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Abstract. The mass and hadronic width of the scalar 
isovector meson ao(980) are estimated in QCD for 
two possible quark assignments: (a) ~q and (b) qqqq. 
The two-photon width of the ao(980 ) is also discussed. 

1 Introduction 

The quark structure of the scalar isovector meson 
ao(980) [-1] (previously called 6 (980)) is still a matter of 
debate and speculation on account of the difficulties 
to explain all of its properties within a single assign- 
ment. The naive quark model suggests a ~q interpreta- 
tion but other classifications have been proposed, e.g. 
that the ao(980 ) could be a four-quark state [-2] or 
even a K K ~ "molecule" [3]. QCD sum rule estimates 
of the ao(980) mass and couplings [4], considerations 
based on ~/'--+qg~ [-5], and ao(980 ) photoproduction 
[6], appear to support the naive quark model assign- 
ment. However, it has been claimed that some consti- 
tuent c]q potential models predict hadronic [7] and 
two-photon widths [3b] which are too large to comply 
with the experimental data. On the other hand, the 
problem of the ao(980)-fo(975) near degeneracy 
together with the weak coupling offo(1350 ) to strange 
quarks has prompted the suggestion of a qZt]2 classi- 
fication which was studied in the framework of the 
MIT bag model [2]. 

In this paper we wish to reexamine both the Oq and 
the q2~2 interpretations of the ao(980) by estimating 
its hadronic and two-photon widths in the framework 
of QCD duality sum rules. This method is by now well 
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established and thus we shall not go into details here 
(for a recent review see e.g. [8]). We only wish to stress 
that one of the advantages of this framework is that 
the QCD bound state spectrum can be directly related 
(through dispersive integrals) to the fundamental QCD 
Lagrangian parameters. These are the strong coupling 
constant as, the current quark masses and a set of 
quark and gluon vacuum condensates which appear 
in the Operator Product Expansion (OPE) of current 
correlators. These vacuum condensates characterize 
the distinctive features of confinement in QCD, among 
them e.g. spontaneous symmetry breaking, without 
any reference to the concept of potential for light 
quarks. One of the main differences with previous 
analyses done in the same framework [4a,9] is that 
here we exploit the long distance realization of QCD 
in order to fix the normalization of the hadronic 
spectral functions pertinent to both the glq and 
the q2t]2 cases. When this fundamental constraint is 
imposed on a finite-width, Breit-Wigner resonance 
parametrization of the spectral functions we are left 
with only two physical parameters to determine: the 
mass Mao and the hadronic width Fao. Also, we use in 
our analysis both Laplace transform [10] and Finite 
Energy Sum Rules (FESR) [11]. This allows for a more 
systematic and stringent determination of Mao and Fao. 
In particular, in the Oq case we use a new FESR [12] 
which uniquely relates the hadronic width to the sum 
of the light current quark masses. 

The paper is organized as follows. In Sect. 2 we 
discuss the determination of Ma and F a in the cTq 
assignment, and in Sect. 3 we do it in the q2~2 case.  
In Sect. 4 we estimate the two-photon width of the 
ao(980) (~q) using Vector Meson Dominance and 
three-point function QCD sum rules; we argue that 
the results do not provide enough compelling evidence 
against a Oq assignment. Finally, in Sect. 5 we sum- 
marize our results. 
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2 Mass and hadronic width of the a o(980) in the 
qq assignment 

We begin by considering the two-point function asso- 
ciated to the vector current divergence with IG= 1-, 
JP = 0 + quantum numbers 

~/(q2) = i~d4xeiqx(o[ T(SuVu(x)~3~V,(O))]O), (1) 

where 

~u Vu(x) = i(me - mu): ff(x)u(x):, (2) 

and m,,a are the "current" quark masses. The function 
tp(q 2) satisfies the dispersion relation (Q2 ~ _ q2 > O) 

1 ~ , ImO(s) 
~I(Q2) = ~ Jo as s ~ Q T  + subtractions�9 (3) 

In the limit Q2 _+ 0, ~t(Q 2) obeys the well known current 
algebra low energy theorem based on Ward identities 

@(0)[QC D = - -  ( m  u - -  m d ) ( a u  - -  d d )  + 0 ( 0 ) I A . F . ,  (4) 

where O(0)a.F is the purely perturbative contribution 
to 0(0). Taking Q2 = 0 in (3) the asymptotic freedom 
piece of(4) cancels exactly with the corresponding piece 
in Im O(s) and one obtains the following FESR [12] 

- ~ o d s  1 

0(0)[N.p. =-- -- (m, -- me)( au -- dd ) = ~ - - - I m  0(s) 
0 S 7~ 

3 
8r~2 [ma(so)-  m,,(so) ] a 

' S 0 [ 1  + R l ( S 0 ) ] ,  (5)  

where So is the asymptotic freedom threshold, and the 
radiative corrections R,,(So) are given by 

cr 
Re(So) -- 

7g 

�9 I ~  + 2n-- ~ ( y 2  -- y : ~ )  + 271 flfl~-a l n l n ~ 2 1  (6) 

with 

2rt 
G(So) = _/31 In (so/A 2), (7) 

and fl: = - 11/2 + nil3, f12 = - 5 1 / 4 +  19 ny/12 , 71 =2, 
~2 = 101/12-5  nil18, (n I is the number of quark 
flavours). The non-perturbative value of ~(0) in the 
lhs of(5)is expected to be very small [8, 12, 13]. Notice 
that in addition to the explicit S U(2) flavour symmetry 
breaking factor (m~-me)  , it contains the piece 
( a u - d d )  which measures SU(2) breaking in the 
QCD vacuum. Since we are interested here in estimat- 
ing the hadronic width of the ao(980 ) we can safely 
neglect the lhs of (5) and obtain 

~ ds l- Im ~b (s) ~ 8 @  [me(so) - m,(so) ]2 
S 7"C 

"soil + R:(so)]. (8) 

Turning to the spectral function appearing in 

(8), the lowest two-particle states contributing to it 
are tVc and K/s  which involve the matrix elements 
I(0l~idlt/n)l z and I(0l~idlK/() l  2, respectively. The 
threshold behaviour of the spectral function can be 
derived in several ways, e.g. using the long distance 
realization of QCD (chiral Lagrangian) [12,13b]; 
through the connection to the K §  ~ non- 
electromagnetic or "tadpole" mass difference [14]; or 
by means of soft-meson techniques and quark model 
commutators to reduce n, r/, etc. from the external 
states. They all lead to the same answer which reads 

1 1 4~me - 

�9 {-~ [ (1  - s + / s ) ( 1  - s _ / s ) ] ) / 2  o ( s  - s +) 

+ ( l - 4 # 2 / s ) l / 2 0 ( s - 4 # 2 ) } ,  (9) 

where S+ =(M,+#~)2.  Imposing this threshold 
behaviour on a Breit Wigner resonance form we 
obtain the following parametrization of the spectral 
function 

1 4 / m d - - m , , \  2 
1~ Im 0 (s) = 2~2n2 #~ ~ ~-mum, ) 

�9 { [(1 -- s+/s)(1 -- s_/s)]:/ZO(s -- s+) 
+ 32(1 -- 4y2/s) 1/20(s -- 4/12)} 

2 2 
(s+ - M L )  2 + M,,oroo (10) 

S 2 2 2 2 ' 
- -  Mao ) + MaoFa o 

where M,o and F,o are the mass and hadronic width 
of the ao(980), respectively, and we have normalized 
the Breit-Wigner form at the physical threshold 
S+ = (Me + #~)2 in order to account for the finite t/ 
and rc masses consistently. 

Inserting (10) into (8) the quark mass difference 
cancels out and we obtain 

i d s  1 
l ( s o )  = -  2 2 

[(s - Mo\) 2 + M o o r e  o] 
�9 { [ (1  - s + / s ) ( 1  - s _ / s ) ]  1 / 2 0 ( s  - s +) 
+ 3(1 - 4#2/s)t/20(s - 4#2)} 

9 [me(s~ + m"(s~ so [1 + R 1(so) ] 
#~ (s + -- M.2o) 2 (11) 

Using the experimental value of M~o, this equation 
determines the width F,o in terms of just the funda- 
mental QCD parameters mq and A, as well as the 
asymptotic freedom threshold So. The dependence on 
So is a typical feature of FESR and predictions are 
meaningful only if they are stable against reasonable 
changes in So within the so called duality region [12]. 
In the present case this means that the hadronic lhs 
of( l l )  should match the QCD rhs in a hopefully wide 
region of values for So. In Fig. 1 we show the behaviour 
of the rhs of (1t) (vertical bars) versus So for 
A = 100 MeV and (mu + me)(1 GeV) = (15.5 _ 1.0) MeV 
[12]. The solid curves show the behaviour of the lhs 
of (11) for the two extreme values F a o = 4 O M e V  
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Fig. 1. The QCD rhs of (11) (vertical bars) and the hadronic lhs for 
F,o = 40 MeV (curve a) and F,o = 60 MeV (curve b) 

(curve a), F~o = 60 MeV (curve b). Width values out- 
side this range are not dual to QCD. As one may 
appreciate from Fig. 1 there is a wide duality region 
for So -~ 1-2 GeV 2 which allows us to predict 

F.o = (50 -4- 10) MeV, (12) 

in nice agreement with the experimental value 1-'oo f exp = 
(54 + 7) MeV. 

The above determination of the width required the 
use of the experimental value of the ao(980 ) mass. In 
order to assess the reliability of this determination we 
proceed to estimate M~o in the same framework by 
using the additional FESR [12] 

,o 1 3 
j ds - Im O(s) = l~2s~ [me(So) - m,(so)] e 
0 7~ 

�9 [1 + R2(so) + 2C4(04)/sg3, (13) 

where 

2 C 4 ( 0 4 > = ~ ( ~ G  )+4ne(m,,+me)<gm). (14) 

Taking the ratio between (13) and (8) and making a 
narrow-width approximation in (10), well justified in 
view of (12), we find 

Ma2o ="~ �89 [ 1 + R2(so) + 2C4(04)/s  2 ] J (15) 

Although the actual value of the gluon condensate 
appearing in (14) is somewhat controversial (for recent 
revxews see e.g. (8, 15]) it does not have a major  impact 
here, and we take the conservative range C4(04)~_ 
0.05 - 0.15 GeV 4. Solving (15) we find Mao to be rather 
stable in the duality region So = 1-2 GeV 2, viz 

Mao ~ 0.8 - 1.0 GeV, (16) 

which is in good agreement with experiment. 
It is possible to estimate F,o in still another way by 

using the Laplace transform version of (5). Including 
vacuum condensates up to dimension d = 6 this sum 
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rule reads 

~ d S e - ~ l I m  O(s) 
0 S 7~ 

= ~ ( 0 )  + 8 n  2 O" 

+ C4(04)a 2 + C6(06)a3/2 + ...} (17) 

where 0(1) is the digamma function, C4(04)  was 
defined in (14), and the leading contribution to C6 ( 0 6 )  
comes from the four-quark condensate, which in the 
vacuum saturation approximation is given by [10] 

2816 3 2 
C 6 < 0 6 > [ v ' s ' = -  81 7~ ~s(qq> �9 (18) 

Present uncertainties in C 6 ( 0 6 )  have no sizable 
influence here and we use C 6 ( 0 6 ) - ~ - 0 . 0 4 G e V  6. 
The integral in the lhs of (17) is split as usual into two 
pieces, viz. in the interval 0 < s < s o the spectral 
function is given by the hadronic parametrization (10), 
and for s > s o it takes the asymptotic freedom form 
which can be calculated using two-loop perturbative 
QCD [16]. Here the influence of So is exponentially 
suppressed and thus the results are not so sensitive 
to this parameter, which we choose in the range 
So - 1 2 GeV 2. 

Neglecting 0(0) as before, and using the experi- 
mental value of Mao we have solved (17) inside the 
"sum rule window" a ~ 0.5 - 1.3 GeV -z  and obtained 

/'ao ~ - -  (30 - 50) MeV, (19) 

which nicely confirms our previous estimate (12) based 
on the FESR. 

In view of our results for M,o and F,o we conclude 
that the observed experimental mass and hadronic 
width of the ao(980) are not incompatible with the qq 
assignment. 

3 Mass  and hadronic width of  a q2~2 state 

We consider the two-point function 

n(q 2) = i S d4 x e iq~ ( OI T(Je(x)fe(O) )l 0 ), (20) 

where Je(x) is a local current built from four quark 
fields and which when acting on the vacuum creates 
the E=~lq~lq colour singlet, spin zero state. In 
principle, several combinations in colour and spin of 
the quark fields could be used to construct the current 
operator Je(x). Following [9] we use the following 
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combination 

Je = 1~( ~ u - f f d ) g s  + l~(ffti~su-di75d)gi~ss, (21) 

which, in addition to having the desired quantum 
numbers, has the important property of being free of 
troublesome ln ( -q2 ) / e  singularities (d = 4 -  e is the 
number of space-time dimensions in the dimensional 
regularization scheme). 

We begin by discussing the parametrization of the 
hadronic spectral function associated to the current 
operator (21). As in the qq case the lowest lying 
two-particle intermediate states are t/re and / (K  but 
now they involve the transition matrix elements 
(OlJElqn)  and (OIJelKff~) which are not known a 
priori. In order to fix the scale of these matrix elements 
we have used soft-meson techniques and evaluated the 
resulting commutators of the axial-vector charges with 
the operator JE by means of standard quark model 
commutation rules. In this way, and after appropriate 
Fierz rearrangements we have expressed the required 
matrix elements, in the S U(3) x S U(3) limit, in terms 
of vacuum expectation values of four quark operators. 
Finally, assuming vacuum saturation the latter can be 
related to the familiar quark condensate ( q q ) .  After 
this lengthy but straightforward procedure the thres- 
hold behaviour of the hadronic spectral function is 
given by 

l i m  7i.(S)lth r ~ ( ~ ' ~ 4  
n " ~rC k j,~ / 

�9 { [(1 - s+/s)(1 -- s_/s)]l/eO(s -- s+) 

+ ~(1 - 4#2/s) ~/20(s - 4#2)}, (22) 

where we assumed also the flavour S U(3) limit ( q q )  = 
(Ou)  = ( d d )  = ( g s ) ,  and f~ =fk = f ,  = 93 MeV. As 
usual, finite Goldstone boson masses are accounted 
for by using physical thresholds in (22). We point out 
that the procedure described above, always in the 
chiral limit, would lead to vanishing matrix elements 
in the case of colour octet-colour octet qq combina- 
tions. This case is an alternative to the singlet singlet 
choice made in (21) to construct JE. Imposing the 
threshold behaviour (22) on a Breit-Wigner resonance 

- -  # , ~ f  ~ = ( m .  + me) form and using the PCAC relation: 2 2 
( 0 q )  we obtain 

1 3 #4 
- I m  n(s) - ( q q ) 2  
'I'r, 8 n 2 (m. + rod) 2 

�9 { [-(1 - s + / s ) ( 1  - s _ / s ) ]  1 / 2 0 ( s  - s + )  

+ ~(1 - 4#2/s) t/20(s -- 4#2)} 

(s+ - M~) ~ + M [ r ~  (23) 
2 2 ' (S - -  M 2 )  2 + MeFE 

where Me, F~ are the mass and width of the lowest 
resonance state in (20), which we proceed to estimate 

and then compare with the mass and width of the 
%(980). 

The large Q2 behaviour of(19) in QCD was obtained 
in [9] to lowest order in perturbation theory, with 
power corrections up to dimension d = 10, and to 
leading order in the strange quark mass ms, with the 
result 
x(Q 2 ) = - ln(Q2/v  2) 

�9 [-CoQ8 .+ C2Q6  nt - C4(04)Q4_]_ C6 ( 0 6 ) Q 2 ]  

Clo<01o> + (24) Q2 

where 

C O = 1/40960n 6 ~ 2.5 • 10 -8, 

C 2 = m~/1024n 6 -~ (3.5 - 4.5) x 10 -8 GeV 2 

(25.a) 

(25.b) 

ms(gs )  ( G G  2 ) 
C 4 ( 0 4 ) -  128n~ q 64n5 

(2 - 5) x 10 -6 GeV 4 (25.c) 

C 6 ( 0 6 ) _ ~  " ms (gsga2Gs)  
128 n 4 

832 ((~iu) 2 + (~s) 2) 

- 7 . 5  x 10 -6 OeV 6 (25.d) 

G o ( G o )  = 8 m /  ~ s ) (  au )  2 
- -  (3 - -  5) • 10 - 7  G e V  1~ (25.e) 

The numbers quoted in (25) were obtained using: ms 
(1 GeV) = 200+ 50 MeV, ( f l u )  ~- ( g s )  ~- -0 .01  GeV 3 
(at a scale of 1 GeV), n ( G  GZ )/3 -~ 0.04 - 0.1 GeV 4, 
and ( g f i a 2 G s )  = 2 M ~ ( g s )  with M 2-~0.5GeV 2. 
Uncertainties in these QCD parameters induce lesser 
uncertainties in ME and F~ and will not affect our 
conclusions. 

Notice that in the present case, in contrast with 
the glq alternative, the spectral function contains in 
addition to the purely perturbative piece a number of 
non-perturbative vacuum condensates, viz 

1 
- I m  n(s) loco = Co s 4 -  C2 $3 
TC 

-1- C 4 ( 04. ) s 2 - -  C 6 ( 0 6  ) s. (26) 

In any case, we have checked that with the choice of 
parameters as in (25) there is no contradiction with 
positivity. The Laplace transform QCD sum rules read 

so 1 
J dse-S*-  Im n(s) 
0 7~ 

= 24 a ~ - ( 1 - f 4 ( s o ) ) -  6 9 ( 1  -f3(so)) 

+2 C4 (674 ) (X - f 2(so)) 



C6 
(O56)(1 --fl(so) ) + Clo ( 01o ), (27) 

so 1 ! asse-S'Tm' (s)= 

2 c6 < 06) (1 -f2(so)), (28) 
(7 3 

where 

f . ( s o )  - e - s ~  
(So~) k 

k=o k! 

f,(O) = 1, (29) 

arising from the integration of the asymptotic freedom 
piece, i.e. 

co --  u ~  n k 

S x"e-'~dx = e -- nV V (urr) (30) 
. a "+1 "k~O k! 

We have written two sets of QCD sum rules in order 
to estimate both ME and F~. To check the consistency 
of the results it is useful to consider also FESR. Since 
the OPE has been truncated at dimension d = 10 we 
can only write the single FESR 

i ~ d s l l m  7z(s) = Clo ( 0 1 o  ) -{- Cos5o/5 - C 2 s'~/4 
0 7Z 

+ C 4 < 0 4 > s 3 / 3  --  C 6 < 0 6 > s 2 / 2  (31) 

Solving the Laplace transform Q C D  sum rules 
(27)-(28) inside the window o- -_ (0.3 - 1.1)GeV-2 and 
for values of s o in the range So ~ (1 - 1.5) GeV z, we 
find the remarkable stable value 

ME = (0.9 -- 1.0) GeV, (32) 

which is practically insensitive to changes in the values 
of the QCD parameters. Concerning the width, for a 
given value of s o and a given set of Q C D  parameters 
it is absolutely stable against changes in a. I t  exhibits, 
though, some dependence on s o and on the QCD 
vacuum condensates. For  instance, for fixed values 
of the latter F E varies about  20% in the region 
s o = (1 - 1.5) GeV 2, while for fixed s o a change in the 
QCD parameters at the level of 30 40% induces a 
change in F E of roughly the same amount. Takinginto  
account all these uncertainties our prediction for the 
width is 

F E ~ (200 -- 330) MeV. (33) 

Next, using M e as input we have solved the FESR 
(31) for F E. Changing s o within the same range as 
before induces changes in Fe  at the level of 10%. 
However, the values of the condensates have now a 
slightly bigger impact on F~. All things considered we 
obtain 

Fe  ,~ (200 - 360) MeV, (34) 
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which is nicely consistent with the Laplace estimate 
(33). 

It  should be clear, in view of our results for FE, that 
a zero-width parametrization of the hadronic spectral 
function is not a sensible approximation. Given the 
rather large width of this q2~2 state one could also 
question the choice of a Breit-Wigner parametriza- 
tion. However, we can safely conclude that the inter- 
pretation of the %(980) as a single pure qZq2 state 
is inconsistent with the observed width F , o =  
(54 + 7) MeV. 

4 Two photon width of the %(980) in the qq assignment 

The two-photon width of the %(980) has been 
measured recently by the Cristal Ball collaboration 
[17] with the result 

F ( a o ~ T y )  • B R ( a o ~ / T r  ) 

( = 0.19__+ 0.07 _ 0 . 0 7 / k e V .  (35) 

The theoretical description of two-photon meson 
decays through constituent quark annihilation 
diagrams coupled to ~q hadronic bound state wave- 
functions, though successful for rc ~ ~ ?7 leads to a gross 
overestimate [18], i.e. 

F(ao ~ ? ?  ) --- 1.5 - 3.8 keV, (36) 

A priori, this result appears to provide a serious 
motivation to cast doubt on the 0q assignment of the 
ao(980). However, to assess how compelling this argu- 
ment really is, one should keep in mind that quark 
model estimates of this kind are definitely guaranteed 
to work for zc~ on account of PCAC and the 
triangle anomaly. This is not necessarily the case for 
a o ~ 7 7  as these powerful theoretical concepts do not 
directly apply to scalars. In fact, in some alternative 
approaches to the quark model a o ~ ?7 is predicted to 
be suppressed relative to the result in (36) even within 
the ciq assignment [19]. 

We wish to argue here that some suppression of 
ao ~ y? can also be obtained in the framework of Q C D  
sum rules for vertex functions. Our arguments will 
closely follow those of [20]. However, our interpreta- 
tion of the results is somewhat different and lead us 
to a much weaker conclusion against the ~q assign- 
ment of the ao(980 ). 

We begin by using Vector Meson Dominance 
(VMD), as illustrated in Fig. 2, to express the ratio of 
the a o ~ ? ?  and the r c~  widths 

J~(ao '> ?7) _ Ma3o ( gooDao ~2 (37) 
F(xO ~ ?7) #3 \ goprc / 

where 9o, o,o and 9~,p~ are the corresponding strong 
coupling constants, and the vector meson-photon 
couplings have cancelled in the ratio. Also, non- 
negligible off-mass shell corrections are expected to 
cancel out in this ratio [21]. Since F 0 r ~  is well 
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Fig. 2. Vector Meson Dominance diagrams for no __+ 77 and a o --+ 77 

known from experiment the problem then reduces to 
the estimate of the ratio of coupling constants in (37). 
This may be done e.g. by using three-point function 
QCD sum rules. This technique, essentially a generali- 
zation of the familiar procedure for two-point 
functions, allows one to relate trilinear hadronic 
couplings to the fundamental QCD parameters a s, mq 
and ( ~ q ) .  However, due to increased complications 
over the two-point functions case, the intrinsic un- 
certainties are now expected to be bigger and to limit 
somewhat the accuracy of the estimates. With this due 
reservation in mind we proceed to adopt the version 
of vertex QCD sum rules proposed in [4b]. This 
yields, to leading order in the quark masses, 

gow~o _ (me-m,) (  f=#~ (38) 
gow, =�89 + m.)V.oM2ao ,]. 

The leptonic decay constant fao appears in (38) on 
account of the fact that in this framework one has to 
treat resonances in the zero-width approximation from 
the outset. Referring back to (1)-(2) one has 

(01~" V, lao) = i(ma-m~)(Oldulao) 
= xf2f, oM2,o, (39) 

and 

1 - I m  ~, (s) - 2 4 2 - 2f,oMao 6(s - Mao) .  (40) 
7~ 

Making a narrow-width approximation to the spectral 
function (10) and comparing with (40) one finds, to 
leading order in the quark masses as in (38), 

1 2(me--m,,) 1 
fao -~ 4 x / 3 ~ / ~  k ~  re,m, x/Maorao. (41) 

Using (41) in (38) leads to the prediction 

g'~176176 ~ 8 x f ~ -  f~ ~ M ~  ~ 0.5. (42) 
gow~ Mao 

With F ( n  ~ ~ 77) = (7.8 + 0.4) eV from experiment, and 

BR (a o ~ t/n) ~ 0.8 as quoted in [1.a] and as found here 
in the ~q assignment (cf. Sect. 2), we obtain from (37) 
and (42) 

F (ao -~ 77) BR (a o ~ q n) ~ 0.6 keV, (43) 

which is quite smaller than the non-relativistic quark 
model prediction (36). Given the intrinsic uncertainties 
of the QCD sum rule estimate (38), the error in (43) 
could be as large as 50~o. With this in mind, we believe 
that a comparison with the experimental value (35) 
does not provide enough compelling evidence against 
the ~q classification of the ao(980). On the other hand, 
using similar techniques the two-photon width of the 
ao(980) in the q2?lZ assignment has been predicted to 
be at the level of(2 - 5) x 10-4keV 1-20], which is far 
too small to be reconciled with the data. 

5 Summary 

We have estimated here the mass, the hadronic and 
the two-photon width of the ao(980) scalar-isovector 
meson in the framework of QCD sum rules. A clear 
advantage of this approach is that particle masses and 
widths may be directly related to fundamental QCD 
parameters, i.e. as, mq, and various vacuum matrix 
elements of quark and gluon fields. The latter charac- 
terize the fundamental features of quark confinement, 
such as e.g. spontaneous symmetry breaking, and are 
thus expected to be responsible for the rich and varied 
resonance structure observed at low energies. The 
only place where model-dependent parameters could 
eventually appear is in the parametrization of the 
hadronic spectral function. However, we have used 
here the realization of QCD at long distances (chiral 
Lagrangian) to get rid of this model dependency. 

Assuming a Oq assignment of the ao(980 ) we found 
M,o ~ (0.8 - 1.0) GeV and F,o = (50 _ 10) MeV using 
FESR, as well as Fao = (40 _+ 10) MeV using Laplace 
transform QCD sum rules. In the case of a q2~2 
interpretation we obtained, instead, Fao ~ (200 - 360) 
MeV, which is clearly incompatible with the data. 

Using QCD sum rules for three-point functions, 
together with VMD, we estimated the two-photon 
width of the ao (980) (~q). The result is somewhat bigger 
than the experimental value, but given the uncertain- 
ties of this method we do not find enough compelling 
evidence against the ~q assignment. On the other hand, 
F (E--+ 77) in the q2 ~2 case appears to be too small by 
several orders of magnitude [20]. 

We conclude that the observed mass and widths of 
the ao(980) can be understood in QCD if this particle 
is predominantly a ~q state. We cannot rule out, 
however, admixtures of more exotic components, e.g. 
q2~2. From this point of view the real nature of the 
ao(980), and in general the observed scalars, may still 
remain an open problem in meson spectroscopy. 
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