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A Haag-Ruelle scattering theory for Euclidean lattice fields is developped. 

The main motivation for the investigation of Eu- 

clidean Lattice Field Theories (ELFT) is the aim to un- 

derstand particle physics. It is, however, not obvious 

at all that ELFT directly describe particles. Usually for 

the relation to particle physics the continuum limit is 

used. Continuum Euclidean field theories lead (under 

rather general circumstances) to quantum field theories 

on Minkowski space which (again under quite general 

conditions) describe the behavior of particles. The per- 

tinent quantities in the continuum limit are then ap- 

proximated on the lattice. This procedure is of course 

not unique. 

A direct particle interpretation of ELFT would be 

highly desirable. It would lead to an unambiguous def- 

inition of physical quantities like cross sections. It also 

would justify the interpretation of ELFT with a triv- 

ial continuum limit as effective theories for particles. 

In any case ELFT would become a respectable theory 

which shares some structural properties with continuum 

quantum field theory and which is better accessible by 

analytical and numerical methods. 

Let us briefly review the status of the particle in- 

terpretation of continuum quantum field theory. The 

basic structural properties which are exploited are local 

commutativity of space like separated observables as an 

implementation of Einstein causality, and the spectrum 

condition. A rather satisfactory analysis can be made 

in theories without massless particles. In theories with 
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physical massless particles problems with infraparticles 

occur which are presently not under full control 1 

In purely massive theories one first has to find the 

single particle states. If they belong to the vacuum sec- 

tor, i.e. if the particles carry no charge, there exist so- 

called almost local operators which create the particle 

states from the vacuum. Using them one constructs the 

outgoing and incoming multiparticle states via methods 

of the Haag-Ruelle scattering theory 2. If the single par- 

ticle state is not in the vacuum sector, i.e. if the particle 

is charged, one first has to apply the theory of super- 

selection sectors (see 3 for a review) to construct the 

group of global gauge transformations and the charged 

fields. Then one can again apply the methods of the 

Haag-Ruelle scattering theory for the construction of all 

scattering states. 

There are also some unsolved problems. Besides the 

already mentioned problem of infraparticles the main 

open problem is the asymptotic completeness, i.e. the 

question whether each state is an incoming and an out- 

going scattering state. (For recent progress in this prob- 
lem see 1, 4). 

The main obstruction for performing a correspond- 

ing analysis in ELFT is the absence of local commu- 

tativity for spacelike separations in the corresponding 

real time quantum theory. Consider e.g. the theory 

of a scalar Euclidean field ~(¢), x = (x°,x_) E ~d+l ,  

d :> 1. Let (.) be a translation invariant and reflection 

positive state. Then, using the transfer matrix formal- 

ism, one finds a Hilbert space ~,  a vector ~ E ?t, 
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representing the vacuum, a positive operator T _~ 1 

(the transfer matrix) and a quantum field ~(~) such 
0 that for x ° _ ~ . . . _ ~ x  n, 

(~(~1)...~(~,)) = 

(~, ~o ~o +(Xl)T ~- ' . . .  T ' ~ - ' : - " I ' ( x , ) ~ 2 )  (1) 

In typical cases T > 0 5., one then can define the (quan- 

tum) Hamiltonian by H = - I n T  and the real time 

evolved quantum field by 

@(t, x_) = exp (iHt) @(x_) exp (-iHt). (2) 

Unfortunately H and <I,(t,x), t ~ 0 seem to be , in 

general, rather delocalized, even if the state on the Eu- 

clidean fields is a Gibbs state with respect to some local 

Euclidean action. 

For the identification of single particle states in 

massive theories this presents no problem, since they 

are characterized completely in terms of the energy- 

momentum spectrum. There are numerous heuristic 

and numerical results, and rigorous proofs of existence 

have been given in many cases 6. There are also ex- 

amples of charged single particle states: the electrically 

charged particles in the free-charge phase of the Z(2) 

gauge-Higgs model 7 and soliton like particles in a va- 

riety of models 8 

All the existence proofs rely on an analysis of 2- 

point functions G(x,y). In the case of charged fields 

the definition of G is not obvious since it is difficult 

to find field operators which create the particles from 

the vacuum (for an attempt see 9). In 7 following 

10 the following definition of G was used (the pictorial 

notation means a product of the gauge fields along the 

path (in the unitary gauge)): 

R & 

l---'l R/' ~ )-i}i/~. 

R 

Note the similarity of G with the vacuum overlap 

order parameter 10 , 11 

Let us now describe the main idea for the construc- 

tion of scattering states. Euclidean Green functions in 

massive phases cluster exponentially. These clustering 

properties show up in some way in the real time Green 

functions (Wightman functions). The clustering prop- 

erties of Wightman functions then lead to a weak form 

of local commutativity which is sufficient for the pur- 

poses of scattering theory. 

First we investigate the cluster properties of Wight- 

man functions. In a massive phase with unique vacuum 

the connected Euclidean Green functions decay expo- 

nentially: 

l<~(x,) ...~(x-)>ol -< exp(-mR(x,, . . . ,x,))  (4) 

where m > 0 is the mass gap and R(xx,...,X.) is 

the side lenght of the smallest lattice cube containing 

x l , . . . , xn .  For later convenience we choose ~ to be 

bounded which is always to be achieved on a lattice 

by redefining ~ (e.g. by replacing ~ by arctanqo for a 

real field ~). We choose now a function g(t,~_) whose 

Fourier transform is smooth with compact support, and 

define cutoff quantum fields ~g by 

• ~(t,=) = fdsEg(~,y)~(~+8,~_+y_) (s) 
u_ 

where @ is the quantum field corresponding to ~o. Let 

w~(h ,~ ; . . .  ;tn, ~ )  = 

(~, %(t,, ~ ) . . .  ,~(t, ,  ~_,)~) (6 )  

be the Wightman functions of the cutoff field ~g, and 

let Wg,c denote the corresponding connected (some- 

times also called truncated) functions. We have the 

following theorem: 

T h e o r e m  1 For all natural numbers N there is 

some CN = CN(g) > 0 such that 

[Wg,c(~l,Xl;... ;~,n,~Xn)] ~ CN(I "-~ ~N)/(IT~R)N, (?) 

where t = maxi [ti+a -- ti[ and R = R ( x l , . . . ,  x , ) .  



J.C.A. Barata, K. Fredenhagen /Euclidean lattice fields 641 

We sketch the proof for the simplest nontrivial case 

n = 2, ~ independent of p, (~) = 0 (so the connected 

and the disconnected 2-point function coincide). Using 

the definition of l/it e and ~g one finds 

wg,o(s,u_;t + s,= + u_) = 

(~,  ¢,(o)e~"'~(.r-z)~(-.e)e,(~_)rt). (8) 

Let 9(H)9(-H) = x(H).  x (H)exp( iHt )  is 

(in contrast to exp(iHt))  a continuous function of 

exp ( - H )  = T and can therefore be approximated uni- 

formly by polynomials of exp ( - H ) :  

x(H)  exp (iHt) = ~ a (") exp ( - n i l )  + e(n), (9) 
k = o  

with He(n)ll -~ 0 for n --+ oo. Inserting this approxima- 

tion in (8) one obtains 

IW~,o(0; t, z__)l _< 

la~)l I(:(0),~(k,~_))~l+ II'(n)lI (1:1~). (10) 
k = 0  

If one uses an approximation by Chebyshev polynomials 

in (9) one gets the estimates 

Ile(n)II _< C'N(Itl/n) N, C' N > O, N E IN, 

I~")1 _< c '  exp (on),  c, C ' >  0. (11) 

Together with the hound (4) this implies 

lw~,~(0;t,~)l _< C'exp (en - ~R(0, ~)) + O~(Itl/n) ~. 
(12) 

Choosing n = c"R(0 ,  x__), cc" < m we obtain the de- 

sired bound (7). 

With  the help of the cluster properties of Wight-  

man functions established in this theorem the construc- 

tion of scat ter ing states  is straightforward. We assume 

tha t  there is an isolated shell {(E(p_),p_), p__ E ( - r r ,  Tr] d} 

in the energy-momentum spectrum of q~(0)f~, with a 

smooth  dispersion relation E(p_). We further assume 

tha t  there  are sufficiently many different velocit ies,  i.e. 

gradE(p)  ~ gradE(q).for almost all p ~ q. We now 

choose a smooth cutoff function g such that  ~ = 1 

on the single particle shell and ~ = 0 on the remaider 

of the energy momentum spectrum. Then q,g(O)fl is 

a single particle state. Now let f be a negative fre- 

quency solution of the wave equation corresponding to 

the dispersion relation E(p_): 

.f(t, x)  = (21r) -d f dap__ e-i(E(P-)t-e'~)f(p), (13) 

where ] is smooth.  Let V ( f )  denote the velocity sup- 

port of f ,  

V( f )  = {gradE(p),  p_ E supp}}. (14) 

f(t,x_) is essentially localized in the kinematically al- 

lowed set { ( t , v t ) ,  v 6 V(. f ) } .  More precisely one has 

P r o p o s i t i o n  1 

(i) ~ I/(t,z__)l _< constltl ~/2, (lS) 
z 

(ii) [J(t,x__)l < CNt-N dist(z_/t, V~(f)) -~ ,  (16) 

with Vs(f) = {v, dist (v, V(J)) <_ ~ ) ,  6 > o, /or all 
N ¢ IN. For a proof see for instance 12 

Consider now the smeared field 

As(t) = ~'_@g(t,z__)y(t,z_). (17) 

Ai(t)~ =-. q2(f) is a one particle state which 

does not depend on t. Its momentum space 

wave function is /(p_)Z(p_) 1/2 where Z(p_) = 

~-~=_(@g(0)f~, ~e(x_)f~) exp (ip__.x_) and where we used the 

normalization 

< p_lq_ >=~(p_-q) (zs) 

for the improper single particle momentum eigenvec- 

tors. Let f l , . . . , . f ,  be smooth negative frequency so- 

lutions with nonoverlapping velocities, i.e. 

V(/ , )  n V( / j )  = O, i # j.  (Zg) 

Then the Haag-Ruelle approximants for a multiparticle 

scattering state with wave function 

](P_,. . . ,P~) = Z(P_,) '/2 . . .  Z(P~)I/VI(P_,). .. L(p_.) 
(20) 
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are defined by 

¢ 2 ( f ~ , . . . , / , ; t )  = A y , ( t ) . . . A f . ( t ) ~ .  (21) 

Using the Theorem 1 and the Proposition one finds: 

T h e o r e m  2 (i) The limit 

lira @ ( f , , . . . . f , ; t )  -= ~I '~ . , ( f l , . . . ,A)  (22) 
t ~ 4 - o o  ~ z n  

ezists, 

(ii) 

(~ ' ; :  ( I ] ,  . . .  , . f , ) ,  ~'2: ( g , , . . .  ,g~)) = 

6.~ ~ (@ f,, @g.(,))... ( ~ i . ,  ~'g.(,,)). (23) 
per'tTl.ttt~£1on$ o" 

Theorem 2 (ii) shows in particular that the space of out- 

going, resp. incoming scattering states has the struc- 

ture of a bosonic Fock space, so the particle is a boson 

(as expected). 

The S-matrix is now given by 

(2,~)-an f d ~ p ~ . . . f  ddp___~ 

z(p~)~/~ .. . z ( ~ )  '/~ 

] , ( p j ) . . .  h(p~)h+~(p~+~)... L (L , )  

( p j . . .  p k  I S l P k + ~  • • • p . )  -- 

(¢2o..,t(f~,..., fk), q21,(fk+],..., f,)). (24) 

There is also an LSZ reduction formula for nonover- 

lapping velocities. One finds for gradJE(pA ) 
gradE(p~),  i # j: 

(p~. . .  paISlpk+a. . ,  p,,) = 

Z ( p l  ) - I / 2 ( p  0 - E ( p l  ) ) . . . Z (p . . . .~n) - i /2 (pO n - -  E(p , )  ) 

i " f d h . . . d t ,  ~_, 
Xl .. .¢n 

0 exp {i[e](p°t, - p].xl) + . . .  + e , (p , t ,  - p, .x , ) ]}  

( ~, T( +( t~ , ~ ) . . . +( t , ,  ~-))f~)l,~=E(a)... . . ,~=~(,.), 
(25) 

e l = . . . e ~  = - 1 ,  e~+~ = . . . e ,  = +1. 

Here T is a time ordering prescription. Actually, there 

is a large freedom in the choice of T. One possibility is, 

to make a Fourier transform of the Euclidean correla- 

tion functions, perform a Wick rotation and transform 

back to position space. As LLischer has shown 13 the 

result differs from the real time ordering prescription 

only by exponentially decaying tails which do not affect 

the validity of the LSZ formula. 

Scattering states can also be constructed for parti- 

cles carrying a gauge charge, i.e. for particles which can- 

not be created from the vacuum by local fields. Since 

there is still no theory of the superselection structure 

of ELFT one has to guess the approximants for scatter- 

ing states. In the Z(2) gauge-Higgs model one can use 

the ground states Iz_l,... ,x__~) with external charges at 

prescribed points z_l, . . .  ,z_, constructed in 10. A Haag- 

Ruelle approximant for a two-particle scattering state, 

e.g., is given by 

f dt'dt" y~ 
~,y,x_~,y s 

~, ( I , , /2 ;  ~) = 

~3(t 4- t ' ,~ + ~')~3(t + t", y + y' ) l f  + ~', y + y'>. (26) 

where a3 is the Z(2) Higgs quantum field. One can 

show that in that part of the free charge phase where 

the existence of charged particles was established the 

Haag-Ruelle approximants defined as above converge, 

and one finds that the space of scattering states is a 

bosonic Fock space. So the charged particle in this 

model is a boson. 

There are also models (in 2+1 spacetime dimen- 

sions) where anomalous statistics is expected 8. The 

anomalous statistics should show up in an unambigu- 

ous way in the scalar products of scattering states. 

We conclude that ELFT typically have a full particle 

structure. In principle, scattering amplitudes can be 

computed from Euclidean correlation functions. How 

this can be realized e.g. in Monte Carlo simulations has 

still to be worked out. 
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