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Abstract. For a quantum mechanical system living on 
the manifold of a compact simple Lie group we present 
explicit formulae for the quantum corrections, both 
in the Hamiltonian and, for the most common 
time discretization, in the path integral. As a special 
application of this rather general procedure, we 
compare, for lattice gauge theories, the path integral 
corresponding to the Kogut-Susskind Hamiltonian 
and the Wilson action. The latter is shown to corres- 
pond to a very special but elegant way of discretizing 
the time variable. 

I Introduction 

Recently there has been some renewed interest in the 
path integral formulation of quantum mechanical 
systems and quantum field theories on curved spaces, 
or, more general, on topologically nontrivial mani- 
folds. In quantum field theory Christ and Lee [1] 
several years ago pointed out that, when formulating 
Yang-Mills theories in the Coulomb gauge, new terms 
appear in the action integral. They result from a non- 
trivial metric in the space of the gauge-fixed field 
variables [2-4], and they lead, in perturbation theory, 
to new interaction vertices. These terms had been 
overlooked before [5-]. In the context of quantum 
mechanical problems there has been some recent 
progress in calculating path integrals, which now 
allows to handle quite a few problems in the path 
integral formulation which had been untractable 
before (I-6,7] and references therein). In most of 
these cases symmetries are playing an essential rrle. 
This motivates a strong interest in formulating path 
integrals on group manifolds [8, 9]. In string theory 
one faces the task of doing quantum mechanics on 
topologically nontrivial manifolds (e.g. Riemann mani- 

* Supported by BMFT, 05 4HH 92P/3, Bonn, FRG 

folds with nonzero genus). Although it may be too 
much to expect that one might be able to write down 
a closed expression for the action integral on the whole 
manifold, one should be able to formulate the theory, 
at least, on coordinate patches. The basic task then is 
the same as in the other examples: to handle the path 
integral of a quantum mechanical system on a mani- 
fold with a nonflat metric, e.g. on group manifolds. 

There exists a well-established procedure for both 
canonical quantization [10-12] and writing down the 
path integral for quantum mechanics on curved spaces 
[13-21]. In [1-4] this formalism has partially 
been used to determine the correct Yang-Mills 
Hamiltonian in the Coulomb gauge. In the context of 
quantum mechanical problems, however, not much 
use has been made yet of this procedure. In I-6, 7] 
special cases of group manifolds have been studied, 
such as SU(2), SO(n), SU(1, 1) and SO(n,m). All these 
group manifolds have in common that they can easily 
be embedded in euclidian (or pseudo-euclidian) flat 
space, and this special property has been made use of 
for deriving the path integral. It is clear that this 
method does not work for other groups of interest 
[8]. There is also a potential danger in this way of 
deriving the path integral [3]. It therefore seems 
very much preferable to directly use the standard 
procedure, which is always applicable [9]. In the first 
part of this paper we perform, in a rather explicit 
manner, both canonical quantization and the deriv- 
ation of the path integral for a general compact simple 
Lie group, following the standard routine of [13-21]. 
In particular, we explicitly calculate the quantum 
corrections which are necessary for the correct 
formulation of the quantum theory. 

There is an interesting application in lattice gauge 
theories, namely the interrelation between the Wilson 
action and the corresponding lattice Hamiltonian. 
Usually a lattice gauge theory is defined through a 
partition function on a 4-dimensional euclidian lattice, 
using the Wilson action in the Boltzmann-factor. In 
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order to derive the corresponding Hamiltonian, one 
singles out the time direction of the lattice, defines the 
transfer matrix and finally takes the lattice spacing in 
time direction to zero [22,23]. For the simplest 
nonabelian case of SU(2) the Hamiltonian has been 
found by Kogut and Susskind [24] 

H =  - 2a-7~ ~ ALn{i'J} + V. (1.1) 
{~o} 

Here the kinetic term (electric energy) comes as a sum 
over all links, and for each link we have the Laplace- 
Beltrami operator on the SU(2) group manifold S a. 
The second term (magnetic energy) plays the r61e of 
the potential which depends on all the link variables. 
gt is the coupling constant in time direction and a, is 
the special lattice spacing. The (asymmetric) Wilson 
action in the temporal gauge (at is the lattice spacing 
in time direction) 

~ f  2a, 
S = L {a~a. ~ ReTr [1 - U g * ( k  + 1)U,j(k)] 

k ( g t  t {i,j} 

2a, } 
z "V (1.2) 

gs as 

can be viewed as the action of the quantum mechanical 
path integral of (1.1): each link variable U~s is like a 
particle with mass m = a j g 2 t  living on the SU(2) 
manifold. If we now apply to (1.1) the standard 
procedure for deriving the path integral, the resulting 
quantum action will, in general, look much more 
complicated than the Wilson action (1.2). We shall 
show, however, that the path integral based upon (1.2) 
matches the Hamittonian (1.1): the Wilson action 
"has chosen" a very clever way of discretizing time. 
From the point of view of the standard routine this 
discretization scheme may look peculiar, but the 
simplicity of (1.2) is certainly striking. We shall show 
that the equivalence of (1.1) and (1.2) generalizes to 
any compact simple Lie group. We thus end with the 
conclusion that, with a time discretization scheme 
which at first sight looks complicated, the path integral 
can always be cast into the elegant "Wilson form". As 
a by-product, we present a device for finding rather 
easily the lattice Hamiltonian for Lie groups other 
than SU(2). 

This paper is organized as follows. We first (Sect. 
II) review, for a general compact simple Lie group, 
how canonical quantization is done and how the path 
integral is derived. In Sect. III we then turn to lattice 
gauge theories and study the interrelation between the 
Wilson action and the lattice Hamiltonian. In an 
appendix we briefly outline how the (mostly well- 
known) results for SU(2) are reproduced. 

II Quantum theory on a group manifold 

a)  Metr ica l  quantities o f  the group 

In the following we consider a compact simple Lie 

group G. It may be construed as a differentiable 
manifold M furnished with a group structure. Elements 
of G correspond to points on M and may be para- 
metrized in terms of the real coordinates co t. As usual 
co -- 0 determines the unity element of the group. The 
dimension n of the manifold is identical to that of the 
group (i.e. the dimension of the associated Lie algebra 
as a vector space). The group structure is fixed if we 
know the composition function ~ which determines 
the group multiplication. Let cot and co~ be the 
parameters of two elements g~ and g2 of G. Then 

col= ~/(col,co2), 1= 1, . . . ,n  (2.1) 

corresponds to the product g = g l g 2  of these two 
elements. The left auxiliary functions are defined as 
[25], 

,1 a~z(co, col) I 
r/ (co)= ~ t, ] (2.2) 

0('01 1r =0 

The inverse of tl are the components of the Maurer 
Cartan form a: 

~lllall2 ~--" 1511/2 �9 (2.3) 

The associativity of the group multiplication 

~)(CO3, ~(CO2, COl)) = ~(~(CO3, ('02)' (2)1) (2.4) 

leads via differentiation to Lie's second theorem 

t]llt ~lt11312 __ t]lI2 ~ltll3ll = f l l t214~lJ4 (2.5) 

where ~t denotes 0/&d. In terms of the a-fields this 
relation is also called the Maurer-Cartan equation: 

~13 alll2 - -  ~12 a 1113 = f l l lals  al412 alsl3. (2.6) 

In (2.5) and (2.6), fht2t3 are the structure constants of 
the group. Since we are considering compact simple 
groups, the structure constants can be chosen to be 
totally antisymmetric. 

Now we consider a matrix representation U(co) of 
G, satisfying (without loss of generality) 

~l U I,o = o = - i T t (2.7) 

where T t are the generators of the group in the chosen 
representation. The T t satisfy the commutation 
relation 

I T  l~, T ~2] = i f  hz213 T 13, (2.8) 

and they are normalized to 

Tr T ll r 12 = �89 (2.9) 

The left auxiliary functions are related to derivatives 
of U. This can be seen by differentiating 

U(t~((J)I, 602) ) = U(fD1) U(fD2) (2.10) 

with respect to co2 at co2 = 0. This yields 

@hS~2 U = -- i U T  zl, (2.11) 



or, in terms of a *  

ahI T h = i U -  l ~tU. (2.12) 

Equations (2.11) and (2.12) imply that 

L t = @l~t, (2.13) 

is the infinitesimal generator of transformations via 
group multiplication from the right: U ~ U U'. Note 
that a (and therefore also r/and L) are invariant under 
global transformations from the left: U ~ U' U. The 
role of the left and right is reversed, when in (2.2) the 
derivative of �9 is taken with respect to the first 
argument. This would lead to right invariant ff's and 
~7's and to the right invariant generators of left multi- 
plications. In this sense left and right multiplications 
are completely on an equal footing. 

The "natural" metric on M is expected to be 
invariant under global both left and right multi- 
plication. If G is a simple compact group, this 
bi-invariant metric is unique up to multiplication by 
a positive constant [26]: 

ghlz = aul alh = ~ul ~u2. (2.1 4) 

Our choice of the multiplicative constant is motivated 
by the desire that a (and not a multiple of a) can be 
interpreted as a vielbein field. Then the inverse of the 
metric reads: 

gtXt2 = @ttltzl" (2.15) 

Note that this definition (2.1 4) of the metric is indepen- 
dent of any representation. For a given representation 
U, satisfying (2.7)-(2.9), the metric can also be written 
as: 

gm~ = - 2 Tr [ U -  1 (~/1 U) U - 1 (~12 U) ] .  (2.16) 

For the purpose of quantization we also need the 
Christoffel symbols and the scalar curvature. We use 
the conventions 

13 1 1314[ ,q ,., F h t ~ = ~ g  v q ~ , ~ + C 3 f 2 g h l , - - O z ,  gh~),  (2.17) 

R = gtm(gt~Fh~t~ -- ~hFt~l~t~ + Fl,1312Flalgl4 

- -  ~/11314 F[2/413). (2.18) 

Making use of (2.5) and (2.6), these quantities can be 
calculated to be 

~/113/2 =�89 .-1- 12 ~ ] 

= @~"(~t, am~ + � 8 9  t~'~a~t~ a~t~) (2.19) 

R = �88 (2.20) 

Now we have all the tools at our disposal which are 
needed for the quantization procedure. We finally note 
that many of these calculations greatly simplify if one 
makes use of the calculus of differential forms [25, 27]. 
For  our purposes, however, it will be more appropriate 
to stay in the component formulation: this applies, in 

* (2.12) shows that ahtdeo z indeed is the Maurer Cartan 1-form: 
(ahldoJ)T h = iU-~d U where d is the exterior derivative on M [-25] 
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particular, to the calculation of the quantum correc- 
tions in the path integral. 

Since the left auxiliary functions q and corres- 
pondingly all metrical quantities are not explicitly 
known except for U(1) and SU(2), we now want to 
give a Taylor expansion of q. It can be obtained from 
the Campbell-Baker-Hausdorff  formula (for a recent 
account, see [28]): 

@z(09) = c3z,~ + �89 fh1210912 + ~ f~,l~3 f~l~,  091~09I~ 
__ 7 �89 flllz13 f131'~ls flstd7 ftTlS1091E091409t609tS 

+ 0(096). (2.21) 

This leads to the approximate expression for the 
metric: 

ghZ = 6l,t __ ]~ fhZ~13 ft31,1091~09Z.~ 

+ 2�88162 z~ 

-t- 0(096) ,  (2.22) 

which may be used in order to calculate approxi- 
mations to all metrical quantities. Clearly, this form 
of qt,z and gZ~t is only valid for the parametrization 
U = e -~~ Any other parametrization would imply 
different composition functions and therefore different 
metrical quantities. 

b)  Canonical  quant izat ion 

Since the correct quantization procedure, in spite 
of being well established for a long time [10, 12], 
is not yet sufficiently well-known, it may be useful 
to recapitulate the basic ideas. First let us consider 
canonical quantization. The classical kinetic Hamil- 
tonian is of the form �89 where Pz are the 
canonical momenta and ~z,, is the metric (rescaled by 
the mass), which in general depends on the coordinates 
qk Upon quantization, q and p become operators 
obeying the canonical commutation relations. This 
leads to an operator ordering ambiguity in the kinetic 
Hamiltonian. It can be resolved by requiring that the 
Hamilton operator has the correct classical limit, that 
it is invariant with respect to arbitrary coordinate 
transformations and, finally, that it is hermitean with 
respect to the canonical integration measure d " q x / g .  
The unique result is* 

H = � 8 9  Z, I l l 2 ~ 1 / 2 .  n - - 1 / 4  _]_ V (2.23) 
U11~4 ~ Ul2~  

where 

Ohz2 = m g z m ,  g = det (g~,~2) (2.24) 

and V is assumed to depend only on q. In the 
coordinate representation the momenta are 

1 1112 Pt = -- i g -  1/4atg1/4 = -- i~ t ---~ g (~tgl2h)" (2.25) 

* We ignore a possible curvature term, which is present in [10], 
but forbidden in [11], since, for our case, the curvature is a constant 
anyway 
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This again follows from the hermiticity requirement 
with respect to the canonical integration measure�9 In 
this representation the kinetic Hamiltonian is the 
Laplace-Beltrami operator 

Hkin _1,~- 1/2,q ~Ii12~1/2 ,.q 
= - -  2~4 t~ll~4 ~:] v l  2 

l~l~l~ ~ . l ~ t 2 r  t3 ~ (2.26) = - - ~  ~lltJl2 W ' ~  J 1i 12~13" 

The form of H given in (2.23) is not suitable for 
practical purposes. Hence it must be reordered accord- 
ing to an appropriate scheme [19]. We shall make use 
of the standard and the Weyl ordered forms of Hkin: 
standard: 

__ 1,~,/t12~ ~ I [ ~  .~/:t/2~n 
H k i n - - 2 ~  F l l F l 2 - - 2  I, llU ]Fl2 

lr~ ~ zl ,12~+AV1 ' (2.27) 

Weyl: 

Hkin- - l tT .h l2 ,  n 2"  ~lllzn ~-n n ~ll l2~+AV1" - -  8 ~  IJltYl2 "]- IJll~J P12 t"111112 ~ ] 

(2.28) 

In both cases: 

l [a l l l21  ~ 13 1 ~ 14 ~ (2.29) AVl=gw a l l  14~tl2 I 3 - - x x ]  �9 

On the group manifold, g, F and R are given by 
(2.15), (2.19) and (2.20), respectively. Now A 111 can be 
calculated to be: 

A V 1 = ~--~ (t31~ ql:t)(~t~@l). (2.30) 

Our final item in the canonical context are the 
generators of group transformations. The hermitian 
left-invariant generators of right multiplications are 

Lll  1[ 1211~ ~1211~ 
= -- gt gl Fl2 + Pl2'l ) 

= - - ' t  m~+~Wl~'l ," (2.31) 

In the coordinate representation L agrees, up to a 
factor of i, with (2.13). The generators satisfy the 
algebra 

[L l~, L t~] = i f t m t a L  '~, 

[g',  g ~1 = 0. (2.32) 

For  a representation U with (2.7)-(2.9) application of 
the generators yields: 

[L t, U] = U T z. (2.33) 

The quadratic Casimir operator of L coincides with 
(2.27) and (2.30): 

H k i n  = 1 L ~ , (2.34) 

i.e. the kinetic part of the Hamilton operator is just 
the quadratic Casimir operator of the group [25]. 
Note that working with the right invariant generators 
of left multiplications/~t would have led to (2.34) with 
L 2 replaced by /~2 .  

c)  Pa th  integral quantization 

Let us now turn to the path integral description of 
the quantum system. The path integral approach to 
the quantization on curved spaces (or on flat spaces 
in non cartesian coordinates) has also been known for 
many years [13-21]. Although it is well understood 
by now, it may--especially for the community of 
particle physicists--be helpful to present the procedure 
in some detail.* 

The path integral is a device for the calculation of 
the probability that a state I q ' )  at a time t' evolves 
into a state I q")  at a later time t': 

PI = ( q " , t " lq ' , t ' )  = ( q"Je-iH(t"-~")lq') .  (2.35) 

Usually the first step for the evaluation of PI is the 
insertion of intermediate states�9 For  thus purpose we 
need the completeness relations and normalizations 
of the p- and q-eigenstates. They are fixed by the 
definition of the scalar product. In accordance with 
(2�9 we choose to use the coordinate invariant 
(geometric) integration measure: 

( 0 IX )  = ~dnqgl/2(q)O*(q)z(q). (2.36) 

Dividing the time integral t ' - t '  into N equal 
parts of size e, the path integral may be written as 

(e" = lim (1 + a/N)  N) 
N-*oo 

( N-lk_~l dnqk ) PI = s~lim g-  1/4(q,,)g-1/4(q,).[k_ l - [  

N - 1  

�9 l-[ K(k  + 1, k), (2.37) 
k = 0  

where qo = q', qN = q", and the short time kernel is 
defined by 

K ( k  + 1, k):= gl/4(qk+ 1)gl/4(qk)(qk+ t f 1 -- ieHI qk)" 
(2.38) 

The potential contained in H does not provide any 
difficulties, since it depends only on q. The kinetic part, 
however, cannot be used in the form of (2.23).** Instead, 
it has to be reordered into a form belonging to a 
"2-ordering" [19]. The most convenient (and most 
commonly used) one is the Weyl-ordering scheme, 

* Most textbooks describe the path integral approach only in flat 
systems using cartesian coordinates. One of the exceptions, the 
textbook of T.D. Lee [29], uses a normalization which we consider 
to be somewhat unnatural: instead of our eq. (2.36) he uses 

( t) l Z ) = ~ dn qt)*(q) )~(q), 

i.e. the integration measure is not invariant under general coordi- 
nate transformations 
** In special cases, it is possible to proceed from now on in a 
somewhat different manner: rather than inserting p-eigenstates, as 
we shall do below, one can evaluate the matrix element of H directly 
[30]. The resulting path integral corresponds to a special discretiz- 
ation scheme, which may deviate from the midpoint rule 



defined by: 

1 S" m! qm-tp~qt. (2.39) {ff  q ' }w  2~t="o lI(m -- l)] 

For r = 2 this reduces to (2.28) (this is posed as an 
exercise in Lee's book 1-29]). Therefore we have: 

( q k + l l H k i n l q k ) = ( q k +  1 ~l,tz l[~{g PhPt~}w 
+ A 1/1 (q) lqk) (2.40) 

Otto is expanded in a power series in q, and we use 

(qk+l  ]{qmp'}wlqg)  
dn 

~m.,~-l/4[,~ "~,7-1/4[,~ xr a"p nroip'Ak 
=t lk  U 1,tlk + 11~ l'~lk! J (2n)" e (2.41) 

This where ~k:=�89 +qk) and Ak:=qk+~--qk. 
gives for the short time kernel: 

K(k + 1, k) = driP e ipzAzk I(SV ). 
�9 [1 -ie(�89 + A V~ + V)], 

(2.42) 

where A 1/1 and the potential V may be taken at 
arbitrary q, for instance at c]. From here it is obvious 
that Weyl-ordering of the Hamiltonian corresponds 
to a "midpoint discretization" of the metric. Hence 
there is a one-to-one correspondence between dis- 
cretization and the quantum correction A 1/1. As an 
example for another discretization scheme, standard 
ordering would have given 

K(k + 1, k) 

n l F E 
= f d~P e~p~a.l 1 ie(�89 1)phpt 2 

~(2n)" c 

�9 ] z -l,t2 ~,, 1 ~ a r, t m  + A ~(Ohg )(qk+ln%--~ h z:u Vl + V) 

(2.43) 

Since in the path integral we only need to be precise 
up to O(e), the integrand of the kernel (2.42) is 
exponentiated. Then the p-integration is gaussian and 
can be performed 

PI = g - ~/4(q,,)g - ~/4(q,) N-.~lim ~ \ k = ~ d" qk 

N--1 f 
k = 0  

"expi[lght:(~lk)d~k'AZk~ -- eA V~ - - e V l } .  (2.44) 

where a constant normalization factor has been 
omitted. Equation (2.44) shows that A is of order x/e, 
since 

At~ A t~ - ieO m2, (2.45) 

where the inverse metric is taken at c] of the corres- 
ponding time slice. Here the s y m b o l -  denotes equi- 
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valence as far as use in the path integral is concerned 
[13]. 

In order to compare (2.44) to the usual covariant 
(configuration space) path integral, which has the 
integration measure l ~ d n q k x / / ~ ,  we still have to 

k 
manipulate the measure. By Taylor expansion of g(qk) 
and g(qk+ 1) around qk up to order e (i.e. A2) ,  w e  obtain: 

gl/2(~]k ) = gl/4(qk+ OgU4(qk)(1 __ 1 A h  At2,~ 8Z'ak Z~k ~11 ~/213/3) 

(2.46) 

This is exponentiated and inserted into (2.44): 
N - 1  

PI = lim S l-I (dnqkf/a(qk)) 
N--* oe k = l  

f N-1V 1 
. . . . . .  ,AhAt~ "expl ik~=oLSghtAqk) k k 

(2.47) 

where 

A TT-- 1 ~lll2~ F 13 - - ~  ~l,-z2 13+AV 1 (2.48) 

and again we have omitted the constant normalization 
factor. 

Equation (2.47) requires some discussion. Most 
important, the path integral is not simply the integral 
over the field variables of the exponential of the 
classical action. An additional term A V has appeared 
which has to be interpreted as a quantum correction, 
since it has its origin in the noncommutativity of the 
operators p and q. Our discussion shows that this new 
term strongly depends upon the way in which time is 
discretized. We have started from the Weyl-ordered 
Hamiltonian, and in our result g is taken at the 
midpoint value ci. Another ordering could have led, 
for example, to g(qk+ 1) ("standard ordering") or g(qk) 
("antistandard ordering"), and in each case we would 
have found a different result for A V. Therefore, writing 
the exponent of (2.47) as an integral (without further 
specification) 

S = S 1 ~ "11 "12 dt(~g~lt2q "q - V -  A V) (2.49) 

is extremely misleading: the kinetic term seems to be 
the same in any scheme of time discretization. But A V 
will differ from scheme to scheme, and (2.49) then 
suggests different answers for different schemes. This 
cannot be correct, since our starting point, the matrix 
element (2.35) does not depend upon our choice of 
discretization of time. The resolution to this lies in the 
fact that the kinetic term in (2.47) does depend upon 
the scheme. In order to be unambiguous one should 
therefore either avoid taking in (2.47) the limit e ~ 0 
or supply the expression (2.49) with the additional 
specification of the discretization scheme. 
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In the literature (2.47) is often written in a different 
form: 

N - 1  

PI = lim ~ I ]  (d"qk91/2(qk)) 
N-+m k= l 

1 O,T, l ~ lS F 16 
+~(~l l~12f f1314--z~l f16Jt  ll 12 13 14] 

"AllAl2AlaAl41}'-'k Z'ak *"ak z"ak " (2.50) 

The equivalence can be checked using a generalization 
of (2.45): 

AhA*~A13At4 
�9 ..L. -- ~2(~1112ff1314 .3[_ ~Ii13~1214 .Jff ~Ii14~1213 ), ( 2 . 5 1 )  

Finally we want to write down the path integral for 
our quantum theory on a group manifold. A Va has 
already been calculated in (2.30). With a similar 
calculation we obtain: 

N - 1  

P I =  lim ~ [ I  (d"O)kdet(o'(~k))) 
N--*~ k = l  

�9 exp i L~-W o ] t t~k}Z~kZ-Jk--eV 

e [(r~ ~121"~[~ 4nlll~ ~lll~ r~ ~12l 
8-m ~ l l r l  JktJl2rl ] -- II 11tJ1211 

--l~lll(Otll~12l)~1314Ol2~1413)l } . (2.52) 

In order to cast this equation into the form of (2.50) 
we have to evaluate the last term in the exponent of 
(2.50), which leads to: 

N - 1  

PI = lim ~ FI (d"~ 
N-roe k = l  

. e x p  { i ~ l  F m ,-11~ -l12,t~n "~ A ll A I2 
k=O L ~ - ~ o  u ltt~k! k k 

.~ g fll1213fll1213 

m ~lll~ ~ ~l14AhA12AlaA14 _ g V ]  t 
. - ~ - ~ u  12 13v ._13 

(2.53) 

This form of the path integral and, more general, (2.50) 
is particularly well-suited for comparing (2.53) with 
any other path integral formulation which uses a 
different discretization. One expands the exponent of 
the latter path integral around the midpoint &. If the 
resulting power series in d (up to order e) agrees with 
(2.53), both path integrals describe the same physics, 
namely a quantum mechanical system on the group 
manifold. In the following section such a comparison 

will be carried out for the Wilson action of a lattice 
gauge theory. 

HI Latt ice  gauge  theory 

Lattice gauge theories serve as an interesting applica- 
tion of the results of the preceeding section. As we 
shall see, they provide an instructive example, how a 
very peculiar way of discretizing time may lead to a 
particularly appealing form of the path integral. For 
simplicity, we limit ourselves to unitary representa- 
tions of the gauge group, which is thought to be a 
compact and simple Lie group. 

Usually, a lattice gauge theory is defined through 
the partition function on the 4-dimensional euclidian 
lattice, using the Wilson action in the Boltzman factor. 
In order to derive the lattice Hamiltonian, one goes 
into the temporal gauge Ao l = 0 (l is an algebra-index) 
and singles out the time direction: 

\ {i,j} / 

�9 e x p { -  ~ F _ ~ -  ~ ~ T r ( 1 - R e U ~ ( k  + 1)Uu(k)) 
k Lgt a, {i,j} 

2 vk (3.1) 
gs as 

where 

V k = ~ T r ( 1 -  Re U(~P)). (3.2) 
plaquettes 

P 

Here a, and at are the lattice spacings in spacelike and 
timelike directions, respectively. 9~ and 9t are the two 
lattice coupling constants which in this asymmetric 
lattice have to be distinguished from each other. In 
(3.1) and (3.2) the lattice has been sliced: k refers to 
the time slice, and {i, j} labels spacelike links. The sum 
in (3.2) then extends over all spacelike plaquettes 
belonging to the time-slice k. Finally the Hamiltonian 
is derived by writing (3.1) in terms of the transfer- 
matrix: in the limit at ~ 0 one then obtains the lattice 
Hamiltonian (Kogut-Susskind-Hamiltonian): 

g2 2 
_ t 2 V. (3.3) H - x- -  ~ Lu + _~-y 

za~ {~,/} Os as 

The hermitian generators LIj satisfy the algebra 

[LI}, L[}] = v;cl'm" t13~u, (3.4) 

[LIj, U ji] = U jl T l. (3.5) 

All these operators act onto states which are 
normalized according to 

5(dU) lU) (UI  = 1, (3.6) 

where (d U) is the Haar-measure of the gauge group. 
Let us return for a moment to the integral of (3.1). 

In the limit a,--* 0 (with fixed length of the lattice in 
the time direction) it can be viewed as a path integral, 



where each link is like a quantum mechanical 
"particle" which lives on the group manifold. It is then 
clear that the derivation of the Hamiltonian from (3.1), 
which we have just reviewed is the "inverse" of the 
procedure described in the previous section*. 
There one starts from the Hamiltonian and then 
derives the path integral. Since the "path integral" (3.1) 
does not have quite the form that we would expect 
from the considerations of the previous section, we 
shall apply the standard procedure to the Hamiltonian 
(3.3) and then compare the resulting path integral with 
(3.1). 

Let us first show that, for each link, the kinetic part 
of (3.3) agrees with (2.34). To this end we observe that 
the algebra of (3.4) and (3.5) coincides with (2.32) and 
(2.33), if we identify L = Lij, U = Uj~ and m = as/gt 2. 
Furthermore the integration measures of the nor- 
malization conditions of the states of (3.6) and (2.36), 
when applied to the group manifold, agree. Hence, for 
each link, the kinetic part of the Kogut-Susskind- 
Hamiltonian describes a quantum theory of a particle 
with mass ajgt 2 constrained to move on the gauge 
group manifold. Therefore we can write the 
Hamiltonian as 

H = g2 ~ [{gl~12(cO)Pl,Pl2}W(i,J) + A Vl(i,j)] 
zas  {i,j} 

2 
+ -  V (3.7) 

gs 2 as 

where cnlj are the parameters of the group at the link 
{i, j}, and gl*12(O) and A 1/1 are given in (2.16) and (2.30), 
respectively. In terms of the canonical operators the 
hermitian generators of right group transformations 
at each link are given by: (cf. (2.31)) 

l __ Z i j  - -  - -  �89  1 -'}- pl~ql~')(i,j). (3.8) 

As a by-product, this comparison provides an easy 
method for finding, for a general group, the kinetic 
part of the lattice Hamiltonian: rather than going 
through the transfer matrix formalism, it can be 
obtained by canonical quantization directly. 

If we would now apply the standard method of the 
previous section to the kinetic part of the Kogut-  
Susskind-Hamiltonian, (3.3), we would, of course, end 
up with (2.53) for each link. It therefore remains to be 
shown that Wilson's form of the path integral, (3.1), 
is identical to (2.53): the only reason why, at least at 
first sight, (3.1) looks quite different from (2.53), lies in 
the use of a very special scheme of time discretization. 
In order to see this we shall rewrite (3.1) into the 
discretization scheme of(2.53). Then the only difference 
between (3.1) and (2.53) will be recognized to be an 
overall normalization constant. Let us begin with the 

* Throughout  this section we shall use euclidian time. Contact with 
the previous section has therefore to be made through the usual Wick 
rotation 
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exponent of (3.1) (in the following we shall disregard 
the potential which is irrelevant for our discussion; we 
also suppress the summation over the links, and we 
write e instead of at): 

s k i n  __ Z ~ T r [ 1  _ Re U+(k + 1) U(k)] 
w i l s o n -  k a t / ~  

= ~, ~-~7 Re TrE(U(k + 1) -- U(k)) + 
k gig 

�9 (U(k + 1) - U(k))]. (3.9) 

Obviously, the time discretization in (3.9) does not 
correspond to the midpoint rule used in (2.53). For 
comparison, we have to expand the kinetic part of the 
Wilson action around the "midpoint" of all time 
intervals, keeping all terms up to order e (terms of 
higher order than e are irrelevant in the path integral). 
Since the kinetic term has a factor e -1 and A k= 
Ok+ 1 -- Ok is of order x/7, we have to expand up to 
fourth order in A *. This gives: 

U(k + 1 ) -  U(k) 

~ A h ' 4 1 z a Z 3 " 3  ~12 ~t3 U ,  (3.10) = A/131:  t U ' t - 2 4 ,  k Z'ak ~ k  'vii 

where the derivatives of U have to be taken at the 
midpoint (Ok=�89 The quadratic term 
gives the classical kinetic term: 

as Alldt2ReTr[(311U)+(~I2U)] g,2e 

as f f t t l  ~TU2 A ll A lz m _ AltAr2 ' 
- 2g2e = ~ Yz,,~ (3.11) 

where we have defined the mass parameter precisely 
as in the Hamiltonian approach. The quartic term of 
skin reads: Wilson 

m 
- -AI1AI2AI3At4ReTr[(Qz,  U+)(OI~a1301,U)]. (3.12) 
12e 

Using (2.9) and (2.12) and the identity 

X 11X 12 Re Tr i T l* T z2 T l = 0, (3.13) 

valid for any X because of the hermiticity of the 
generators, the Wilson action can be simplified to 

sk in  _ v i m  ~ t :-, ~ a h  Al2 
wilson - -  ~ 2~tlll2~t~klZak k 

"~- t /  12 13 u 

m 61511 (T1612(~1713(Tls14 R e  T r  T Is T 16 T 17 Tls l  
12e J 

.Al lA12A13A141 ~k "~k "-'k ~k ~" (3.14) 

* It has already been shown in [31], that an expansion only up to 
second order leads to erroneous results, as it had to be expected 
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If we compare this result with the exponent of the path 
integral expression of the gauge group of (2.53), there 
is a difference: 

S ' (  e fhl~z~ft,zm as  =-C\2q~m 

m ai~Z ~ az61~am3ats~" Re Tr T t, T l~ T 17 T I~ +~7~ 
.AI1AI2AI3AI4~ "-'k "~k ~k ~k J. (3.15) 

In the path integral, however, A S is equivalent to a 
constant (use (2.51)): 

~ 111213 111213  s-2[ s s 

(3.16) 

= @ g [l~elll21aflll213j -- 2 ReTr T I~ T h TI2T t2). 

(3.17) 

Hence the only difference between the path integrals 
of (3.1) and (2.53) may safely be absorbed into the 
normalization of the path integral. In this way it is 
explicitly verified that the standard procedure for the 
derivation of a path integral and the transfer matrix 
formalism are indeed inverse operations. 

Our result also implies that the path integral on a 
group manifold can be cast into an especially simple 
form, namely (we now include the correct normaliza- 
tion factor): 

(q ' , t ' l q ' , t ' )  

~,.~[~ t" -- t' v r t = ~xt~'~' l---6-~-m LJ J - 4  Re Tr((T'T ')2)]  
3 

�9 N-,~olim \2-7~J  I k=tH (d"COkOl/2(COk)) 

{" n-~: 2m Tr [ 1 _ _  _ Re U+(COk+ ~)U(cok)] }. �9 exp t k 

(3.18) 
Here the U's form a unitary representation of the 
group, parametrized by co and satisfying (2.7)*. 

Finally, we want to state the result for A S  for the 
case of S U(N). Using general properties of S U(N) in 
the fundamental representation [32], one finds: 

N 2 - 1 (3.19) 
AS V 

~' 16m N 

* Note that all expressions for the quantum mechanics on the group 
manifold, (2.34), (2.52), (2.53), and (3.18), also apply to the case of 
nonlinear sigma models, which are the field theoretic extensions of 
our quantum mechanical system 

IV Conclusion 

In this paper we first have reviewed the basic formulae 
for quantum mechanics on the manifold of a compact 
simple Lie group, both for canonical quantization and 
for the-derivation of the path integral. Particular 
attention has been given to the non-cartesian nature 
of any parametrization of the group, and explicit 
expressions have been presented for the quantum 
corrections which are associated with this feature. 

In the second part we have used formulae in order 
to gain, in lattice gauge theories, further insight into 
the relationship between the Wilson action and the 
lattice Hamiltonian (Kogut-Susskind-Hamiltonian). 
The latter is shown to be the canonical Hamiltonian 
on the group manifold (up to the potential part). This 
identification is in agreement with the picture that 
attached to each (spacial) link there is a group mani- 
fold, and the link variables Uij behave like "quantum 
mechanical particles" living on these group spaces. 
This may be considered as the lattice counterpart of 
the continuum fibre bundle picture. The identification 
of the Hamiltonians also allows to write the lattice 
Hamiltonian in terms of canonical coordinate and 
momentum operators and of the left-auxiliary func- 
tions t /of  the Lie group. In the parametrization U = 
exp ( - icotT z) the Campbell-Baker-Hausdorff 
formula provides a tool to calculate t/(and hence the 
Hamiltonian) to any given order of accuracy. 

The usual four dimensional euclidian partition 
function with the Wilson action, on the other hand, 
becomes a path integral when (in temporal gauge) the 
timelike lattice spacing is taken to zero (keeping the 
spacelike lattice spacing fixed). The action integral of 
this path integral ("Wilson form"), however, does not 
look at all like the one that follows from applying the 
standard rules (with a simple time discretization) to 
the lattice Hamiltonian ("standard form"). We have 
explicitly demonstrated that both forms are equivalent 
(up to an irrelevant normalization constant): the 
(superficial) difference lies in the way in which time is 
discretized. The "Wilson form" corresponds to a very 
special discretization scheme, whereas the "standard 
form" e.g. uses the midpoint rule. 

We finally like to stress that this equivalence of two 
seemingly different forms of the path integral not only 
applies to the context of lattice gauge theories. For 
any quantum system on a compact simple Lie group 
the path integral can be written in the elegant "Wilson 
form". 

Acknowledgement. We wish to thank F. Steiner for useful remarks. 

Appendix A 

Path integral on the group manifold of S U (2)  

In S U(2) the generators are T l =  �89 ~ with z~ being the 



Pauli-matrices. They satisfy 

Th Tl ~ = �89 ~ + t pill213 Tl~ (A.1) 
2 ~ 

where e ~t3 is the totally antisymmetric Levi-Civita 
tensor in three dimensions. We want to present the 
path integral for S U(2) in two different wide-spread 
representations, namely U = exp ( -  iB ~ T ~) [-33] and 
U = x ~ + ixl'r t [34]. 

a) First we want to use the familiar parametrization: 
[33] 

BZT l 
U = e -IT'B' = c - 2 i ~ s ,  (A.2) 

H 

where 

B = ~ ,  c=cos  B, s=s in  B. (A.3) 

In this case, the composition functions are rather 
complicated, but we do not need to know them. The 
a's can be calculated using (2.12), which is applicable 
since (A.2) satisfies (2.7): 

2cs B h  Bt:  s 2 
[~lll2 pl l l2 + + 2 ~ v J m t ~ B  l~, (A.4) =B ~ r -  D -  

where the projector P is defined by 

B h B  h 
pl,Z2 = 6ira_ B ~ (A.5) 

This implies the left-auxiliary functions 

2 c BhB'~ �89 1~ (A.6) t11112 = B p l l h  + B ~ - -  

(2.14) and (2.15) can be used to calculate the metric 
and its inverse: Equations 

g _4S2pht~ Bh Bt: 
l,l~ -- ~ -  + B ~ ,  (A.7) 

B 2 BhBl:  
vnl'12 _----Pll124S 2 : + B ~ (A.8) 

Note that the Taylor expansion of (A.8) coincides with 
(2.22), as it should be. The Christoffel symbols can be 
calculated by using (2.17) or (2.19): 

~'/312:(; 2CS~plll2BI3B 2 ) B 

+ ~ - ~ ] k  ~ -  ~ - , ] ,  (A.9) 

and the curvature is given by (2.20): 

R - - -  �88 eZ,l:l~ ez,l:l~ --2.-- 3-- (A. 10) 

The quantum correction A V~ in the Weyl-ordered 
Hamiltonian is (cf. (2.29) and (2.30)) 
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1 (  3 ~c 2 1 c 2 )  
AVl=8mm - 2 - g ~ - - s Z + ~ s a B + B  2 " (A.11) 

The quantum corrections in the path integral, which 
uses the midpoint discretization, may be written in 
two alternative forms, either as a q-dependent potential 
or as a power series in A. In the form of a potential 
it reads (cf. (2.47) and (2.48)): 

1 ( 3  lc 2 5 c 4 )  
A V = 8 m  2 2s 2 2s 2 t - ~ B + ~ 2  . (A.12) 

For the power series in A we have, for each time slice 
(cf. (2.50) and (2.53)): 

m f[-3 cs s 2 ] 

+ B2 2B ~ +  6 ~  ~ T -  

. p h z 2 A l l A t 2 A  13Al4, (A�9 

which is, of course, equivalent to - e'A V. Hence the 
correct path integral on the S U(2) group manifold 
takes the form: 

P I =  

o r  

P I =  

N - 1  

lim I l~ (d3Bkg'/2(Bk)) 
N~c~ k=i  

f N - 1 V m  
�9 e x p  ~ik~=o L~g,,t2(B-k)A ~' Ark ~ --e" V(Bk) 

+Urn 5 + i V +  Zs 2 V B -  (A.14) 

N - 1  

lim ~ 1~ (dnBkgU2(Bk)) 
N ~  k = l  

( n - l V m  
�9 - -  11 12  

m [ [ 3 c s  s 2 I 
+ ~ m m + ~ t t ~ 5  ~ (  2+c2)/p'~' '  

+ B2 2B 2 t - 6 ~  

�9 pllz2 Al, al2 Al3 Al4 -] "~ 
- ~ k  ~'k ~ k ~ ' k  j j ,  (A.15) 

where we have omitted the common normalization 
factor. 

b) In this part of the appendix we consider the 
parametrization [34]: 

U = x 0 + ixLc l, X 0 = x / l - -  XtX I. (A.16) 

Note that this parametrization does not fulfil (2.7), 
hence the results of Sect. II should be applied with 
some care�9 Therefore we start from the very beginning. 
The composition function reads: 
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t~ ) I ( x1 ,  x 2 ) =  0 l l 0 ollll2vllvl2 (A.17) X 1 X 2 - ~ - X 1 X 2 - - c ,  ~i~2~ 

which implies for the left auxiliary functions 

tlu' = x~  6 ul + eu~12x l~. (A.18) 

Let us mention that (A.18) cannot be obtained from 
(A.6) by simply applying the coordinate transform- 
ation B t ~ x l ( B ) = - s ' B t / B  and using the proper 
transformation behaviour of the vielbein t/. This would 
yield 

OX 11 
flU'(x) = qn~(B(x) ) dBl~ - - �89 (A.19) 

The reason for this lies in the fact that when changing 
the parameterization from (A.2) to (A. 16) we also make 
a change of the orthogonal basis of the Lie algebra 
according to T ~  - z. As a result, under this combined 
transformation, the vielbein receives an additional 
factor of - 2 ,  compared to the simple coordinate 
transformation. The redefinition of the basis also 
changes the structure constants: (2.5) and (A. 18) lead to 

ft,m~ = _ 2ehzm. (A.20) 

For the a's we find 

XI x l l 
eml~x l~ (A.21) au~ = xO6 u, + x ~ 

Instead of (2.12) they satisfy 

U -  l ~3zU = izt a ttl, (A.22) 

which again indicates the change in the basis of the 
algebra, a and I/give the metric and its inverse: 

x l l x ' 2  
ghz~ = 61m + -  (A.23) 

X 02 , 

ghl~ = 31m _ XhXl~. (A.24) 

The Christoffel symbols and the scalar curvature are 
calculated to be: 

~ l~l: ~ = xl~ g lm , (A.25) 

R = �88 = ez~e~t3eimt~ = 6. (A.26) 

The difference between (A.26) and (A. 10) can be under- 
stood by the following transformation: first perform 
the coordinate transformation B ~ x, which leaves R 
invariant and then rescale the metric by a factor of 4 
(due to the change of the basis in the algebra), which 
enlarges R by the same factor. 

The quantum correction A 1/1 in the Weyl-ordered 
Hamiltonian is given by (see (2.29) and (2.30)) 

A V 1 = 8m\ x ~ - 6 (A.27) 

The quantum corrections in the midpoint rule dis- 
cretized path integral can be stated as (cf. (2.47), (2.48), 
(2.50) and (2.53)): 

3) 8o 
A L = ~  m m + ~ e  gt'z~(gl3z" + 3gl~15gz'a6Xl~Xl~) 

. Al~ AZ2 At3 At,,. 

Therefore the correct path integral reads: 
N - 1  

PI = lim ~ [ I  (d3Xkf /Z(Xk))  
N ~ o o  k = l  

N -  1 l~l - 11 12 oxp{  
/ x l x  l _  3 \ 

J 
or  

N - 1  

PI = lim S ]--I (d3Xkf /Z(Xk))  
N--+oo k= l 

�9 exp ~mghl2(2k)A~lA~2--eV(2k)  
k k=O [_Ze 

m 
+ -  + ~ e g i m  (gm4 + 3gl315gl4zoXlsX 16) 

m 

where, again, we have suppressed the 
normalization factor. 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

c o m m o n  
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