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Abstract. An analysis of the scaling behaviour of 
Creutz ratios on large lattices is given for SU(2) gauge 
theory. The B-interval is 2.5 </~ < 2.8. Under  a factor 
2 scaling test, after multiplicative corrections for lat- 
tice artifacts, the Monte Carlo data show deviations 
from scaling, which are similar for all values of/~. 
The ratios can be fitted successfully by a sum of three 
perturbative terms and an exponentially decreasing 
nonperturbative term. For  many ratios the latter 
turns out to be very small, and its size dependence 
at fixed/~ is consistent with that of an area term in 
the Wilson loops. The deviation of the corresponding 
exponents from the ones expected for an area term 
gives a coherent explanation of the observed depar- 
tures from scaling. It is well possible that for fixed 
spatial extension (in lattice units) nonperturbative 
contributions vanish so fast that they cannot be inter- 
preted as physical effects. 

1 Introduction 

In two previous publications [1, 2] the scaling prop- 
erties of SU(2) lattice gauge theory (LGT) have been 
studied at/? = 2.6 a n d / / =  2.7 with Monte  Carlo meth- 
ods. The lattice size of 244 gave reason to expect rath- 
er small finite lattice size effects. Statistically signifi- 
cant deviations from perturbative scaling behaviour 
have been observed, the observables being Creutz ra- 
tios [3] formed out of planar Wilson loops. In this 
paper I will present additional Monte Carlo (MC) 
data at/~ = 2.5 and/3 = 2.8, and a thorough discussion 
of the trends observed in the whole set of data will 
be given. 

The goal of these calculations is to find out to 
what extent L G T  allows for scale transformations, 
here by a factor 2, sticking to the standard one pla- 

quette action. That  such a transformation is possible 
is generally regarded as a necessity, if continuum 
physics is to be associated with observables measured 
on the lattice. In many previous studies in SU(3) L G T  
[4-7] and SU(2) L G T  [8-10], it was either assumed 
or made likely that, within the accessible region of 
fl and lengths, this possibility was given. At the same 
time clear evidence was found that the Callan-Syman- 
zik fi-function differs appreciably from the well- 
known perturbative two-loop expression. A return to 
the perturbative fl-function at the upper end of the 
fl-intervals under study was indicated with limited sig- 
nificance. The behaviour for SU(2) is broadly the 
same as for SU(3), and information from other ob- 
servables, notably the critical temperature in SU(3) 
[11, 12], is in accord with this picture*. 

From the present data one now can draw more 
detailed conclusions. The scaling properties depend, 
over the whole range of fl, strongly on the geometry 
of the Creutz ratios. Let us, for the sake of the argu- 
ment, simplify the situation and make a distinction** 
between those ratios containing at least one side of 
length l a  (a =latt ice unit) and between those where 
the minimal length lmin is >2a ,  Considering first 
Creutz ratios with lmin ~ 2 a, the data show that a pos- 
sible return to perturbative 2-loop scaling (commonly 
called asymptotic scaling, AS) is not very fast. One 
finds that from f l= 2.5 to f l= 2.8 the deviations from 
AS have been reduced at most by 30%, if measured 
in the variable A ft. This variable is the shift in fl neces- 
sary to change the scale by a factor 2. Among the 
ratios in this group there is still a statistically signifi- 
cant spread in the scaling behaviour, i.e. in A fl, but 
an average value of A fl = 0.225 at fl = 2.8 is reasonably 

* In later publications it was found out that systematic errors were 
larger than thought originally [13, 14] 
** It will turn out in the later analysis that this distinction is not 
sufficient 
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representative, and it has to be compared with the 
prediction from the two-loop/~-function A/3AS = 0.274. 
At /3=2.5, the lowest values of A/3 observed are 
around A/3 ~ 0.20. This explains the above statement. 

On the other hand, many of the ratios with lmin 
= 1 a have approached AS rather closely at /3=2.8. 
The spread in A/3 between the two classes is thus 
quite large, and it does not seem to decrease rapidely 
with/3. This can be interpreted as evidence for scale 
breaking. The most straightforward conclusion from 
these Monte Carlo data therefore is that the region 
in/3, where there is one universal/~-function, has not 
been reached yet. Before this has to be accepted, how- 
ever, a thorough discussion of possible systematic er- 
rors is necessary, and this is attempted here. 

As has been found out long ago [15, 16], Creutz 
ratios do not show perfect scaling in perturbation 
theory, although the scale breaking effects are rela- 
tively small even at length la.  These lattice artifacts 

2 are supposed to vanish a s  l / /mi  n for Imin"-~O0, and 
over the range of fl of this work it was possible - 
judged optimistically to increase Imin from 3a to 
5 a only. This was achieved by spending a factor 30 
more computer power a t / 3=  2.8 than a t / 3=  2.5. For  
statements about scaling it is necessary to use ratios 
with smaller lm~,, and there the dangerous influence 
of lattice artifacts is still large. This is due to a rapid 
flattening of the fl-dependence of Creutz ratios of fixed 
geometrical size. The resulting sensitivity of A/3 with 
respect to lattice artifacts can be expressed by stating 
that an ad hoc increase of the ratios with /min= 1 a 
by about 5% will make the scaling violations vanish. 
Such a shift is comparable to the size of lattice arti- 
facts, which is about 10% for ratios with lmi,=3a, 
according to one loop perturbation theory. Of course, 
it is possible to correct for the calculated finite a ef- 
fects, but statements on scaling will still be influenced 
by assumptions on the amount  of scale breaking in 
the uncalculated two-loop, in higher order and in 
nonperturbative contributions. 

On the other hand, the flat/3-dependence may be 
a clue to the interpretation of the data and to an 
error estimate. It can be understood as a smallness 
of nonperturbative contributions which from dimen- 
sional reasons are expected to have a steep exponen- 
tial decrease in/3. This is in contrast to perturbative 
contributions, which vanish with powers of 1~ft. The 
different /3-dependence may allow to separate the 
nonperturbative contributions numerically, and one 
may go further and determine also higher order terms 
in the perturbative expansion from the/3-dependence 
of ratios. They will come out reasonably small. If this 
picture of low order perturbative dominance is correct 

and at the moment  the data are fully consistent 
in this respect -,  the amount  of lattice artifacts in 

the unknown terms is not so important. The situation 
is then as follows: 

�9 For  many ratios with lmin = 1, the third and higher 
order perturbative terms are of the order of 10% of 
the first and second perturbative contribution, where- 
as the nonperturbative contributions are of the order 
of 1-5%. It is then a mild assumption that the 
amount  of scale breaking in the third order perturba- 
tive contribution does not differ from that of the lead- 
ing ones by more than 10% (which is the total amount  
of scale breaking anyhow). This allows to obtain a 
systematic error in A fl smaller than 0.01 and this is 
sufficiently small to conclude that, as far as scaling 
is concerned, the ratio has approached the regime 
of AS closely. 

�9 For  /rain>2, both the higher order perturbative 
contributions and the nonperturbative part are of the 
order of 10-30%. Due to the influence of the latter 
the fl-dependence is much steeper than in the previous 
case, and also for many of these ratios the lattice 
artifacts are somewhat smaller ( __< 5%). Thus a reason- 
able error in the amount  of finite a effects of higher 
order terms again will lead to an error in A fl < 0.01. 

The above statements come from a fit to the/3-depen- 
dence of the ratios in terms of a power series in the 
renormalized coupling constant (including the third 
order as one free parameter), and an exponentially 
decreasing nonperturbative contribution Xnp- This in- 
deed leads to a very small Xnp for all those ratios, 
for which the scaling test gives a A/3 close to A/3AS" 
Where the statistical errors of the ratios are small 
enough, the fit is good within 2.10 -4 relative devia- 
tion, and the x 2 is normal. In some cases the behav- 
iour of the third order term under scaling can be 
tested, and it turns out to be in agreement with that 
of the leading terms. 

An independent evidence for the perturbative 
scale breaking being under control is the following: 
After application of a correction for lattice artifacts, 
the ratios with t r a in  = 1 have A/3's, which fall on a 
smooth curve as function of a variable Rp. This is 
the fraction of the perturbative contribution (to one 
loop accuracy) within the Creutz ratio as determined 
by Monte Carlo methods. Even within this group the 
calculated scale breaking varies strongly, and the re- 
moval of these variations is a nontrivial test. This 
has been observed in [2] already. 

The above determination of ;(np opens the possibil- 
ity to look into its scaling behaviour separately. Now 
finite a effects cannot be defined in a way suitable 
to correct for them at finite lmin and ft. Since, however, 
for /mln= 1 the nonperturbative contributions are 
rather small, their detailed scaling properties are 
probably unimportant,  and the relevant question is 



whether  this smallness itself is a lattice artifact. By 
this it is meant  that  after scaling by factors 2 and 
more  and an appropr ia te  shift in fl the cont r ibut ion  
would  be much  larger. N o w  for the ratio with the 
smallest loops there is the possibility to scale by fac- 
tors 2, 3 and 4. It  turns out  that  Znp increases under  
scaling at fixed fl by factors 4.7, 8.6 and 12.2 resp., 
which is compat ible  with what  is expected for an area 
term. But for all ratios the exponential  decrease is 
steeper than for an area term. Thus  there is no indica- 
t ion that  ~np is part icularly small for train = 1, and at 
least in this case one can conclude that  the scaling 
test is not  strongly influenced by uncontrol lable  lat- 
tice artifacts. 

The discrepancy between size dependence and 
magni tude  of  the exponential  slope can be observed 
for all ratios where the fl-dependence can be studied 
also for the scaled ratios. This seems to be the basic 
reason both  for the deviation from AS and f rom scal- 
ing. 

In  Sect. 2 the relevant material  f rom the MC-s im-  
ulations is listed, and some indication for the small- 
ness of  finite lattice size effects is given. In  Sect. 3 
the perturbative expansion is defined, and in Sect. 4 
the numerical  analysis for Creutz  ratios will be given 
in detail. Section 5 contains results for the static q c i- 
potential,  and in Sect. 6 conclusions are drawn. 

2 M o n t e  Car lo  data 

The analysis uses the material  listed in Table 1. Every- 
thing is based on the s tandard  Wilson act ion 

S =  - f l ~ ,  Wp(1, 1) (1) 
P 
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with Wp(1, 1) being half  the trace of  the plaquette 
operator ,  and fl = 4/g 2 . The lattices were upda ted  with 
the hea tba th  me thod  in vectorized code, and planar  
Wilson loops W ( l l ,  12) have been measured after 10 
or  25 sweeps with the multihit  me thod  1-17]. Fo r  all 
lattices the sequence of link updat ing  has been 
changed in short  intervals by rota t ing the lattices and 
by varying the start ing points  of  the vectors r andom-  
ly. Of course, the regularity, inherent in vectorized 
code, namely  proceeding in steps of  2 a th rough  large 
parts  of  the lattice, could not  be avoided. However ,  
the very precise data  at f l=2 .8  show no irregularity 
in Wilson loops, if there one side is fixed and the 
other  is varied up to length 12a by steps of  la .  

The b o u n d a r y  condi t ion  " twi /hel"  for the lattice 
of  size "12 x 16" means  the following: The lattice is 
of  the asymmetr ic  form 12 x 12 • 16 x 16 with differ- 
ent b o u n d a r y  condi t ions  in the two planes. In  the 
16 x 16-plane helical b o u n d a r y  condi t ions  with shift 
s = 1 were applied as to speed up the vectorized code 
[-22] (see [2] for definitions). In  the 12x  12-plane 
twisted periodic b o u n d a r y  condit ions 1-23-25] where 
applied in order  to reduce finite lattice size effects. 
At  fl = 2.6 and fl = 2.8 there is sufficiently g o o d  statis- 
tics to discuss finite size effects in detail. 

This is done  directly for Creutz  ratios [3] defined 
by 

Z(I)= - - ln (W( l l ,  12) W(13, 14)/W(15,16) W(17, 18)) 

_ 111211314 

-- 151611718 (2) 

with 

l x w l 2 + 1 3 + 1 4 = 1 5 + 1 6 + l T W l  8 . (3) 

Table 1. Survey of statistics collected on various lattices 

fl L No. No. of sweeps Group Boundary Maximal size of 
of sweeps discarded conditions measured loops 

2.35 12 14000 1000 full SU(2) helical 6 • 6 

2.4 12 27000 1000 icosaheder periodic 6x 6 

2.45 12 34000 4000 icosaheder helical, s = 1 6 • 6 
12 41000 4000 full SU(2) helical, s = 1 6 • 6 

2.5 12 22000 4000 icosaheder helical 6 • 6 
12 42000 2000 full SU(2) helical, s = 1 6 x 6 
24 6400 1000 full SU(2) periodic 8 x 8 

2.55 12 • 16 85000 1000 full SU(2) twi/hel, s= 1 8 x 8 

2.6 12 14400 2000 full SU(2) periodic 6x 6 
12 • 16 63000 1000 full SU(2) twi/hel, s = 1 8 x 8 
24 10000 1000 full SU(2) periodic 8 x 8 

2.7 24 50000 9000 full SU(2) helical, s=2 8 x 10 

2.8 24 8600 2000 full SU(2) periodic 10 • 10 
24 x 32 106000 20000 full SU(2) twi/hel, s=2 12 x 12 
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In  Table 2 a small sample of  ratios is given for fl = 2.6 
and f l=  2.8 and for var ious lattice sizes: The type of  
ratios selected is a g o o d  approx imat ion  to the static 
qq-potent ia l  differences at distance ( R - 1 ) a .  The er- 
rors are est imated by the s tandard  binning me thod  
where the bin length was increased until about  20 
bins remained. Especially at fl = 2.8 no clear satura- 
t ion of  the errors with increasing bin length was ob-  
served, which indicates that  the correlat ion time may  
be of  the order  of a few thousand  (heatbath) sweeps. 
The observed increase in the error, however,  is no t  
very large, e.g. for W(1, 1) at fl = 2.8 it moves f rom 
7- 10-  7 to 1.2 x 10-  6. 

Fo r  the asymmetr ic  lattices the contr ibut ions  f rom 
the 16 x 16-plane (case a) and f rom the 12 x 16-planes 
(case b) are listed separately. We see that  for the ratios 
with R < 6 the finite size effects are of  the order  of  
2% in the case of  the 12 x 16-lattice as compared  to 
the 24-lattice, whereas the 12-lattice has already 3% 
deviat ion in the smallest ratio listed. There  is a barely 
significant spread between the two planes on the 
12 x 16-lattice, which is absent in the data  at fl = 2.55 
and opposi te  in sign at f l=2.8.  Most  p robab ly  it is 
a statistical fluctuation. A l though  at fl = 2.8 the differ- 
ences between the 24-lattice and the 24 x 32-lattice 
are statistically not  fully significant, they are compat i -  
ble with the trend observed at f l=2 .6  between the 
12-lattice and the larger lattices. When  compar ing  
these one has to be aware that  the two fl-values are 
connected by a scale t ransformat ion  of  a lmost  a fac- 
tor  2, and thus one has to compare  small ratios at 
f l=2 .6  with larger ones at f l=2.8 .  Incidental ly it 
should be noted that  the finite size differences and 
agreements  are more  significant on the basis of  Wil- 
son loops directly. 

Prel iminary calculations on a lattice of  size 12 x 16 
wi thout  twist show that  the finite size effects are 
roughly  half  of  those for the 124-lattice. Also freezing 
of  Po lyakov  lines was observed over periods of  5000 
sweeps or  more. The spatial correlat ion of  these lines 

is rather  different beyond  distances of  3 a as compared  
to the case of  twisted b o u n d a r y  conditions. Thus  the 
in t roduct ion of twist seems to be quite effective in 
reducing finite size effects, i.e. saving compute r  s torage 
and allowing more  sweeps at a given ft. Assuming  
approximate  scaling behaviour  of  finite size effects 
when keeping l/L fixed, we have good  reason to be- 
lieve that  on the large lattices the effects for Creutz 
ratios with I <  12 are in the order  of  2 - 3 %  at most. 
This is much  less than the statistical errors. Of  course, 
in the factor  2 scaling test these finite size effects are 
reduced further. In  [26] troubles were reported with 
respect to twisted b o u n d a r y  conditions. Specifically 
the plaquette value required 50000 iterations to con- 
verge on a 64-lattice. N o n e  such irregularities could 
be observed in the present runs. 

A selection of  Creutz ratios for the largest lattices 
at f l=2.5,  2.7 and 2.8 is listed in the Appendix.  More  
material  can be found in [1]. 

3 Perturbative expansion of Creutz ratios 

The material  summarized above will be analyzed 
under  the hypothesis  that  the Creutz  ratios are, to 
a large extent, domina ted  by perturbative contr ibu-  
tions. This will be tested with respect to the fi-depen- 
dence in the interval 2.5 = fl __< 2.8. It also has to be 
assumed with respect to the factor  2 scaling test in 
order  to remove lattice artifacts. The definition of the 
residual nonper turbat ive  contr ibut ion is accom- 
plished by a fit to the M C - d a t a  being a sum of a 
polynomia l  in the renormalized coupl ing constant  
and of  a term with an exponential  fl-dependence ap- 
propriate  for an opera tor  with a higher dimension. 
The definition of  the renormalized perturbat ive ex- 
pansion will follow the a rguments  of [18]. 

The bare coupling cons tant  g~ is a poor  expansion 
parameter ,  since in the present region g~ >= 1.4 large 
coupl ing constant  renormalizat ions  occur even at dis- 
tances l a  and 2a. If, however,  one renormalizes g2 

R,R--IIR--1, R--2 
Table 2. Evidence for finite size effects for Creutz ratios. These are of the form R - 1, R-- 1 I R, R - 2  

fl L R=4 R=5 R=6 R=7 

2.6 12 0.07085 (49) 0.04274 (112) 0.0307 (27) - 
12 x 16, a 0.07263 (17) 0.04613 (31) 0.03439 (54) 0.02840 (82) 
12• 16, b 0.07284 (22) 0.04628 (39) 0.03512 (77) 0.02771 (104) 
24 0.07301 (14) 0.04636 (17) 0.03514 (35) 0.02866 (61) 

fl L R=5 R - 6  R - 7  R=8 

2.8 24 0.03105 (9) 0.02144 (24) 0.01614 (34) 0.01231 (55) 
24• a 0.03140 (8) 0.02167 (14) 0.01665 (19) 0.01322 (29) 
24 • 32, b 0.03136 (5) 0.02174 (7) 0.01680 (9) 0.01388 (15) 
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at a length lo characteristic for a Creutz ratio*, the 
second term in the expansion with respect to the re- 
normalized coupling constant g2(lo) will be in the 
order of 10% only [18]. The relation between g2 and 
g2 (10) is, up to 2-100p accuracy, 

Az 12\ J~l 
1/g~ (10)-- 1/g 2 + flO In ~ ~-) + flo In (g2 (lo)/g2) = 0 

where (4) 

flo = 22/3 (4u) 2, fll = 136/3 (4~) 4. (5) 

The A-parameter on the lattice is 

Alatt = a -  1(1~ 0 go2) -fll/2f12 e x p ( -  1/2 flo g2) (6) 

and the ratio of the A-parameters is given by [15, 18] 

A = 17.6 Alatt. (7) 

NOW it will be assumed that the expansion with re- 
spect to g2 (10) can be truncated after terms of O (g6 (10)" 
In order to fit the fl-dependence of the full MC-Creutz 
ratios, ZMC(/, fl), I thus make the ansatz 

ZMC(I, fl) = ~ g2 i(lo) z~i)(1) + Znp (I) exp (-- 7~ (fl-- fls)) (8) 
i=l,n 

with n = 3 and fls = 2.5. 
The first and second order terms in this expansion 

are related to the tree and one loop expansion terms 
on the lattice [16], ;~al)(1) and X~2)(/), by 

Z~a>(/) = Z(al) (/) 

Z~2)(/) = Z(~2>(/) - flo Z(1)(/) l n ( L  I~ a2]" 

(9) 

(10) 

There are 3 free parameters, Z(3)(/), Znp(/) and 7l to 
fit 4 accurate MC-data. 

The expansion (8) with n = 2 and Znp = 0 will also 
be used to define perturbative corrections to the factor 
2 scaling test. In this case the last term in (4) has 
to be dropped for consistency, since it comes from 
a two-loop calculation, and no 2-loop terms are avail- 
able for ratios analytically. As in [1, 2] I shall express 
the perturbative scale breaking of ratios by a correc- 
tion factor Cp(l), which on the tree level is given by 

Cp, tree(l ) Z~I)(I, L ) =  Z~')(2/, 2L). (11) 

The dependence of the ratios on the lattice size L 
has been made explicit. On the one-loop level the 
analogous definition of the correction factor is 

cp,,o (I) Zp(fi, 1, 1o, L) = Zp (fl + A figs, 1 toop, 21, 210, 2 L) 
(12) 

* Such a renormalization is necessary in the continuum anyhow 

with 
Zp(fl, l, lo, L)=  ~ 2i (i) gr, lloop(/O) Xr (1, L). (13) 

i=1,2 
The quantity A fiAS, lloo p follows from (6), if there fl~ 
is set to zero. These perturbative correction factors, 
of course, depend on lo, but the dependence is weak 
within a reasonable variation of lo. If the ratio is 
close to a potential difference between R1 and R2, 
a natural choice of lo is lo=(R2--R1))/2. I shall as- 
sume that also for other ratios a similar choice is 
adequate, namely that lo is given by the average of 
the smallest nonidentical lengths of the ratio. The de- 
pendence of the fit to the fl-dependence on the choice 
of lo will be discussed in Sect. 4.2. 

In (12) it has assumed implicitely that all higher 
order corrections can be absorbed into g2 (lo). If, how- 
ever, the higher order terms in Xp are chosen as a 
geometrical series, the perturbative expression be- 
comes independent of l 0 and takes the form 

Zp(fl, l, L)= g2 Z(1)(I, L)/(1 -- so"2 ,t,"(2)tl,,, L)/Z~I)(1, L)). (14) 

This "Pad6ized" version has been used in [1] and 
[2] to define Cp, 11oop(/) analogously to (12): 

Cp, l,oop(l)Zp(fl, l ,L)=Zp(fi+AflAS, Hoop, 21,2L) (15) 

The agreement of Cp, 1loop(l) with the previous choice 
of the correction factor, cp, zo(l), is good but not per- 
fect, if lo is chosen as above. Differences are in the 
order of 1-2%. It is reassuring to observe that the 
inclusion of the third order term, determined numeri- 
cally from the fit to the fi-dependence, improves the 
agreement for the above choice of lo. Some 
/0-dependence of the correction factors remains and 
probably can only be removed when accurate MC- 
data at slightly higher fl become available, since then 
the perturbative expansion is defined much more re- 
liably. 

Now we are ready to define A fl under "multiplica- 
tire improvement" by solving 

cp (1) ZMC (fl -- A fl, l, L) = ZMC (fl, 2 l, 2 L) (16) 

for A ft. The fl-dependence on the lhs is defined by 
quadratic interpolation among data from fixed fl- 
values, and Cp(1) is taken as one of the above defini- 
tions. This method of improvement leads to sensible 
results if the higher order perturbative contributions 
either have the same relative amount of scale breaking 
as the combination of the first two terms, or if they 
are quite small altogether. The fit to the fl-dependence 
suggests that for many ratios both is true: The relative 
contribution of the higher order terms to the full ratio 
is in the order of 10%, and the ratio of the appropria- 
tely scaled third order terms agrees within 5% with 
the Pad6ized cp, l loop(l). 
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Also the nonperturbative terms, as defined via (8), 
may suffer from lattice artifacts, but I am not aware 
of a useful definition of these. For  the perturbative 
expansion scale breaking by lattice effects can be de- 
fined in the limit fl --* ~ term by term. But the nonper- 
turbative terms vanish exponentially fast in this limit, 
so numerically it is not possible to determine scale 
breaking at large fl, and furthermore an extrapolation 
down to smaller fl would be undefined in view of 
the unknown fl-function. A qualitative basis for a dis- 
cussion of finite a-effects is given by the empirical 
observation that the nonperturbative contributions 
roughly have dimension a 2, i.e. they contribute to 
Creutz ratios proportional to the differences of the 
areas entering the ratio. There are exceptions to this 
observations just among the ratios which closely fol- 
low AS in the sense that gnp is smaller than for the 
bigger ratios. One may ask whether this smallness 
of Xnp is a consequence either of the fact that these 
ratios have lmi, = 1, or of their geometrical shape. 
Under the first possibility gnp of size 21 should scale 
by much more than by a factor 4, which is not the 
case (see Table 5 below). Of course, minor deviations 
(<  50%) are unimportant  if the nonperturbative con- 
tribution is of the order of 1%. The case of the small- 
est ratio where multiple scaling is possible was already 
mentioned. It is treated in Subsect. 4.4 as well as the 
application of additive improvement to be discussed 
n o w .  

Multiplicative improvement has the advantage to 
allow the correction of ratios individually, but it for 
instance overestimates the correction if the higher 
order perturbative contributions have no scaling vio- 
lations. In this case the "additive improvement"  [5, 
16, 20, 21] leads to better results, and the method 
should be studied as an alternative. There linear su- 
perpositions of ratios are formed such that the lattice 
artifacts are cancelled to an accuracy including terms 
of O(go4). It is reasonable to require that ratios with 
different signs of lattice artifacts are combined linearly 
in order to avoid superpositions with negative coeffi- 
cients, which could lead to unwanted large cancella- 
tions. Such ratios are certainly available, but in most 
cases they have rather different geometrical shape 
and/or  size. Because of the suspicion that the scaling 
properties of ratios depend on the size, one should 
restrict additive improvement to the cases where su- 
perposition of ratios with similar geometry is possible. 

4 Numerical results 

4.1 Factor 2 scaling test 

Also the new data at f l=2.5 and fl=2.8 show the 
phenomenon that the values of A fl, evaluated accord- 

ing to (16), scatter over a large interval. In [-2] it 
has been observed that these values can be ordered 
by the introduction of the variable 

Rp (1) = ;(p (t)/zMc (1) (17) 

where the perturbative ratio Zp(1) is defined in (14). 
All quantities are evaluated at f l -  A flAS" This variable 
probably underestimates the full perturbative contri- 
bution to the ratio ZMc(I). The reason is that the fit 
to the fl-dependence leads to a positive third order 
perturbative contribution, and it might be better to 
use the result of this fit to define Rp. For  simplicity 
I shall stick to the definition (17) here. The close corre- 
lation between Aft and Rp is shown for all fl in 
Figs. 1-3. Only a subset of ratios has been included 
into the plots according to the following selection cri- 
teria: a) The correction factor cp, 1 loop should not de- 
viate from 1 by more than 0.12. b) The difference be- 
tween Cp,tree and cp, 1 loop should not exceed 0.05. c) The 
sum of areas in the numerator  of the ratio minus 
the sum of areas in the denominator is restricted to 
1 or2.  

Several comments are necessary here: 

�9 The similarity between the curves excludes the 

0.26 

0.2~ 

0,22  

0.20 

' !  

0.18 i i i i ~ c 

O, O,q 0.6 0.8 

Rp 
Fig. 1. Values of A fl for improved Creutz ratios at fl = 2.5 (circles) 
and fl=2.6 (squares). The abszissa is defined in (17). Asymptotic 
scaling approximately corresponds to the upper border line 
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Fig. 2. Values of AB for improved Creutz ratios at #=2.7 .  The 
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sponds to the upper border line 
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Fig. 3. Values of A/~ for improved Creutz ratios at fl = 2.8. The 
abszissa is defined in (17). Asymptotic scaling approximately corre- 
sponds to the upper border line 

presence of uncontrolled statistical fluctuations. The 
errors of the differences between closeby ratios are 
probably smaller than the statistical errors quoted, 
since there are fine structures, i.e. small deviations 
in A/~ for neighbouring ratios which show up at all 
# in identical magnitude. 
�9 The importance of improvement is immense. In 
Fig. 4 the results for Aft at //=2.8 are shown with 
and without multiplicative improvement. The unim- 
proved ratios (bars only) form various clusters which 
come from ratios with similar shape. The difference 
between improved and unimproved ratios shows a 
discontinuity around Rv=0.66, where ratios with 
/mln > 1 start to show up. Another irregularity is at 
R v = 0.69. None of these breaks is reflected by a signif- 
icant discontinuity in the improved ratios. This gives 
much support to the belief that muttiplicative im- 
provement is sensible. 

Fig. 4. Values of A fl for unimproved (bars) and improved (diamonds 
with error bars) Creutz ratios improved on the 1 loop level at fl-- 2.8 
as function of Rp 
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�9 Taking the smallest values of A fl as a measure of 
departure from AS, one sees that from fl=2.5 to 
f l=2.8 the change is from Aft=0.20 (see Fig. 1) to 
A/3=0.225 (see Fig. 3 and Sect. 4.4), i.e. only 1/3 of 
the deviation from AS has vanished. This seems to 
exclude a rapid restauration of AS for Wilson loops 
with increasing size. 
�9 The plots agree qualitatively among each other 
apart from fl=2.5 (see Fig. 1). The agreement, how- 
ever, is not quite as good as it was apparent in [-2] 
where f l=2.6 and f i=2.7 had been compared. This 
is essentially due to the inclusion of lengths 5 and 

6 into the plot at f l=2.8.  Nevertheless the main 
change for increasing fl consists in a flow of ratios 
along the band, together with a weak rise of the left 
side of the band at small Rp. 

Before discussing the different regions of these curves 
in more detail, the overall properties of the fit to the 
fl-dependence will be explained. 

4.2 Fit to the fl-dependence 

The fit according to (8) is done for the three lattices 
with L = 2 4  at f l<2.8 and for the 24• at 

Table 3. Fit parameters for Creutz ratios. Abbreviations are explained in the text 

Ratio ZMc(/) ZMc(/) A fl(1) R3,MC ~np/~(MC VZ Z 2 max. 
fl=2.5 fl=2.8 fi=2.8 fl=2.5 fl=2.5 dev. 

42133 

41143 

42132 

41133 

22122 

51111 

22 

31 

22111 

21121 

32111 

31121 

32111 

22121 

42121 

32131 

52131 

42141 

33122 
32 32 

44 33 

43 43 

55 44 

54 54 

53 32 

43 42 

63 32 

53 42 

64143 

54153 

43122 

33132 

53122 

43132 

65144 

55154 

0.31067 (14) 0.23621 (4) 0.2671 (4) 0.103 (1) 0.011 (1) 7.3 (12) 4.9 2.10 '~ 

0.27434 (12) 0.20642 (4) 0.2634 (4) 0.113 (1) 0.022 (1) 8.8 (7) 0.3 5-10 -5 

0.48453 (18) 0.36302 (5) 0.2601 (5) 0,105 (1) 0,031 (1) 8.8 (4) 0.5 1.10 -4 

0.22987 (10) 0.16980 (3) 0.2558 (5) 0.110 (1) 0.037 (1) 8.7 (4) 0.2 2.10 5 

0.21382 (10) 0.15468 (3) 0.2577 (6) 0.113 (1) 0,045 (1) 8.4 (3) 0.7 3.10 -5 

0.38334 (23) 0.27129 (4) 0.2513 (7) 0.126 (1) 0,057 (1) 8.6 (2) 1.6 9.10 -5 

0.15346 (15) 0.10149 (2) 0.267 (1) 0.147 (2) 0,088 (1) 8.4 (3) 1.7 9-10 5 

0.15205 (18) 0.10169 (2) 0,237 (1) 0.161 (2) 0,093 (2) 8.6 (3) 0.6 4.10 -5 

0.15041 (17) 0.10050(4) 0.238 (1) 0,160 (2) 0,095 (2) 9.0 (3) 0.3 8.10 -5 

0.11147 (23) 0.06871 (3) 0,238 (2) 0.167 (2) 0,104 (3) 9.8 (5) 0.5 6.10 -5 

0.07178 (39) 0.03751 (6) 0.236 (4) 0.218 (6) 0,159 (9) l l .0  (4) 1.4 2.10 -4 

0.05500 (61) 0.02484 (8) 0,235 (8) 0,283 (21) 0.150 (14) 11.0 (6) 0.1 4.10 5 

0.08029 (31) 0.04360 (6) 0,228 (2) 0.220 (5) 0.178 (5) 10.4 (4) 0.2 4-10 s 

0.07575 (29) 0.03951 (6) 0.229 (4) 0.226 (6) 0.209 (4) 10.1 (4) 0.4 8.10 -5 

0.05627 (52) 0.02459 (8) 0.230 (7) 0,257 (16) 0,269 (17) 9.5 (7) 1.0 2.10 -4 

0.07514 (31) 0.03891 (4) 0.228 (2) 0,238 (4) 0.194 (3) 9.8 (4) 3.1 2-10 4 

0.06283 (35) 0.02868 (5) 0.213 (3) 0.294 (6) 0.253 (7) 10.3 (4) 1.8 1.10 -4 

0.04404 (67) 0.0149 (1) 0.224 (10) 0.366 (41) 0.309 (32) 9.5 (13) 0.8 3.10 -4 



/3 = 2.8. Consequently there is a break in the (probably 
very small) finite size effects, nevertheless the fits to 
a large sample of ratios works exceedingly well. The 
results are illustrated in Table 3, where the second 
and third columns give MC-values for the ratios with 
statistical errors. These values indicate, especially for 
the first group of ratios, the weak variation of the 
ratios with /3 which makes A/3 sensitive to small 
changes in cp, lloop(/). The values for A/3 at /3=2.8, 
as derived from the scaling test, are listed in column 4. 
Next the ratios of the O(g6)-term to the full MC result 
are given, being denoted by R3,M c. The increase of 
this fractions towards the bottom of the table is only 
partly a consequence of an increase in g~(/o). This 
shows that the absorption of higher order term into 
the running coupling constant is not complete. 
Column 6 contains the relative contribution of the 
nonperturbative piece at /3=2.5. It is smaller than 
the fraction 1- -Re  defined in (17) by more than a 
factor 2 which comes from the positive contribution 
of the third order term in (8). For  the exponential 
slopes 7~ of the nonperturbative contribution, listed 
in column 7, one notices an increase with increasing 
nonperturbative fraction. 

The quality of the fit is shown in the last two 
columns. The average Zz~ 1.1 is very reasonable for 
1 d.o.f. Also the maximal deviations between fit and 
MC-values, given in the last column, are quite small. 
The use of the 24-lattice at /3=2.8 lead essentially 
to the same fit parameters except for the 7t which 
are typically lower by 0.7 than for the larger lattice. 
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The Z 2 is somewhat worse. This variation may give 
an indication of uncertainties due to finite size effects. 
It would be possible, of course, to fit the data with 
4 free parameters by a pure power series in lift, but 
this would require oscillating expansion terms leading 
to a complete failure outside the fit interval. The fits, 
on the contrary, interpolate perfectly to the 12 x 16- 
lattice at /3=2.55, and for ratios of small size they 
extrapolate within 0.5% to the 12-lattice a t /3=2.35.  
For  ratios where the nonperturbative contribution is 
larger, the deviation at/3 = 2.35 may amount  to 10%. 
Even the data a t / 3 =  3.5 on a 164-lattice [-27] for the 

22111 
smallest ratio, 21121' are reproduced within 0.3%, 

which is 1.5 s.d. The total variation of the ratio, which 
is correctly described by the fit, amounts thus to a 
factor 3. It is clear that the fit parameters will depend 
on the assumption on the renormalization point lo. 
Especially for those ratios where the nonperturbative 
part )~np amounts to a few percent only, it may be 
reduced by 50% or more, if lo is raised from 1.5 to 
2. For  other ratios downward changes are typically 
20% or less. A larger value of lo seems to be unreason- 
able, so this variation is a good guess for the size 
of systematic errors. The prime interest here is not 
to extract physically meaningful numbers for Znv but 
to show that it is small. For  this purpose these system- 
atic errors are small enough. 

When available, the ratios at scale 2 l have been 
fitted too. It is then possible to define perturbative 
correction factors cp,fit(/) by including third order 

Table 4. Correction factors and nonperturbative contributions for Creutz ratios 

Ratio cp .. . . .  (I) Cp, lo(l) cp, 1 loop(/) cp, flt(1) X.p(1)/,~ A 
Znp (2 l) 

z.p(/) 

42f33 

41143 

42132 

41133 

22 

31 

22 11 

21 21 

32 11 

31 21 

32 11 

22 21 

42 21 

32 31 

33 22 

32 32 

43 22 

33 32 

1.066 1.096 1.090 1.092 (4) 

1.098 1.137 1.128 1.131 (3) 

1.067 1.115 1.106 1.110 (3) 

1.060 1.061 1.061 1.067 (3) 

1.041 1:033 1.034 1.037 (5) 

0.986 0.895 0.889 0.919 (7) 

1.050 1.023 1.026 1.017 (9) 

0.887 0.895 0.894 0.891 (13) 

0.956 0.944 0.943 0.946 (33) 

0.0036 (4) 

0.0061 (3) 

0.0085 (2) 

0.0096 (2) 

0.0110 (2) 

0.0135 (2) 

0.0142 (3) 

0.0116 (4) 

0.0146 (4) 

6.2 (1.2) 

6.3 (4) 

5.0 (3) 

4.7 (2) 

4.6 (2) 

4.3 (1) 

4.4 (2) 

3.5 (4) 

3.6 (5) 
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terms in analogy to (12). The results are listed in Ta- 
ble 4 together with the other correction factors. Close 
agreement is observed between columns 4 and 5 with- 
in errors, i.e. mainly on the level of 0.5%. There is 

32111 
one exception, 2 2 ~ - '  which will be discussed below. 

The dependence of cp, flt(l) on the renormalization 
point lo is of the same order as the statistical errors, 
if lo is varied by half a unit. Column 6 gives the non- 
perturbative contributions divided by the difference 
of the areas in the Creutz ratios, 6A, at tl=2.5. The 
increase with loop size is not very large starting from 
22111 
21121' being roughly consistent with an interpreta- 

tion of this term as an area term in the Wilson loops. 
If, however, it were due to a gluon condensate [18], 
it should increase quadratically with the size of the 
loops, which is excluded. The same is true for the 
scale factor under factor 2 scaling, listed as the last 
item in Table 4. The ratios of the nonperturbative 
contributions scatter around 4 and are thus compati- 
ble with an area term in the Wilson loops, but not 
with a gluon condensate which would change a factor 
16 under scaling. The exponential slopes ~t, however, 
are too large for an area term, as this would require 
y~ -- 5.06 according to perturbative scaling. The values 
listed in Table 3 typically are above 8.4 in the cases 
where Znp is determined well. This discrepancy be- 
tween /-dependence and /3-dependence is central to 
the whole phenomenon of deviations from AS and 
of scale breaking. 

4.3 Properties of individual ratios 

I now turn to a more detailed look on individual 
ratios. With a little ambiguity the ratios can be 
grouped (at least) into five classes. These classes have 
quite different correction factors, and, independent 
from that, different scaling behaviour. 

1. The ratios of the first class have at least one 
length 1 in the denominator  and a corresponding 
length 2 in the numerator.  The other li are mostly 

42132 
greater than 2. An example is 4113~" These ratios 

have cp(l)> 1, a very small nonperturbative fraction, 
and values* A fl > 0.26. Some A fl's even range up to 
0.27, i.e. very close to the asymptotic value AtlAS 
= 0.274. The dependence of A tl on Rp is very smooth 
except for those ratios where loops of size 5 x 5 (i.e. 
10 x 10 on the big lattice) or larger contribute. This 
may be due to a large, 2 s.d. fluctuation. The ratio 
22 
31- also joins in smoothly. 

Quotations for A fl will refer to fl = 2.8 

2. The ratios of the second class are the smallest 
22121 32111 

"quadrat ic"  ratio ~ and its partners ~ and 

32111 
22121" They also have cp(l)> 1, and the nonperturba- 

tive part is up to 8.8%. The values of Atl for the 
32111 

last ratio, 22121' lies about 0.015 above the band 

of class 1, which is most pronounced at fl = 2.7 and 
2.8. The ratio is not included in the plots of Figs. 1-3 
because Cp,tree(l ) and cp, 1loop(l) differ by 9%.  It is then 
amusing to notice that the ratio of the third order 
terms at scale 21 and l, Zt3)(2/, 2L)/zt3)(l, L), is higher 
by 16% than the correction factor cp, l~oop(/). Since 
the third order term contributes about 15% in the 
ratio, the correction factor coming from the fit to 
the tl-dependence is higher by 3% than cp, 1loop(l) (see 
6th line of Table 4). The use of this new factor would 
bring A tl of the ratio much closer to the band of 
class i, albeit with some overcorrection. 

3. The third class contains the "potential  differ- 
ences" between distance i a and 2 a. They are defined 

T, 2 1 T - 2 ,  i 
by T -  1, 2[ T -  1, 1" The first example listed in Ta- 

42121 
ble 3 is 32~31" The step to lower the time-like exten- 

sion by one unit at distance l a  as compared to 2a 
helps to reduce perturbative finite T-effects. The 
above ratio in fact agrees within 2.5% with the extra- 
polated ratio ( T ~ ,  see next section), whereas the 

42131 . 
ratio 32~41 is off by 6%. The correction factor is 

still > 1, but Xnp is now up to 10%o with a consequent 
decrease of Aft. All the ratios give Afl~0.238 with 
very small errors. 

4. The fourth class contains the "potential differ- 
T,R[T-2,  R - 1  

ences" for distances R > 2 a and 
T--1, R[T--1, R--1 

furthermore standard Creutz ratios with li > 1 a. They 
have Cp, lloop(1)< 1 with a slow approach to 1 for li 

~ at fixed geometry. The values of A/3 scatter in 
the range 0.228 < A fl < 0.244. They show a correlation 
with cp,~oop(/) in the sense that an increase of 
cp, l loop(l) goes in parallel with a decrease in A/3. This 
could be explained by the assumption that Znp has 
smaller relative lattice artifacts than expressed by 
Cp, lloop(l ). The quoted values of Aft then would be 
upper limits. Unfortunately it is not possible to use 
additive improvement for these ratios (which would 
be correct also for zero lattice artifacts in Znp) since 
in this class cv, l loop(/)< 1 throughout,  and the lattice 
artifacts cannot be cancelled under superposition of 
ratios with positive coefficients. 



5. The fifth class contains ratios in which the per- 
turbative contributions are "oversubtracted" as com- 
pared to the two preceeding classes. They are of the 

T,R[R--1, R--I  
form with T > R, a typical exam- 

T - 1 ,  RIR, R - 1  
53122 

pie listed in Table 3 being 43132" They are definitely 

smaller than the potential difference V(aR)-- 
V(a(R--l)).The reason is the opposite of that in 
class 3: The second "column" of the ratio, containing 
much smaller lengths than the first one, has larger 
perturbative contributions which will be subtracted. 
Consequently R v decreases for an increasing mis- 
match between T and R, and at the same time A fl 

63122 
decreases. The smallest A fl is reached for ~ with 

Aft=0.210+0.004. There again is a clear correlation 
between A fl and %. 1loop(l), and it is possible that the 
low values for A fl have a systematic downward shift. 
Now for this class of ratios it is possible to perform 
additive improvement which is indicated in the fol- 
lowing. 

4.4 Additive improvement and multiple scaling 

Additive improvement among ratios with a similar 
perturbative fraction works in a few cases, if we some- 
what relax the condition to use positive coefficients 
only for the superposition. Thus in the following three 
examples the ratios entering with a negative coeffi- 
cient give a small correction only. The ratio Xx has 
an average Rp of 0.70, and the leading ratios of X2 
and Z3 belong to class 5. The results for A fl again 
refer to fl = 2.8. 

41133 52122_0.098 41132 
Z, - 5113~ ~- 0.375 ~ 5112~ 

53122 43122 . . . .  43122 (18) 
~2=43132 ~-0.048 4 2 ~ - u . u J o  33132 

64133 43122 53132 
Z3-54143 ~-1.46 3313--~-0.33 43142" 

The corresponding value of A fl are 

A fll = 0.2422_ 0.0011 

A//2 = 0.2164 + 0.0027 (19) 

A f13 = 0.2235 ___ 0.0042. 

It is a reasonable guess that the last two values of 
A fl are typical for ratios with relatively small pertur- 
bative content. Averaging these with the most accu- 
rate values of class 4 in Table 3 gives A fl = 0.225. This 
number was quoted in the introduction as character- 
istic for the smallest value at fl = 2.8. 
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Finally I turn to the question of lattice artifacts 
for the nonperturbative part X,p. As stated in the last 
section, the only sensible question at the moment is 
whether the smallness of Z,p at small scales is anoma- 
lous in the sense that the present fitting procedure 
gives much larger X,p's at larger scales. For the small- 

22111 
est ratio, 21121' scaling is possible by factors 2, 3 

and 4 over the whole range of ft. From the fit to 
the fl-dependence it is found that Znp increases by 
factors 4.72_+0.14, 8.6+0.7 and 12.2+2.5 resp. under 
these scale changes (all number refer to fl = 2.5). These 
factors again are well compatible with an area law 

22111 
behaviour of Z.p, and they corroborate that for 

21121 
the smallness of Znp cannot be interpreted as a lattice 
artifact. On the contrary, since the slopes for the 
scaled ratios are around 10 or larger, Z.p for the scaled 

22111 
ratios will be considerably smaller than for 2112~' 

if a shift in fl by ~ flas is performed for scaling by 
a factor 4. 

5 The static q~-potential 

Since scaling violations are apparent among many 
kinds of Creutz ratios, they are expected to show up 
also in the extrapolation T ~ o o  e.g. of the ratios of 
classes 3 and 4 of the last section. These extrapolated 
ratios are differences of the static q~-potential, which 
is defined by 

1 
V(R) = -- lim - -  ln(W(R, T1)/W(R, T2)). (20) 

TI,Tz~ T1--T2 

From Table 3 it is obvious that the spread in A fl 
(at fixed fl) is not very large within the classes 3 and 
4. The observed differences, however, are significant, 
and they are rather what can be predicted from the 
type of scale breaking already assumed, namely from 
a sum of a scaling perturbative term and of a linearly 
rising potential contribution with an overly steep fl- 
dependence. 

The extrapolation of W(R, T) to T--.oo in (20) 
can successfully be performed by the 2 N-parameter 
fit 

N 

W(R, T) = ~ ci(R) exp(-- 21(R) T). (21) 
i=1 

The smallest exponent, 2~(R), is the potential V(R). 
At fl=2.8, fits with N = 4  are absolutely stable. The 
point with T = 0  is included which gives 13 data 
points for 8 free parameters. Even subdividing the 
data into 15 bins still leads to reasonable fits which 
allows to define errors for the potential as well for 
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potential differences. The latter ones are smaller than 
expected from the former ones because of correla- 
tions. The only difficulty then is that occasionally the 
second exponent, 22 (R), moves towards the first one, 
in which case the first one will come out rather small. 
Therefore the average of the individual fits is smaller 
than the fit to the average, although still within errors. 
A related problem is that the extrapolation (21) may 
well be unstable against inclusion of further terms, 
and therefore only upper limits to the potential can 
be given in principle. 

The correction for lattice artifacts is slightly modi- 
fied with respect to [1, 2]. As done previously, first 
the difference of the continuum propagator  1/R and 
the bare lattice propagator  [1, (3)] is taken which 
then, however, is multiplied by the renormalized cou- 
pling c~,(lo)=�88 For  convenience /0=2 is 
taken, since the lattice artifacts are only important  
at R <  3. The differences to the procedure used pre- 
viously, where the coupling has been adjusted to the 
potential difference between 1 a and 2a, is small. The 
advantage here is the smooth and prescribed fl-depen- 
dence of the correction. A similar method has been 
applied in [28]. The corrected potential will be called 
Vc(R). The question to be addressed here is whether 
there is an overall representation of the data for all 
fl, exhibiting the scaling behaviour. It has been noted 
repeatedly that fits of the form 

Vc(R) =- -- c~s/R + const + K (fl) R (22) 

do not work down to R =  I a and R =2a .  Fits starting 
with R = 3 a fall deeply below the data when extrapo- 
lated to 1 a and 2a. If the first term in (22) is interpret- 
ed as being of perturbative origin, this is a conse- 
quence of the logarithmic terms in the gluon exchange 
potential. Its explanation by a fluctuating string is 
currently more popular, although phenomenologi- 
cally unjustified in view of the physical distances in- 
volved [1]. In SU(2) the ambiguity is not easy to 
resolve numerically because the running coupling 
constant defined below in (24) at fl=2.8 and R = 4 a  
becomes equal to ~z/12 which is the coefficient c~s in 
the string picture. I do not think that it is appropriate 
to chop off the Coulomb term for R => 3 and interprete 
c~ s as the effect of a fluctuating string, even if the fit 
is tolerable. It has been argued in [28] that the Cou- 
lomb term and a nonperturbative string piece have 
to be added. The argument is based on the evidence 
that the nonperturbative piece seems to be a Lorentz 
scalar, whereas the perturbative potential is predo- 
minantely of vector type [29]. Although this may lead 
to deep problems with the continuation of the increas- 
ing logarithmic terms of the perturbative potential 
at large R, a fit at moderate R may be successful. 
I therefore try a representation of the form 

Vc(R) = V2 loop (R, At) + const + K(fl)R (23) 

Here V21oop(R, Ar) is given by the integral of the per- 
turbative 2-loop force 

V~loop (R, At) 

=3/16~R2 {floln(nAr)- 2 + f l l / f lolnln(RAr)-  2}. (24) 

The parameter A, is given by [19] 

A, = 20.78 Alatt. (25) 

A fit with this value leaves, for all fl, a definite discrep- 
ancy which varies rapidely with R and which is com- 
patible with a Coulomb term. This is in line with 
the experience from Creutz ratios that also third order 
terms are necessary in the perturbative expansion. As 
a convenient parametrization of these, A r is treated 
as a free parameter. The data can be fitted well with 
Ar=23.5Al,tt as shown in Fig. 5. In the figure and 
in the fit an error of 20% of the lattice correction 
has been added to the statistical errors. Only the sta- 
tistical errors are included in Fig. 6 where the differ- 
ences between data and fit are given on an expanded 
scale. The parameter K(fi) need not agree with the 
slope of the potential at large R and therefore should 
not be associated with the string tension. It describes 
a parametrization of the potential at intermediate dis- 
tances (perhaps in the range up to 0.3 Fermi at 
f l= 2.8), in line with our previous experience that the 
difference between MC-data and perturbation theory 
can be expressed by an area term in Creutz ratios. 
The results for K(fl) are the following: 

fl -- 2.5 : a 2 K(fl) = 0.0224 _+ 0.0007 

f l - -2 .6 :a2  K (fl) = 0.0108 _+ 0.0004 
(26) 

fl-- 2.7: a 2 K (fl) = 0.0050 _+ 0.0003 

fl = 2.8: a 2 K (fi) = 0.0030 _ 0.0002. 

The above errors are purely statistical. The results 
at fl = 2.6 and fi = 2.7 are marginally lower than those 
published in [1, 2] which is due to the slight increase 
in A~. Taking into account possible finite lattice size 
effects especially at fl=2.7, which will reduce K(fl), 
the values are almost consistent with a decrease by 
a factor 2 for a change offi  by 0.1, i.e. the correspond- 
ing A fl is 0.20. This is somewhat lower than, but com- 
patible with the smallest A fi found in the analysis 
of the factor 2 test. But it is definitely larger than 
what corresponds to the exponents given in Table 2. 
This is due to the uncertainties of the subtraction 
of a scaling function from nonscaling data: The larger 
the subtraction, the steeper the fl-dependence of the 
rest. Since the values of K(fl) do not follow AS, a 

quotation of ]/-K/AIa u will not be given here. 
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Fig. 6. The difference between the static qq-potential  of Fig. 6 and 
the fit (23) on an enlarged scale. The errors are purely statistical 

Recently, the string tension has been determined 
from correlations of Polyakov loops on large lattices 
[30]. The fi-dependence is consistent with the above 
value of Aft=0.20. At fl=2.5 and fl=2.6 the results 
are higher than the values given above by more than 
a factor 1.5. Most probably this difference is due to 
different assumptions about the influence of the per- 
turbative background. 

In view of possible finite size effects at large R, 
the significance of scaling violations in the potential 
is not as high as for Creutz ratios at finite T. Due 
to the special form of the potential, the apparent vio- 
lations are not very large at our values of/3. With 
the parametrization of (23) one predicts variations of 
A/3 on the order 0.01 between R = l a  and R=2a, 
and such variations are visible for potential-like 
Creutz ratios (see Table 4). The importance of the 
above consideration lies in demonstrating that the 
data are consistent with a fit with built-in scaling vio- 
lations, which will become more pronounced at 
larger/3. 

6 Conclusions 

From the fl-dependence of individual Creutz ratios 
it follows that at fl = 2.5 ratios with lmin = 1 are domi- 

nated by perturbation theory by 90% or more. At 
/3 = 2.8 the nonperturbative contribution has dropped 
to about 1%. This holds, if the perturbation expan- 
sion is defined in the running coupling constant g2 (lo), 
the scale of which is taken half way between the small- 
est lengths of the ratio. There are arguments that lat- 
tice artifacts are successfully corrected for. One comes 
from the apparent smoothness of A/1 vs Rv in the 
factor 2 scaling test, the other from the agreement 
between correction factors including third order con- 
tributions on the one hand and the factors obtained 
in second order perturbation theory on the other 

. . . .  22111 
hand, as shown in Table 4. Por  tlae rano ~ scaling 

can be done for factors 2, 3 and 4, and the results 
from the/3-dependence indicate that the smallness of 

22 [ l l  
the nonperturbative contribution observed for - -  

21121 

is not a lattice artifact, but persists, after a proper  
shift in fl, also at the larger scales. It will be possible 
to extend these fits with future MC-data to slightly 
higher fl-values and for more ratios of class 1 and 
2 (as defined in Sect. 4). Also scaling by factors 3 will 
be feasable for ratios with l=  3, since the determina- 
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tion of  ratios at lengths l <  9 poses no big p rob lems*  
for larger/3. The perturbat ive expansion can then be 
determined with much  better accuracy. 

Ant ic ipat ing a conf i rmat ion of  the present trends 
we will have to explain the situation that  at small 
l scaling is described correctly by the 2-loop ~-func- 
tion, but  not  at large I. The behaviour  for small l 
rules out  that  the bare coupl ing constant  is so large 
that  it leads to a per turbat ive fl-function significantly 
different f rom the two- loop  expression. Therefore 
terms not  calculable in per turbat ion  theory have to 
be responsible for these deviations. It  is clear that  
a parametr iza t ion  of  these terms of the form given 
in Sect. 3 inevitably will lead to scaling violations, 
if the exponents  7t are larger than predicted by pertur-  
bative scaling for an area term, while the / -dependence  
is in agreement  with such a term. Unless the slopes 
significantly change close to the present region of/3, 
one has to envisage the si tuation where all ratios with 
fixed lengths approach  per turbat ion  theory so fast 
that  one cannot  assign a physical meaning  to the 
rapidely vanishing terms. Eventually they have to be 
considered as lattice artifacts altogether. Truly non-  
perturbat ive effects like the confining force then could 
only show up at lengths where the perturbative ex- 
pansion breaks down. If one takes as a measure for 
this the point  where the perturbative potential,  as de- 
fined by (24), has a point  of  inflexion, the lengths 
are R = 7  at /3=2.5 and R = 1 6  at f i=2.8.  To go 
beyond  these distances by Monte  Carlo methods  will 
be exceedingly difficult. 

Ano the r  possibility is that  ratios exceeding a cer- 
tain minimal  length stay nontrivial  with respect to 
the / / -dependence  and to the presence of  an area term. 
Then the smal l / - region  has to be discarded al together  
in the sense that  the absence of nonper turbat ive  effects 

* The essential requirement is on computer memory to keep finite 
lattice size effects small 

is a lattice artifact. This will be hard  to unders tand 
in view of  the smallness of  these artifacts in per turba-  
t ion theory. 

Al though  the present s tudy differs somewhat  in 
conclusions from previous work,  there do not  seem 
to be strong discrepancies in MC-data .  Deviat ions 
from asymptot ic  scaling of  the long distance par t  of  
the static potential  are well established in SU(2) 
[30, 31]. They also have been reported for SU(3) [-32- 
34], and it is to be expected that  the (not yet analyzed) 
scaling properties of  small sized Creutz  ratios also 
will lead to quasi per turbat ive behaviour.  On  the 
other  hand, the topological  susceptibility in SU(2) 
shows excellent asymptot ic  scaling behaviour  [35] in 
the range 2.4=<fl<2.7, which is a s t rong indication 
for scale breaking, if taken together  with the devia- 
t ions from AS of large Creutz  ratios. The latter ones 
should be little affected by the uncertainties of the 
improvement  procedure.  

A cautious conclusion is that  the present numeri-  
cal evidence f rom Creutz ratios, a l though reasonably 
accurate, does not give positive support  to the ex- 
istence of a universal fl-function describing the scaling 
properties in the region /?<_-2.8. The data  are well 
described by a rapid approach  to low order  renormal-  
ized per turbat ion  theory. It may  be worthwhile to 
s tudy phenomenologica l  realizations of  Q C D  in 
which at short  distances (R < 0.2 Fermi say) per turba-  
t ion theory is exact and not  only dominant .  
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A. Tables of Creutz ratios for large lattices 
I, dll 1, d - 1  

Table 5. Creutz ratios of the form 
l , J  l l I - 1 , J  

at fl =2.5. The lattice size is 244 

I J=2  3 4 5 6 7 8 

2 0.2138 (1) 
3 0.1695 (1) 0.1115 (2) 
4 0.1559 (2) 0.0926 (2) 0.0718 (4) 
5 0.1514 (2) 0.0858 (3) 0.0638 (4) 0.0550 (6) 
6 0.1498 (2) 0.0831 (2) 0.0608 (5) 0.0516 (5) 
7 0.1491 (3) 0.0823 (4) 0.0585 (4) 0.0504 (8) 
8 0.1489 (2) 0.0812 (4) 0.0581 (6) 0.0494 (11) 

0.0478 (13) 
0.0464 (10) 0.0456 (26) 
0.0482 (15) 0.0406 (36) 0.0522 (49) 



I, J l l - -2 ,  J - -2  
Table 6. Creutz ratios of the form I, J - 2 ] I - 2 ,  J a t / /=2 .5 .  The lattice size is 244 

I J = 3  4 5 6 7 8 

3 0.6643 (6) 
4 0.5295 (8) 0.3684 (10) 
5 0.4857 (8) 0.3140 (13) 0.2544 (17) 
6 0.4701 (8) 0.2935 (13) 0.2311 (19) 0.2059 (26) 
7 0.4643 (10) 0.2847 (14) 0.2213 (18) 0.1962 (23) 
8 0.4616 (11) 0.2802 (15) 0.2164 (22) 0.1943 (29) 

0.1862 (33) 
0.1808 (54) 0.1790 (101) 

I, J l l - - l , J - - I  
Table 7. Creutz ratios of the form at f l -  2.7. The lattice size is 244 

l , J  1 [ I - 1 ,  J 

I d = 2  3 4 5 6 7 8 

2 0.16923 (~ 
3 0.12887 (4) 0.07755 (8) 
4 0.11671 (6) 0.06138 (7) 0.04343 (17) 
5 0.11260 (7) 0.05538 (8) 0.03684 (13) 0.02994 (19) 
6 0.11102 (7) 0.05296 (13) 0.03397 (17) 0.02639 (21) 
7 0.11037 (7) 0.05181 (12) 0.03243 (21) 0.02487 (24) 
8 0.11021 (1~ 0.05128 (14) 0.03130 (22) 0.02368 (30) 
9 0.02365 (53) 

10 0.02274 (58) 

0.02264 (23) 
0.02087 (30) 0.01867 (45) 
0.02004 (37) 0.01765 (45) 
0.01820 (35) 0.01668 (49) 
0.01945 (68) 0.01683 (74) 

0.0169 (9) 
0.0164 (8) 
0.0135 (9) 

Table 8. Creutz ratios of the form 
l, J f l - 2 ,  J - 2  
1, J - 2 1 1  2, J a t / / =  2.7. The lattice size is 244 

1 J = 3  4 5 6 7 8 

3 0.50453 (15) 
4 0.38451 (19) 0.24374 (31) 
5 0.34607 (23) 0.19703 (3~ 0.14705 (49) 
6 0.33196 (26) 0.17915 (42) 0.12714 (55) 
7 0.32616 (31) 0.17117 (49) 0.11766 (60) 
8 0.32367 (35) 0.16681 (51) 0.11228 (68) 
9 0.10879 (84) 

10 0.10670 (105) 

0.10536 (73) 
0.09477 (70) 0.08305 (98) 
0.08946 (89) 0.07723 (104) 
0.08556 (106) 0.07257 (95) 
0.08403 (141) 0.07115 (137) 

0.07083 (157) 
0.06756 (162) 
0.06337 (137) 

Table 9. Creutz ratios of the form 
I, J l l - l , J - 1  
I, J -  l l I -  1, 3: a t / / =  2.8. The lattice size is 242* 322 

1 J = 2  3 4 5 6 7 

2 0.15468 (3) 
3 0.11661 (2) 0.06871 (2) 
4 0.10533 (2) 0.05383 (4) 0.03751 (5) 
5 0.10153 (4) 0.04842 (4) 0.03136 (5) 0.02484 (7) 
6 0.10006 (4) 0.04613 (4) 0.02868 (7) 0.02171 (8) 0.01866 (1~ 
7 0.09940 (6) 0.04502 (4) 0.02719 (6) 0.02023 (8) 0.01673 (8) 
8 0.09910 (4) 0.04439 (6) 0.02650 (8) 0.01922 (6) 0.01574 (14) 
9 0.09887 (8) 0.04406 (6) 0.02596 (7) 0.01869 (7) 0.01486 (11) 

10 0.09883 (6) 0.04391 (7) 0.02560 (8) 0.01820 (15) 0.01469 (17) 
11 0.09877 (8) 0.04380 (8) 0.02547 (8) 0.01812 (14) 0.01407 (26) 
12 0.09880 (8) 0.04367 (8) 0.02539 (14) 0.01783 (17) 0.01432 (16) 

0.01495 (11) 
0.01374 (13) 
0.01324 (19) 
0.01250 (20) 
0.01236 (25) 
0.01202 (33) 

I J =  8 9 10 11 12 

8 0.01275 (23) 
9 0.01180 (31) 0.01162 (4~ 

10 0.01138 (30) 0.01012 (37) 0.01018 (67) 
11 0.01083 (39) 0.01005 (45) 0.00961 (57) 0.01034 (131) 
12 0.01030 (26) 0.01057 (40) 0.00924 (7~ 0.00689 (105) 0.00979 (225) 
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I, J I I - 2 ,  J - 2  
Table 10. Creutz ratios of the form at fl = 2.8. The lattice size is 242* 322 

l , J - 2 1 I - 2 ,  J 

I J = 3  4 5 6 7 

2 0.48661 (6) 
3 0.48660 (7) 
4 0.34447 (10) 0.21389 (15) 
5 0.30911 (13) 0.17113 (17) 0.12508 (21) 
6 0.29614 (14) 0.15459 (19) 0.10659 (26) 
7 0.29061 (15) 0.14701 (20) 0.09780 (28) 
8 0.28791 (15) 0.14310 (23) 0.09313 (27) 
9 0.28642 (19) 0.14091 (25) 0.09037 (25) 

10 0.28567 (21) 0.13953 (25) 0.08846 (29) 
11 0.28531 (21) 0.13879 (27) 0.08740 (32) 
12 0.28505 (22) 0.13834 (32) 0.08682 (39) 

0.08692 (29) 
0.07733 (29) 
0.07192 (31) 
0.06851 (31) 
0.06644 (39) 
0.06508 (53) 
0.06434 (48) 

0.06708 (32) 
0.06117 (38) 
0.05758 (50) 
0.05529 (52) 
0.05362 (6N 
0.05277 (66) 

I J =  8 9 10 11 12 

8 0.05519 (49) 
9 0.05153 (60) 0.04797 (77) 

10 0.04892 (74) 0.04493 (90) 0.04204 (105) 
11 0.04708 (82) 0.04239 (107) 0.03996 (97) 0.03973 (163) 
12 0.04550 (80) 0.04175 (88) 0.03947 (131) 0.03608 (191) 0.03392 (290) 
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