are the complementary
parameters) and of all p(H,¥)=degr,,P,He#™ (parametrized by (1) with
complementary parameters (w)). Note that all 5(H, &) and p(H, &) are independent
of ¥ & Fs.
Using (B-8), we get
Z!(ka Q)

AL
7.0 d*k, ---d*k,, .
jl(q M)—IEZY j 1 E(k,q,ﬂ)
The divergence degrees (4-17) and (4-20) are given by (4-25) and (4-26), respectively.

Thus, all the conditions are met for the auxiliary theorem to apply to every integral
on the right-hand side of (B-10). This proves the corollary. O

(B-10)

Appendix C. Proof of the Numerator Bounds

In this appendix, Theorem 3 of Sect. 5 is proved. The proof is similar to that of
the corresponding statement of [1], and below iwo lemmas are taken over literally.
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However, we have to consider IR- and UV-degrees simultancously. Consequently,
the proof is more tedious here.
For 6 ={04,...,0,)eN},deN,d < n— 1 and multi-indices b; fori=1,...,n, let

1 if byl + -+ by =6, i=d+1,....n

F5aBas 15, b,) = {0 otherwise,
and

|by|+ - +]bgl =61 — 6441 and

1if
byl 4+ b <6, — 6,0y, i=1,...,d—1

Rsg(bys. .., bg) =
0 otherwise.

We state the preliminary

Lemma C.1. Let FeC® be of theform F(x,,...,x,), x;eR™, and §,eNy, = {0,1,2,...}
such that 6,2 6, if i<k, for all i,k =1,...,n. Suppose

F(xl,...,x.i_l,}.xi,..-,lxn)=O(Aé‘i), l—>0; j=1,...,n. (C'l)
Let deN, d<n— 1. Then there exist C*-functions F,, ., , so that
F(xq,...,%,)

Blyeens

(€2

() = (%)
(yn—l).= (xn—laxa)

(yd) = (xda cevs xn)‘
Proof. By successive application of Lemma 6.1 of [1] to F, we get

F(xg,....%,) = Z ga;d(bau,--wbn)}’gdii"'J’§"de+1mb,,(x1a---,xn)a (C-3)

byiq-by
where F, ., €C*® and
d+ 1 n

Fba+1‘--b,,(xla-'-9x}'"19'q'xja---’}'xn)=O(Isj_5d+1)7 /1_’03 1 é]éd

Applying Lemma 6.2 of [1] to F, ., yields

I I T A L) Bya®yy o )X XU VR, o (X1seees X,
by
1 d (C_4)
where F 5, ,“,,HGC“’. Inserting this into (C-3), the assertion follows. [

From Lemma C.1, we derive a bound on a function Ve%;,, if ordered sequences
of subspaces in #® and #VY with respect to a natural set £ of line momenta
are given.
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Lemma C.2. Let ¥ < % and
uB Lu® e, et (C-5)

be a basis of & with respect to k such that u'V,...,u" is a basis of & with respect
to k. Let H,,...,H, be a sequence of subspaces of #™ which is ordered in u with
respect to the basis (C-5). Denote the parameters of H; by (z;) and the complementary
parameters by {z;). Furthermore, let K,,..., K, be a sequence of classes of affine
subspaces of VY which is ordered in v with respect to (C-5). Denote the parameters
of K; by (w;) and the complementary parameters by (w;).

Consider a function V(k, q; a)e¥5,, for some myeZ and assume that (ka,qa) are
bounded. Then V admits an estimate of the form

}V(kaq;a)—P(k5Q)}§ap Z f(bh'-':bt)lz‘gl"'th}‘;(}ler-‘b,(kﬂﬂ}a (C'6)

by b,
where
_f1 il byl + - + by =degr, ), V, forall i=1,...,¢
f(bl""’bt)_{o otherwise. ©n

X is a finite set and peN is independent of the sequences and the basis. Q,, .., are
homogeneous polynomials, and P(k,q) =lim,_, V{k, g; a), satisfying

degr, , Pzdegr, V forall g=1,..4¢
——Pgitg ——=tglZg (C-g)
degrwg,wgP < degr% V  forall g=1,...,s,
and
degr, |, Qy, ., Sdegr, V+p, forall g=1,...,s (C9
Note that for f(b,,...,b,}#0
degr, |, f(by,... ,b )25 b= degr, . V, g=1...t (C-10)

The polynomials f(b,,...,b,)z5 --- 22 depend only on the basis of &, ie., they are
the same for all bases (C-5) with the same collection uV),...,u® and arbitrary
v'V,...,v™~ ", The integer p can be chosen to be 1 if P(k,q) £ 0. If P(k,q) =0, p is
the largest natural number so that im,_,, V{k, g; a)/a” % 0 exists.

Proof. 1. Write Vik, q; a) = F(ka, qa)/a™ and F'(x)= F(k(u,v,7-q),7-q) for fixed ¢
and variable 8. We define variables (x) = (x,,..., X;.,+) as follows
(wy)=(x1)

(Wz)‘:(xnxz)
(W) = (1, .r %)
O, =0xy,. .., X511) (C-11)

(Zt) = ()CS+2,. " )xs+t+1)

(Zz).: (KgrerXst241)
(z1)=(Xs4141)

¥ We write 1 instead of a to avoid misunderstandings
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ForH;, j=1,...,t,8€t(z)) = (Xs41 42— js-- > Xs4¢+1) (“internal” momenta of H;) and
(z))=(x1,+ - X547+1~;) (“external” momenta), so that (z;,z;)=(X1,..., Xs4,41)
Define rs+,+1_j=degr£j‘£jV for all j=1,...,t. Similarly, for K, j=1,...,s, set
(Wj)z(xla"' ]) and (W])_(x]+1’ ’xs+t+1)7 80 that (Wj7w_i)=(x19'~':xs+t+l)'
Define r;=my— degrw V for all j=1,...,s. Then, by definition of the IR- and
UV-degrees, P2, 2 2Ty, and

Fxy,e 0, X A%j015 s A1) = 0(A7), A0 j=1,...,5+t (C-12)
2. As in [1], define for 6eZ

F!(}‘xl"-' 7Axs+t+1)
0 ’
A=Q

Pﬁ(xla s+t+1)_1
(C-13)

GXgsr s Xgipr1) = F (X150 Xg g 1) = P (X150 - > Xgt1+1)-

Let roeN, be the largest integer such that P; (xy,...,X1,+1) F 0 exists. Then
G(Xyyer s Xjy AXj1yeens AXgarr1) =007 150, 0Zj<s+1,
where /;=r;forall j=1,...,s+¢ and

. o if myg<ry
Fo= .
O lro+1 i my=r,,
and hence fp=#F =--- 2 F,,,. We now apply Lemma C.1 to G with d=s+1,
n=s+t+1,(y-)=(x,, ’xs+¢+1) i=s5+1,. S+f+1
G(X1semms Xgrrs1) = Z f(bs+2a s+t+1)ys+2 J’ssfztilz

bypobypers

Z h(bls‘“:bs+1)x x yss-:ll bs+t+1(x1""7xs+t+l)9
byobyyy

where

1 iflbil+..'+'bs+t+1]=fi—l9 i=S+2,...,S+t+1
0 otherwise,

f(bs+29 s+t+1)_{

o |By]+ -+ by g | =Fo—F5y and

1
Ib1}+“'+lbi1§f0‘_fi fOi‘ aﬂ i=1,...,8

E(bu“-:bsn) =
0 otherwise,

and F, , . €C®. For bounded (ka,qa) and t=1, using (y;) =(Ze4,4,-;) for
i=s+2,....,s+t+1, we get
1G(x18,. s X r o1 D=y S Y f(bi,---,b:)IZ’i‘~-2§”IIZXEQ;a,..s,,(k,Q)I,
by by e
where f(by,...,b,) is defined in (C-9) and X is a finite set. @y, .., are polynomials,
satisfying

degrwymg Op, .o, SFo—Fy={Fo—mo)+ degr% V, g=1,...,s (C-14)
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Finally, note that

1 ,
P(k,Q)Ehﬁ(l, V(k’q;a)EPmo(xls-*-axs+t+1)It=1'

ame
Then

degrzglggpgfs+t+l'—g=degr£ﬂ|2gll, g=1,...,t,

degr,,,, PSmo—F,=degr, V,  g=1L...,s, C13)

and
1
|V(ks q, a) - P(k7 11)| = ﬁ |G(x1a, en axs+t+1a)lt= 1

sa® Y, flby,.... b)Y '"Z?‘IIEZ}; 1@, .., (ks D)1

by-b
where p=Ff, —meeN. [

Proof of Theorem 3. Using Lemma C.2, the proof of straightforward. We have to
show the validity of an estimate

} V(ks q; a) - P(k7 q)l é aprBZb(k’ q), (C'IG)

where every g Z,(k, g) is a nominator function which is admissible with respect to
the degree set 2, defined at the beginning of Sect. 5.
At first, let & < A (cp. (3-4)) be a given subset and

uV L u® e, e (C-17)

a basis of & with respect to k so that u¥),...,u® is a basis of & with respect to
k. Let H,,...,H,e#™ be a sequence which is ordered in u with respect to the
basis (C-17), and K,..., K,e#"" a sequence which is ordered in v with respect
to (C-17). Using Lemma C.2, Ve%;,, can be estimated by

|V(k,q;0)— Pk, g)| = a";}lM,-(u)IxeleQﬁ(k, 9l (C-18)

where P(k,q) =lim,_,, V(k,q; a), peN is determined by the function V, and J, X are
finite sets. M; and Q; are homogeneous polynomials satisfying

degr

z

Mjgdegriylng forall g=1,...,t andforall jeJ,

9l2q
where (z,) are the parameters of H, and (z,,z,) = (4,v), and
degrwg,wg 0= degrwg +p forall g=1,...,s andforall jeJ,leX,

(w,) being the parameters of K, and (w,, w,) = (4, ).
We now make an estimate of the form (C-18)

a. For all sequences of subspaces of #UY which are ordered in o.
b. For all bases (C-17) of & with fixed u'¥,...,u®, ie. for given (1) we consider



Lattice Feynman Integrals with Massless Propagators 605

all possible choices of (v) such that (C-17) is a basis of #. Note that by such changes
of the basis the IR-degrees degr, . V do not change®.

Z4lzq

We get
|V(k g;0)— P(, @)l < a” 3. | M, () min | Gu(k, ),

where Y,K are finite sets. For every basis (u,v) of & with given (4) and every
sequence K;,..., K,e#"" which is ordered in v with respect to this basis, there
is an ieK, so that the polynomials Q;, satisfy

degr Q,-,édegrwgV+p forall g=1,...,s andforall IeY.

Wglky

(w,) are the paran‘leters of K, and (w,) the complementary parameters.
Next, we consider

a. All sequences of subspaces of #™ which are ordered in u,
b. All bases (C-17) such that u¥),...,u®” is an arbitrary basis of &. By the
corresponding changes of a basis, the UV-degrees degr, V' do not change'®.

We get
[Vik,qa) — P(k,g)| = a"émi;l | M, )] min | Coy (k, g)1, (C-19)
B je eKp

where B,J, K, are finite sets and M, C,, are polynomials. For every basis (C-17)
of & such that u'¥,...,u® is a basis of &, the polynomials M depend only on
u and the external momenta g. Furthermore, for every sequence H,..., H,e #™
which is ordered in u with respect to (C-17) there exists jeJ, so that

degr, , My 2= degriglzg V forall g=1,...,t and forall beB,

24z
where (z,) are the parameters of H, and (z,,z,)=(u;v). For every sequence
K,,...,K,e#" which is ordered in v with respect to (C-17) and for every beB
there is leK,, so that

degr ClbgdenggV+p forall g=1,...,s

wylty

° A change of basis
ud, ., u® ud, L u?
-
oV, gDy s

is given by

U =u

v = Au+ Bv+ Cq,
where B is an invertible matrix.
10 We have

W =Du-+ Eq

,
v'=u,

where D is invertible. The change of the basis of & depends on the external momenta g, hence the
polynomials M, are dependent on « and ¢
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(w,) are the parameters of K, and (w,, w,) = (4,v). This means that, taking on the
right-hand side of (C-19) the minimum over all & < .#, we get an estimate of the
form (C-16), where all functions a?Z,(k,q) are nominator functions which are
admissible with respect to the degree set 9. This proves Theorem 3.
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