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The use of local operators in lattice Monte Carlo glueball mass calculations has so far prevented a computation 
at small couplings and on large lattices. The reason is that their projection onto the low-lying glueball states 
decays rapidly into the statistical noise as the lattice spacing becomes smaller. To circumvent this problem one 
has to resort to nonlocal operators of lower dimensions. In this talk I shall construct such operators and present 
first results, so far for the 0 ++ and 2 ++ masses, of an ongoing effort to compute the glueba]l mass spectrum at 
small couplings and on large lattices. 

I .  INTRODUCTION 

It is of fundamental importance to compute the 

glueball mass spectrum in the pure gauge theory on 

the lattice. On the one hand, QCD predicts the exis- 

tence of glueballs, and a firm calculation of their masses 

would expose QCD to an invaluable quantitative test. 

There are indications that the inclusion of dynamical 

quarks does not change the masses of ordinary mesons 

and baryons significantly apart from a renormalization 

of the overall scale 1, and one may hope that the same 

would be true of the glueball masses. On the other 

hand, the calculation of the glueball mass spectrum in 

the quenched approximation is a necessary milestone 

which must be passed successfully before one can think 

of the realistic catculation. 

First attempts to compute the glueball mass spec- 

trum date from the early days of lattice gauge theory 2. 

However, not until three years ago have calculations 

of the 0 ++ glueball mass been performed 3, which were 

reliable enough in their control of systematic and sta- 

tistical errors as to address the question of f inite size 

effects and the approach to the continuum limit. One 

of the results was that the 0 ++ glueball mass is sub- 

ject to strong finite size corrections, and it was felt that 

one has to resort to larger lattices to progress. Further- 

more, it turned out to be nearly impossible with the 

techniques of that time to extend the calculations be- 

yond /3 - 6/9 ~ = 5.9, and attempts to compute the 

2 ++ glueball mass failed completely. 

If one cannot do an accurate calculation on large 

lattices, one may try to do it on small lattices. Indeed, 

a group of authors has computed the 2 ++ glueball mass 

on small spatial lattices. This was only possible by brute 

force using up to half a million of Monte Carlo sweeps 

each 4. They found that the 0 ++ and the 2 ++ state have 

very similar masses. Recent analytic work by Koller 

and van Baal s has confirmed this result. But it also 

showed that rotational invariance is badly broken on 

small lattices, and that it is not restored until 

L 
z -  (z)  

where L is the spatial extent of the lattice and ~ the 

correlation length. In addition, some of the mass ratios 

turned out to depend strongly on z in the region z < 5. 

To shed further light on the credibility of the small 

volume calculations for continuum, infinite volume glue- 

ball masses, we have investigated the vacuum structure 
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of SU(2)  gauge theory below and above z = 5. We 

found 6'7 that the topological susceptibility Xt and the 

perimeter density of loops of color magnetic monopoles s 

I rise sharply at about z = 5 when going from small to 

large values of z. We interprete this result as evidence 

that the vacuum of the small volume is largely "pertur- 

bative", while only the large volume shows any sign of 

the nonperturbative dynamics like monopole condensa- 

tion, which we believe is responsible for color confine- 

ment. 

The conclusion to be drawn from all this is that the 

small volume calculations leave the glueball masses on 

large lattices largely undetermined. 

From the calculation of various physical quantities 

we deduce furthermore that the scaling window for the 

Wilson action begins at/3 -- 6.0. A meaningful glueball 

mass calculation therefore requires ~ _~ 6.0, and the 

volume should be large enough so that z >> 5. In this 

talk I shall introduce a new method, which allows us 

to address glueball mass calculations in this region and 

report first results on 0 ++ and 2 ++ masses in SU(3 )  

gauge theory 9. 

2. WHY DID EARLIER ATTEMPTS FAIL? 

Before I shall present the new method, I want to 

explain the reason why our earlier attempts to compute 

the 0 ++ glueball mass on large lattices in the contin- 

uum region failed. Let ~( t )  be a color singlet, zero- 

momentum operator localized at time t with some spin, 

parity and charge conjugation quantum numbers. The 

lowest-lying g[ueball mass in that channel is then deter- 

mined by computing the temporal decay of the correla- 

t ion function 

< Ol¢(~)'I '(O)[n >o= ~ < Ol'I'ln > <  ,~lOI n > e - " - t  
n = O  

t ---+0 _~,nO ~ = ce , (2) 

where ~ stands for the vacuum (~ = 0) or a source 

(~ = Y), and m0 _< m l  < m2 < ... < moo. The 

subscript c denotes that the connected part is to be 

taken in case of the 0 ++ glueball. The success of the 

calculation will now depend on one's ability to construct 

operators that have a large projection onto the lowest- 

lying state. So far exclusively local operators, such as 

the n x m plaquette, have been used. Such operators 

have dimension d = 4. As a result one computes 

c ~ a s, (3 )  

where a is the lattice spacing. In practice this means 

that the projection onto the state whose mass one wants 

to calculate will rapidly drop and the signal be lost in 

the noise as the coupling constant is decreased. This 

was the reason why our earlier calculations 3 could not 

be extended beyond/3 = 5.9. 

To confirm this statement, I have plotted the pro- 

jection 

¢ 

P = Z . ~ 0  < 0 l ~ l n  > <  nl~l~ > 

(4t 

for various values of/3 in fig.1. This shows that the 

projection falls indeed like the fifth power of the lattice 

spacing, a s, and that it is only of the order of a couple 

of percent at/~ = 5.9. 

To overcome this problem one needs to construct 

operators of lower dimensions. Such operators exist. 

The price one has to pay is, however, that they are 

nonlocal. In the next section I shall discuss examples of 

such operators. 

3. CHOICE OF OPERATORS 

In the presence of a dynamical, scalar field ~ an 

obvious choice for the 0 ++ operator would be • = ~ ,  

which has dimension d = 2. An analogous choice in the 
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Figure 1: The projection p onto the lowest-lying 0 ++ 

glueball s ta te  as a function of/3 as computed in ref.3. 

The solid line represents the fifth power of the lattice 

spacing, a 5, renormalized to a constant  string tension. 

pure gauge theory is to take the inverse of the spatial,  

covariant Dirac operator, 

where 

~(t) = ~,-(d(t) + ~ ) - ' ,  (s) 

~ t )  = 7,(0~ + A , ) ( t ) ,  (6) 

and this is the basic idea of the method.  

We shall take staggered fermions, whose action is 

S = ~ ( D  + m ) x  , 

~ D X = ~-~(-1)~'+'"+~"-')~,~U.,~,X.+,a - h.c . ,  
nd~ 

(7) 

where n = ( z l , x ~ , z 3 , x 4  : t) ,  and/2 is a displacement 

vector of one lattice unit in #-direction. The particular 

type of fermions should, however, not matter. We then 

introduce Dirac operators 

[dT']( "i , ',),(~,~ *)+~ = 

(_l~,+---+~i-x rr - - h .c .  

(s )  

where j , k  E { 1 , 2 , 3 } \ i ,  i # j .  They reside on spatial 
^ 

planes perpendicular to i. From these we construct  

operators 

q'o(t) = ~-~ tr(d;X(t) + m) -I + ~-~ tr(d~2(t) + m)-' 
=c I ;e  2 

+ Z ~(d;,(t) + =) - ' ,  
~3 

(9) 

and 

X 2  ~ 3  

¢~,~(t) = Z t~(d?(t) + m)-' - ~ t~(d?(t) + .~)-~, 
~e3 Xl 

• ~,3(t) = ~ tr(a;' (t) + m) -~ - ~ t~(d?(t) + m)-L 
Xl  ~2 

(lO) 

It is easily checked that  @0 (#~2,m) projects onto the 0 ++ 

(2 ++) glueball s ta te  and belongs to the representation 

A1 (E) .  This is the simplest choice of operators  of the 

kind (5), which allow to compute the 2 ++ mass at the 

same t ime as the 0 ++ mass. In forthcoming investiga- 

tions we shall also employ proper 3-dimensional Dirac 

operators provided with the appropriate 7-matr ices  to 

compute  the glueball masses of s tates  of other p,~rity 

and in different representations. It is obvious that  L 

must be even for this choice of fermions. 

The operators q)0 and @2,m have dimension d = 1. 

For large t imes the correlation functions read 

< o],~o(t)~,o(O)lO ' ~  > c  ~ Co e-rn°++t 

(11) 
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and 

< = 

We now compute 

C0, 20C a~ 

which is a clear improvement over (3). 

(12) 

(13) 

4. NUMERICAL METHOD 

The success of the numerical calculation will largely 

depend on the computer time needed to invert the Dirac 

operators. A fast algorithm to do so, which also needs 

relatively l itt le storage, will be described below. 

We write d = i l l ,  where H is hermitean. T h e  

problem then is to compute t r ( i H  + m) -1. In the first 

step we use the Lanczos algorithm 1° to tridiagonalize 

H:  

X - 1 H X  = 

0 fix 0 . . .  0 0 

~1 0 f12 - . .  0 0 

0 fl= 0 . . .  0 0 
: : : " , .  : : 

0 0 0 . . .  0 13n-~ 

0 0 0 . . .  f l lv-~ 0 

where X is unitary. This is done iteratively 

#1x2 = H z l ,  

fl~xi+l = H x l  - f l i - - l X i - - 1 ,  2 < i < N - 1, 

~ n X g + l  : H x  N --/~N_lXN_I, 

(14) 

(is) 

where 

x = (=,, ~2, ..., =N). (16) 

The starting vector x l  is an arbitrary unit vector, which 

should be chosen such that rounding errors remain 

small• In case they build up and the column vectors 

xi loose orthogonality, the latter have to be reorthogo- 

nalized from time to time with respect to the previous 

ones. 

In the next step we compute the determinants of 

the tridiagonal matrices 

3 / . =  

i l  m . . .  0 O0 

0 . . .  m i 

0 . . .  i f l .  

L .  = 

(17) 

m i~N_n+ 1 .•• 0 ! N )  
i~N-n+l m ..•  0 

: : "• : 

0 0 . . .  m i 

0 0 . . .  i n n  

(18) 

which is done iteratively: 

d e t ( M , )  = m d e t ( M , _ z )  + f l~_~de t (M, ,_2 ) ,  

det(L.) = mda(L ._ , )  + ~_.+,d~t(L._=) .  

(19) 

Finally, we obtain 

1 
t , - ( i H  + m )  -~ - d e t ( M ~ , ) { d e t ( L N _ l ) +  

d e t ( M ~ ) d e t ( L N _ 2 )  + ... 

+d,~(i~_~)de~(L, ) + d~(M~_,)}. 

(20) 

All three steps are done in parallel for the various 

planes and/or masses. The time it takes to do all Dirac 

operator inversions turns out to be comparable to the 

time for 10 updates on the larger lattices. A more de- 

tailed description of the program can be found in ref• 4. 
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5. RESULTS 

The idea is to compute the glueball masses for a 

range of spatial lattice sizes from the small to the very 

large and for several values of/~. This will establish 

the lattice size needed for a meaningful glueball mass 

calculation. Furthermore, we expect that the transition 

from the "perturbative" to the nonperturbative vacuum 

at z ~ 5 will give us some clue about the mechanism 

of mass generation. 

In our numerical calculations we choose antiperiodic 

boundary conditions for the fermions. The gauge fields 

are taken to be periodic and are simulated with the 

Wilson action using a standard Monte Carlo updating 

program 12. 

The mass Tn is a free parameter, that may be tuned 

such as to maximize the projection onto the lowest-lying 

state or to minimize the error of the corresponding mass, 

which usually amounts to the same. The value of m, 

which gives the maximal projection, will give us some 

information about the size of the glueballs. 

But rn gives us also control over systematic errors. 

For large m only small loops contribute to ~0, ~,,~, 

while for small m larger loops give the dominant contri- 

bution. So, for example, if our operators would couple 

to two states, one geometrically large and light and the 

other comparatively small and heavy, we would find a 

light mass for small rn and a heavy mass for large m. 

So far we have done simulations on the following 

sized lattices at the following values of/3: 

L3~ 
6312 5.7 

8316 5.85 

12316 5.85 

10320 6.0 

14320 6.0 

Here T is the temporal extent of the lattice. The corre- 

lation functions are calculated for 20 mass values rang- 

ing from m = 0.02 to m = 1.6. 

TEST OF THE METHOD 

Before I shall present the results of the mass cal- 

culation, I want to demonstrate that the new method 

satisfies indeed our expectations. In figs. 2 and 3 I 

have plotted the correlation functions (11) and (12), 

10 ~ 

103 

10 2 

O.. 

I I [ I t I I I I I 

0 1 2 3 4 . 5 6 7 8 9 1 0  

Figure 2: The 0 ++ correlation function on the 10320 

:attice at /3 = 6.0 for m = 0.1 as a function of time. 

The solid line represents a single hyperbolic cosine fit. 
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Figure 3: The 2 ++ correlation function on the 10320 

lattice at f l  = 6.0 for m = 0.1 as a function of time. 

The solid line represents a single hyperbolic cosine fit. 

respectively, on the 10320 lattice at/3 = 6.0. They are 

averaged over ,~ 20000 gauge field configurations. The 

striking result is that we obtain a clear signal now over 

the full temporal extent of the lattice, which accurately 

displays the asymptotic exponential decay. The projec- 

tion onto the lowest-lying state has risen to ~ 40% for 

the 0 ++ and to ~ 15% for the 2 ++ glueball, which is 

not only large enough but also small enough not to hide 

any state of even smaller mass. We would certainly feel 

very uneasy if we had obtained a projection of .-~ 100%. 

To verify the prediction (13) now, I have computed 

the projections 

Co 

po = E~=o { < 01~0in > 12 

and 

p2 = 

(21) 

C2 

(22) 

for the various values of/3. The result is shown in fig. 

4. The physical spatial volumes of the lattices have 

been chosen to be roughly equal. We find that both, 

P0 and P2, fall like a as we expect. This is to say that 

our method will also work at values of /3 larger than 

fl = 6.0.  

SYSTEMATIC ERRORS? 

The projections p0, p2 depend, of course, on the 

mass parameter m. The numbers given in fig. 4 are 

their maximal values. For the lattices and f l  values we 

have investigated so far we find P0, .#2 to assume their 

maxima for m = 0.1 - 0.3. I will give the precise val- 

ues later. Outside this region p0, p2 drop significantly. 

Nevertheless, we are still able to compute the glueball 

masses rather accurately for 0.02 < m ~ 0.6. In fig. 

5 I have plotted the glueball masses mo++a and m2++a 

obtained on the 10320 lattice at f l  = 6.0 as a function 

of m. We find that both masses are independent of 

m within the statistical errors. (The procedure of fit- 

t ing the Monte Carlo data will be described in the next 

paragraph.) 

One might argue that the operators (9) and (10), 

because they are nonlocal and contain loops that go 

around the "world", couple to single quanta of elec- 

tric flux. The result would be that the correlation 

functions (11) and (12) received an additional con- 

tr ibution with an effective mass K Z ,  where K is the 



G. Schierholz /Glueball masses in SU(3) 17 

% 

100 

10 

o o 

• 0 + +  

o 7 + +  

1 I I I I 

5.7 5.8 5.9 60 

mQ 

0.5 

0.4 

0.3 

0.2 

0.4 

0.3 

02 

0.1 

0 

{{++{{+++{{ 

• 0 " *  

o 2 *+  

I I I I I I 

0.1 02 03 0./, 0.5 0.6 

m 

Figure 4: The projections p0 and p~ onto the low- 

est-lying 0 ++ and 2 ++ glueball states as a function of 

/~ on the 6312, 8316, 10320 lattices at ~ = 5.7, 5.85, 

6.0, respectively. The solid line represents the lattice 

spacing, a, renormalized to a constant string tension. 

string tension, which for small L could become dom- 

inant at large times. But this is not the case. For 

the sake of definiteness let us consider the 2 ++ state 

[¢2,1 > =  f[dU]¢2,11U >. Let us also restrict our 

discussion to SU(2)  for simplicity. It is easy to see 

now that I¢~,1 > decomposes into four states, -2,1 >, 

I = 1, ...,4. Each of these states belongs to the repre- 

sentation E, and they are classified according to their 

behavior under the global Z(2) symmetry transforma- 

tions S (~), which multiply each link in the zi-direction at 

a given zl-coordinate by -1. ,~(1) =z,1 > is symmetric under 

all S (i), a~(2) =2,1 > is antisymmetric under S (1) and sym- 

metric under S(2),S (3), ¢(3) 2,1 > is symmetric under S(1) 

and antisymmetric under S(2),S (3) while ¢(4) 2,1 > is an- 

tisymmetric under all S (i). It follows that the ~(z) 2,1 > t  8 

Figure 5: The glueball masses mo++a and m2++a on 

the 10320 lattice at/3 = 6.0 as a function of m. 

are orthogonal to each other, and the lightest states 

they are coupling to are th~ 2 ++ glueball ( l  = 1), the 

2 ++ glueball plus one quantum of electric flux in the 

xl-direction ( l  = 2), two quanta of electric flux, one in 

the z~ and the other in the z3-direction, with opposite 

"charge" ( l  = 3) and three quanta of electric flux, re- 

spectively. Thus, the lowest competing mass is 2KL ,  

which on all our lattices is larger than m2++. Similar 

arguments apply for the 0 +4. state. 

A further piece of information is the m-dependence 

of Co, c2. We find, e.g., on the 10320 lattice at/3 = 6.0: 

co oc e - i s "  (23) 

for 0.04 < m < 0.3, while c2 falls somewhat faster. 

This is close to what one would expect for the glue- 

ball wave function. For the expectation values of the 

"charged" operators one calculates, on the other hand, 

< ¢(0c~(0 >cx m ~, l > 2. Hence, they are exponen- 

tially suppressed for small m. 
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0 ++ AND 2 ++ MASSES 

To fit the correlation functions we discard the first 

two points and fit the remainder to a single hyperbolic 

cosine. The stability of the fit is checked by discarding 

further points. The errors are obtained by dividing the 

Monte Carlo data into sub-ensembles and taking the 

appropriate averages. Two such fits for the 0 ++ and 

2 ++ correlation functions are shown in figs. 2 and 3. 

The glueball masses that we have obtained hitherto 

are listed in the table below: 

/9 L 3T 

5.7 6312 

5.85 8316 

6.0 10320 

6.0 14320 

/?~0+ + a '/31.2++ O~ 

0.74 4- 0.04 

0.54 4- 0.04 

0.34 4- 0.02 

0.63 4- 0.08 

0.73 4- 0.03 

0.50 ± 0.04 

0.38 4- 0.02 

0.97 4- 0.15 

(24) 

T h e  result  on t h e  14320 lat t ice  should  be regarded as 

preliminary,  as we have a c c u m u l a t e d  only ~ 8000 gauge  

field conf igura t ions  yet in th is  case.  

W h e r e  our results  over lap with previous calcula-  

t ions,  t h a t  is on the  6312 lat t ice  with ref. 3 and on 

the  14320 lat t ice with ref. 13 in case of  the  0 ++ mass ,  

we find general  a g r e e m e n t  wi thin  t h e  errors. At this  

con fe r ence  Marinari 14 and Michael  x5 have also repor ted  

new resul ts  on 0 ++ and 2 ++ glueball  masses ,  which are 

c o n s i s t e n t  with this  and our  old work 3. 

The  mass  p a r a m e t e r  m ,  which gives the  largest  pro- 

jec t ion ,  comes  out  to  be m = 0.3 on the  6312 lat- 

t ice and  m = 0.1 on the  8316 lat t ice  for both  s ta tes ,  

while on the  i0~20 lat t ice  we find m = 0.1 for t h e  0 ++ 

and  n~ = 0.12 for t he  2 ++ , and on the  14320 lat t ice  

7n = 0.12 for t he  0 ++ and m = 0.14 for the  2 +÷ s ta te .  

DISCUSSION 

The glueball masses (24) fall into two regions, one 

with z ~ 4 and the other with z ~ 9. The main new 

E 
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0 I I I I I I I I I I  
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Z 

Figure 6: The mass ratio m2++/mo~÷ as a function of 

2:. 

result of our work is that the masses and mass ratios 

are rather distinct in the two regions, which, after what 

I have said in the introduction, comes not really as a 

surprise. I will discuss this now in some detail. 

Let us first consider the 2 ++ to 0 ++ glueball mass 

ratio, which has been the matter of heated debate dur- 

ing the last year. In fig. 6 I have plotted m2++/m0+÷ 

as a function of z. We find that the ratio rises from 

1 at z .~ 4 to ~ 1.5 at z ~ 9. This rise cannot be 

explained by ordinary (large volume) finite size effects 16 

but indicates a transition in the vacuum structure. At 

present we do not understand precisely the nature of 

this transition. There are indications in SU'(2) gauge 

theory that color magnetic monopoles condense 8. for 

z _> 5 and (consequently?) that the ground state en- 

ergy becomes negative s at z ~ 5. This would mean 

*The calculations in ref. 8 were done on the sym- 
metric, 54 lattice as well as on the asymmetric, 1035 
lattice. Both gave the same results, so that we showed 
only the results on the larger, asymmetric lattice. Be- 
cause of the small spatial volume associated with the 
transition we can, however, not speak of a phase tran- 
sition here.  
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that confinement sets in dynamically only at z ~ ,5. It 

would be very interesting now to do a 81multaneou~ cal- 

culation of the glueball masses and, e.g., the perimeter 

density of monopole loops r,8 I for several values of z, in 

particular near z = 5. 

At the small values of z the ratio agrees with the 

small volume calculations in refs. 4 and 5. From 

the mass m, which maximizes the projection onto the 

lowest-lying state, we judge that the 2 ++ glueball is ge- 

ometrically only slightly smaller than the 0 ++ glueball. 

The 0 ++ mass itself does also increase as z in- 

creases. To exhibit this I have plotted the ratio 

rr~o++/x,'~ as a function of z in fig 7. Also shown is 

the ratio m2++/v~. The string tension is taken from 

ref. 17 and, when necessary, interpolated. Its lattice 

size dependence is assumed to be given by 

91" 
K ( L )  = K(cx)) 3 L '  (25) 

which is supported by Monte Carlo calculations. I have 

also included our previous 3 0 ++ masses in the plot. The 

observation that the vacuum becomes unstable under 

E 
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Figure 7: The ratios m0+~/v/-K and m2++/v/K as a 

function of z. 

the condensation of color magnetic monopoles at z ~, 

,5, which is followed by a lowering of the ground state 

energy, could also explain this sudden increase. 

Figure 7 indicates also that the ratio mo++/vlK is 

a remarkably universal function of z. It does, however, 

not allow any conclusions yet as to what the asymp- 

totic values of the 0 ++ and, even less, the 2 ++ glueball 

masses are. 

6. CONCLUSIONS 

This work is certainly only a first step towards the 

calculation of continuum glueball masses. It shows 

clearly how important it is to gain control over finite 

size effects. In the future we will have to do accurate 

calculations on still larger lattices until the mass ratios 

and the ratios m 0 + + / v ~ ,  m 2 + + / v ~  show a plateau in 

z, and all that must be repeated at larger values of/3. 

This will require an order of magnitude more computer 

time. But it is feasible now, and we are going to do it. 
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