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A dual interpretation of the vacuum overlap order parameter (VOOP) and of the the flux correlations order 
parameter (FCOP) is presented. For the FCOP we interchange one of the space dimensions with the euclidean 
time. In 3 + 1 dimensions the resulting quantity is interpreted as the vacuum overlap of a magnetic vortez, i.e. 
of a gauge-invariant energy-regularized state containing a closed line of center-magnetic flux. In the confinement 
region the vortices are condensed in the vacuum. In the Higgs region only vortices of small size exist as excitations. 
The screening length for dynamical center-electric charge fluctuations can be reinterpreted as the characteristic 
length for vortex fragmentation. The vacuum correlations responsible for the existence of magnetic vortices as 
excitations are measured by a (purely spatial) quantity obtained from the VOOP by replacing the time direction 
with a spatial one. At finite temperatures this quantity can be used as an order parameter for the symmetry 
restauration transition. In 2 + 1 dimensions the dual interpretation of our order parameters is simpler: we just 
interchange VOOP and FCOP, states with center-electric charge and states carrying center-magnetic charge 
(monopoles), the confinement and the Higgs region. 

1. INTRODUCTION 
In recent years we have introduced several order 

parameters for lattice gauge theories with matter fields 
1,2,3,4,5. We asked three fundamental questions: 

1. Do states with center-electric charges exist or is the 

charge screened? 
2. What properties of the vacuum are responsible for 

this? 

3. What is the mechanism for charge screening? 
The vacuum overlap order parameter (VOOP) is the 

scalar product with the vacuum (i.e. the vacuum over- 

lap) of a gauge-invariant energy-regularized electric 

dipole state. The fluz correlations order parameter 
(FCOP) measures the correlations of center-electric flux 
in the vacuum. We would like to gain some new insight 

into the meaning of our order parameters by asking the 

appropriate dual questions. By duality we mean a va- 

riety of related concepts like the electric-magnetic du- 

ality in electrodynamics, the duality transformation for 
lattice models (see e.g. 6), or the duality between the 
Wilson loop and the 't Hooft loop 7,8 

We start by recalling the definition and the physical 
interpretation of the VOOP (section 2) and the FCOP 
(section 3). In order to simplify the exposition we as- 
sume 4 space-time dimensions throughout sections 2-5. 

*Talk given by M. Marcu 
tHeisenberg foundation fellow 

We define both order parameters using the canonically 
quantized formulation of the theory, and then rewrite 
them in terms of expectation values in the euclidean 
path integral formulation. By interchanging the time 
axis with one of the space axes, these expectation val- 
ues can be reinterpreted in the canonically quantized 
formulation based on the new choice of the time di- 

rection. Thus we arrive at a dual interpretation for 
the FCOP (section 4) and for the VOOP (section 5), 
in which the three fundamental questions mentioned 
above are modified by replacing center-electric charge 
with closed line of center-magnetic flu~: (also called 
a magnetic vortex). A magnetic vortex is a gauge- 
invariant state whose energy has been regularized such 

that it is proportional to the length of the closed line of 

magnetic flux (and not to the area spanned by this line). 

The FCOP is now the vacuum overlap of a magnetic 
vortex, while the VOOP now measures the correlations 
in the vacuum which are responsible for the existence 
or screening of magnetic vortices. Thus in the dual 
interpretation the roles of the VOOP and FCOP are 
interchanged. 

The dual interpretation of the FCOP leads to a gen- 
eralization to the theory with matter fields of the idea 
that in 4 dimensions the confinement vacuum is a con- 
densate of magnetic vortices 7,8,9. In the Higgs region, 

some of the properties of the magnetic vortices resem- 
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ble those ot confinement-region quark-antiquark pairs: 

small vortices exist as excitations; at some characteris- 
tic length their overlap with the vacuum becomes large, 

which is reminiscent of the quark fragmentation (i.e. 

hadronization) phenomenon. Furthermore, the vortex 
fragmentation length is identical to the characteristic 

length for the screening of dynamical charge fluctua- 

tions 5 

In its dual interpretation the VOOP is a purely 
spatial quantity and can be defined at finite temper- 

atures too. It is useful in the study of the symme- 

try restauration transition 10 (from the Higgs region to 

the confinernent-deconfinement region). At short dis- 
tance it behaves as perturbation theory predicts for a 

two-point function of the scalars. In the Higgs region 
this is also true at long distances. In the confinement- 
deconfinement region however, the VOOP goes to a 
constant at long distances 4. Thus on the one hand 

the conventional picture for this transition is not de- 

stroyed, while on the other hand the order parameter 
itself (which is the infinite distance l imit of the VOOP) 

is nonzero in both regions. This resolves the appar- 

ent contradiction between the conventional perturba- 

tive picture and the fact that the two regions may be 

analytically connected. 

In the deconfinement region, both charges and vor- 

tices are condensed in the thermal equilibrium state. 
The original FCOP and the dual VOOP define two dis- 

tinct characteristic lengths. 
For simplicity we shall consider a theory with a 

scalar matter field in the fundamental representation 

of the gauge group G. As in 5 we use the notation: 

S : - /3 Z x(U~) - ~ ~ 2 Re (¢~ U¢)(1) + ~ V(¢(~)) 
P l ¢ 

(1) 
where p, I and x are the plaquettes, links and sites of 
a d-dimensional euclidean lattice (d > 3), U(1) are the 

gauge fields, ¢(z) the matter fields, and X is some char- 
acter containing the fundamental character as an irre- 
ducible component. Geometrical objects in d - 1  (space) 
dimensions will be underlined and time-zero operators 
will be hatted, llke U(l)  or q~(x_). 

2. BRIEF REVIEW OF THE VOOP 

The ideas leading to the VOOP, its definition and 
some fundamental properties have been discussed in 
1,2,3,4,5. Let us summarize the most relevant aspects. 

A .  Assume L__~, is a spatial path from ~ to ~', 

chosen for simplicity to be a straight line. A naTve can- 
didate for a dipole state is: 

, ~ t ( ~ )  ~ ~ , u(z_:_:,) ¢(~_ ) [0> (2) 

For large separations the energy of this state is propor- 
tional to [~--x_' I. It can be regularized by translating 

[T(L=~,) by n steps into euclidean time (T is the trans- 

fer matrix; to avoid any confusion we write the group 

indices a and b explicitely here): 

I~_,x_',n) := ¢*(x_)o¢(w_')bT" rJ(D_~x,)ab]0) (3) 

is a state with bounded energy provided that for some 

constant c, n >__ c ix_ - x_'[ as Ix__ - x '  I --* oo. This result 
is model-independent (for nonabelian G the missing link 
in the proof was the perimeter law for Wilson loops; 
this has now been proven 11). Notice that the quantity 

translated into euclidean time is not gauge-invariant, 
but has a source at each endpoint. For n --~ co, T "  

projects out the state with lowest energy for a given 

configuration of sources. If ~n acts on (2), the state 

projected out is the vacuum, so there is no electric flux 

from x to at_'. 

B .  In the l imit x_' -~ oo, n _ c Ix_ - ~'l, the charge 

at x either becomes free or is screened. A quantity 

testing this is the vacuum overlap of the normalized 

dipole state (3): 

,a(l~_-~_'l,~) . . - (o  I ~,~_',n) 
II I~,~',n)II ( 4 )  

A free charge is orthogonal to the vacuum Hilbert space. 

If the charge is screened and <~(z_) has no additional non- 
trivial quantum numbers, the vacuum overlap is nonzero 

in the limit. Thus the criterion for existence of charged 

states is: 

/ 0 i3 free charges 
0 0 )  

?~ 0 charges are screened (5) 
k 

C. The vacuum overlap is easily expressed in terms 

of euclidean expectation values. It is convenient to rede- 
fine (4) by replacing in the denominator Ix_,x_',n) with 

~'nU(L__~,) i0). Denoting the resulting quantity by p 
instead of/3, 

z_. z_ ~ 
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The criterion (5) also holds for p (with p a related inter- 

pretation is also possible: (S) tests whether the charge 
of a source is screened or not). The cancellation of 
perimeter contributions between the numerator and de- 

nominator of (6) is one of the main ingredients in prov- 
ing (5). The order parameter is p(oo, co), but by an 
abuse of language we shall call (6) the VOOP. 

D.  P(I~ - x-'l ,co) is a gauge-invariant two-point 
function of the dressed charged field. For large ~ it 
behaves similarly to the matter field two-point function 
of the pure matter (~ = co) theory. In this region it is 
relatively easily accessible by numerical methods. In the 
free charge phase it can be used to compute the mass 
of the charged particles. In the Higgs region it offers a 
method to compute the Higgs expectation value 12. In 

the confinement region however, p([~ - x_'l, co) rapidly 
decreases with I ~ -  x--'l at small distances (correspond- 

ing to the Coulomb plus linear region of the potential), 

where a charge-anticharge (quark-antiquark) pair can 
exist as an excitation, while at large distances it goes 

to a constant (after the potential becomes flat). Thus 

it should have a dip 4 around the characteristic length 
for hadronization (fragmentation), which is roughly: 

R~ ~ E~ (7) 
O" 

(Eq is the energy of a source, (r is the string tension 

computed from the linear part of the potential). 

E. The VOOP cannot be defined at finite temper- 

atures since in this case it is impossible to let n --* co, 

3. BRIEF REVIEW OF THE FCOP 
The definition and basic properties of the FCOP 

have been discussed in 1,3,5. As opposed to the VOOP, 
the FCOP tries to answer the question of charged states 
by investigating properties of the vacuum. Let us again 
summarize the most relevant aspects. 

A .  In a massive gauge theory with matter fields a 
charged state can be created by acting on the vacuum 
with an operator localized inside a spatial cone 13 (this 
charged state does not contain a thin electric flux tube; 
the flux is not isotropic as by letting x_ -~ co in (3), but 
the state with the cone is in the same superselection 
sector; using the same methods as in 1 we explicitely 
constructed such a state for G = Z2, the idea being 
to regularize the energy somewhat differently than in 
(3)). The charge can be determined by Gauss' law, 
i.e. by measuring the total flux through an arbitrarily 

large closed surface. For a charged state the asymptotic 

direction of the cone should not be observable, i.e. we 
should not be able to determine the charge by measuring 
the electric flux through an open surface around the 

cone. This implies that there are strong electric flux 
correlations in the vacuum that delocalize the flux. For 

an additive charge (e.g. G = U(1)) the electric flux 
through a surface is a sum of local operators, so in 

a massive phase, where all two-point functions decay 
exponentially, there are no strong flux correlations and 
therefore no charged states (Swieca's theorem 14). In 
general however, Gauss' law only holds for the center 
CG of G. If Cc is discrete, a multiplicative charge may 
exist in a massive phase provided the flux correlations 
in the vacuum are strong enough. 

B.  Let us denote by £c(_l) the left multiplication 
operator by C E Co; for the oriented link _L The electric 
flux ~c(S) through a spatial surface S (actually S_ is a 

coconnected set of spatial links which forms a surface in 
the dual lattice) is defined as the product over oriented 
links _l E ,5 of £c(_Z). Consider a spatial volume A (a 

sphere or a parallelepiped) and denote the right and 
left halves of its surface by S r _, and Sl (thus as sets of 
spatial links O*A = S_~ U St), and by S_~ the minimal 
surface with the same boundary as ~ and S_LI (cg*S,~ = 
cg*S~ = O*~l as sets of plaquettes). A quantity suitable 
for testing the electric flux correlations in the vacuum 

is: 

Fdh) := (° Igc(Sz) l o) ( o I~c(S,)l o) (B) 
( o Igo(o'A)f o> 

In the free charge phase there are many closed electric 
flux lines in the vacuum, as can be seen from the fact 

that the expectation value of Wilson loops is relatively 
large. Ec(S~) and ~c(S£) are affected by the closed 
flux lines that intersect S,~ once, but £c(O*A) is not. 
Therefore, by arguments similar to those used to prove 
exponentiation in convergent expansions, we expect an 
area law for Fc(A).  In the confinement region there 
are few closed flux lines in the vacuum. In the Higgs 
region the closed flux lines in the vacuum cannot play a 
distinguished role since open flux lines (between charge- 
anticharge pairs) are also condensed in the vacuum (and 
screen the electric flux). Thus in the confinement-Higgs 
phase we expect the numerator and denominator of (8) 
to be roughly the same, up to a perimeter contribution 
at O*Sm. Denoting by r(A_) the linear dimension of A, 
the criterion for existence of charged states in a massive 
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phase is that for v(A) ~ oo 

]' exp(-c l  S=I) 3 free charges 
Fc(A)  

- -  ~ ], exp(--c20*Sm ) charges are screened 
(9) 

(cl and c~ are constants). 

C.  Let us denote by ,5" x {0,1} the set of timelike 

plaquettes with spatial projection in S_. Then 

( 0 , £ c ( S _ ) , 0 )  = < IX expj3{x(CUp)-x(U,)}> 
peSx{o,1} 

(10) 
Thus we have expressed (8) in terms of euclidean expec- 

tation values. One of the main ingredients in proving 
(9) is the cancellation of surface contributions between 
the numerator and the denominator of (8). By an abuse 

of language we shall call Fc(A) the FCOP. 
D.  For small ~, Fc(A) behaves similarly to the 

't Hooft loop 7,8 of the pure gauge (~ = 0) theory. At 

finite r(A_) the FCOP defines a characteristic length R/t 
in the tIiggs region: the asymptotic perimeter law sets 
in only at r (A) > RH, while at r < RH we have the area 

law. We interpret RH as the screening length for the 
center-electric charge (in the vacuum: for dynamical 

charge fluctuations). In the case of nonadditive charges 

the screening for the charge and that for the potential 

between two sources are different concepts, since the 

equation A V  = p that relates them in usual electro- 

dynamics no longer holds. For G = Z2 for example, 

RH ~ co as fl --* oo, while the screening length for the 

potential becomes zero in the same limit 5 

E.  The FCOP is a purely spatial quantity and can 

be defined at finite temperatures too. In the deconfine- 

ment region we expect it to define the characteristic 

length RH in a similar way to the Higgs region (for 

G = Z2 see 5), since charge-anticharge pairs connected 

by an open flux line are here condensed in the thermal 

equilibrium state too. Thus we can use the FCOP to in- 

vestigate the confinement-deconfinement transition (or 
crossover). 

In view of duality considerations, it is amusing to 
note that using the VOOP and the FCOP we can imme- 
diately see that at small ~c the intermediate-~ phase of 
Zn models is massless. Using the known results for the 
pure gauge theory 8,15 and Griffith inequalities, one 

can easily show that the VOOP is zero, so there are 
free charges, and the FCOP has perimeter law, so ei- 
ther there are no free charges (which is ruled out by the 

VOOP) or the theory is massless. 

4. DUAL INTERPRETATION OF THE FCOP 

Consider a surface S_, chosen for simplicity to lie 
in a coordinate plane. In the pure gauge theory, the 
electric flux operator ~c(S) creates from the vacuum a 
candidate for a vortex, i.e. a state containing a closed 
line of center-magnetic flux at the boundary O*S of 
S (this is the induction law and it follows from the 
commutation relations with the Wilson loop operator 
TJ(L), Ok = 0) 7,8. The state has an energy propor- 

tional to the perimeter IO*SI, and its vacuum overlap 
( 0 I to(S--) I 0 ) is usua,y caBed a 't Z~oo# loop. An area 
law for the 't Hooft loop means the state is an excita- 

tion (it is almost orthogonal to the vacuum), whereas a 

perimeter law means the vortices are condensed in the 

vacuum 7,8.9 (the scalar product with the vacuum is as 

large as we can expect in this case). 

In order to generalize these ideas to the theory with 

matter fields we need vortex-type sources. It is possi- 

ble to perform a duality transformation for the center 

degrees of freedom alone 8. The gauge transformation 

operators of the dual model are localized on the links 

of the dual lattice, i.e. on the plaquettes p_ of the orig- 

inal lattice. In the original model their eigenvalues can 

be interpreted as external center-magnetic dipoles. We 

can enlarge the algebra of gauge-variant operators by 

adding the magnetic dipole creation operators .A/lc(p_) 

(they are left multiplication operators by C C CG). 

Let us now mimick the discussion in section 2 for the 

VOOP, this time however for vortices and not charges. 

A .  A na'/ve candidate for a vortex state is: 

A(S_) I0) (11) 

For large separations the energy of this state is propor- 

tional to the area I~1. We can regularize the energy by 
translating the gauge-variant object J~4c(O*S)~c(~) 
by n steps into euclidean time (as usual, A4c(O*S) 
is defined as a product over oriented plaquettes of 

X~o(p)): 
IS_,~> := ~'~(o*s_) ~"~c(O*s_) ~c(S_){o> (12) 

is a gauge-invariant state with energy proportional to 
10*S_I provided n grows rapidly enough with the lin- 
ear size r(S) of S (we proved this rigorously only for 
G = Z2 up to now). Notice that this time the source 
translated into euclidean time is a elo~ed line of el- 
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ternal center-magnetic dipoles, or, in other words, a 

closed solenoid. 

B. For large r (6 )  the vortex is either free or 
screened. A quantity testing this is the vacuum overlap 

of the normalized vortex state, which, as discussed for 

the pure gauge theory, has an area law if vortices exist 

and a perimeter law if they are screened: 

( 0 16, n) J exp(-c1161) 3 free vortices 

II IS_,~) [I ~ exp(-c2 la*61) vortices are screened 
(13) 

C. In terms of euclidean expectation values the 
I.h.s. of (13) turns out to be nothing else than the square 

root of }~c(A), where A is a cylinder with basis 6 and 
height n (and S__~_~ = 6), the height being in euclidean 
time rather than in one of the space directions. Thus 

the FCOP is the VOOP for center-magnetic vortices. 

D. For small ~ the I.h.s. of (13) behaves similarly 
to the 't Hooft loop at t~ = 0. In the free charge phase 
(if there is any) the vortices are free excitations. In the 
confinement region they condense into the vacuum (for 
electric charges this happens in the Higgs region). In 

the Higgs region the vortices exist for r (6 )  < RH, while 
for r (S)  > Rn their vacuum overlap becomes large. In 
analogy to the situation for charges in the confinement 
region, we call this phenomenon vortez ,fragmentation. 

For the Zz model the vortex fragmentation length Rn 
obeys: 

R H ~ esotenoi_~.___.dd (14) 
( 7  s 

where e,ot¢,~ola is the linear energy density of a closed 
line of external center-magnetic dipoles and tr, is the 

surface tension computed from the denominator of (8) 
and (13), which at small r(A) behaves (similarly to the 

pure matter theory) as exp( -~ , lA I ) .  
E. Eq. (13) cannot be defined at finite tempera- 

tures since in this case it is impossible to let n ~ oo. 
It is not yet clear to us what role the condition of 

nonzero mass gap plays for the dual interpretation of the 
FCOP. The crirerion (13) for deciding whether a vortex 
is orthogonal to the vacuum is probably not sensitive 
enough to the soft modes typical for massless phases. 

5. DUAL INTERPRETATION OF THE VOOP 

Let us ask a question similar to that leading to the 
FCOP, but now for the vortices: what properties of 
the vacuum are responsible ,for the ezistence of vortez 

states ? 

A.  In analogy to section 2, assume that a vor- 

tex state can be created by acting on the vacuum with 

an operator localized inside a spatial disc that is thin 
at the perimeter but whose thickness at the center in- 

creases linearly with its diameter (this generalizes the 

cone of section 2; similarly to the charged state case, for 

G = Z2 this construction can be carried out explicitely 

and it simply amounts to an energy regularization dif- 

ferent from (12)). Although for vortices no structural 
results like those of 13 are available, we probably have to 

assume that the theory is in a massive phase (or at finite 

temperatures, where there are no infinite range correla- 
tions because of the thermal fluctuations). The vortex 
is localized at the perimeter of the disc, and its mag- 

netic flux is measured by U(L),  L being a closed line 
that winds around the perimeter. If the vortex state ex- 

ists, the asymptotic orientation of the disc should not be 
observable (the disc could e.g. bend behind the moon), 

i.e. we should not be able to determine the magnetic 

flux by measuring a quantity localized around the inter- 

section L '  of L with the disc. One possible choice for 

this quantity is ~t(z)O(L_')~(~_'), where x_ and x'  are 

now the endpoints of L'. Let us denote by vortez fluz 
the flux associated to the operator inside the disc, i.e. 
the flux created by acting with the electric flux oper- 

ator on the vacuum (like in (11)). The conclusion is 
that there have to be strong correlations in the vacuum 

which delocalize the vortex flux. 

B.  Assume L is a rectangle in one of the coordinate 

planes and denote its left and right halves by ~ and 

L r with x_ and x__' as common endpoints, and by ~m 

the straight line from x_ to x_'. A quantity suitable for 
measuring the vacuum correlations described above is: 

( 01 q~t(z_)D"(.L,)~(z_') I 0 ) ( 0 I ~t(z__)t)'(L,.)~(£) I 0 ) 

(is) 
In the free charge phase there are many closed vortex 
flux surfaces in the vacuum, since < 0 I~c(a*A) I 0) is 
relatively large. ~t(x_)U(Lz)~(x' ) and e t (~ )U(Lr )~ (x ' )  

are affected by the closed vortex flux surfaces that 
intersect L,~ once, but [7(L) is not. Arguing as in 
section 2 we expect (15) to decay exponentially with 

IZ'ml -- I ~- - ~'1. In the Higgs region ( 0 I £c(O'A) I 0 ) 
is relatively small, so there are few closed vortex flux 
surfaces in the vacuum. In the confinement region 

( 0 I~c(6)  J 0 > is relatively large both for closed and 

open surfaces 6, so the dominant role is played by 
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the open vortex flux surfaces that screen the magnetic 

flux. Thus in the confinement-Higgs phase we expect 
the numerator and denominator of (15) to be roughly 
the same, up to a contribution from the endpoints. To 

sum up, the criterion for existence of vortex states in a 
massive phase is that for I~ -x - ' l  -*  oo (15) behaves 
a s :  

exp(-c l  I~_ - x_' I :t free vortices 
(16) 

const vortices are screened 

C. In terms of euclidean expectation values (15) 
is the square of (6), with the euclidean time and one of 
the space directions interchanged. Thus the VOOP is 
the FCOP for center-magnetic vortices. 

D. For large /3, (15) behaves similarly to a C- 
two-point function at fl = oo. In the confinement 
region however, (15) defines the characteristic length 

Re, which can be now reinterpreted as the screening 
length for the center-magnetic fluz (in the vacuum: 
for dynamical magnetic flux fluctuations). 

E. The spatial VOOP can be defined at finite tem- 

peratures too. In the confinement region the vortices 
are condensed. It would be highly surprising if objects 

that are condensed at low temperatures exist as exci- 

tations at higher temperatures. Thus we expect the 
spatial VOOP to define the characteristic length Rc in 

the the deconfinement region too. We can use it to 

investigate the transition (or crossover) between the 
confinement-deconfinement region and the Higgs re- 

gion, since in the latter the vortices are not condensed. 

While in the original interpretation the VOOP is on 

a stronger theoretical footing than the FCOP, in the 

dual interpretation the situation is reversed. 

6. CONCLUSIONS AND OUTLOOK 
By investigating properties of center-magnetic vor- 

tices we have given a dual interpretation of the VOOP 
and the FCOP. A nice duality between the confinement 
and the Higgs region emerged. At finite temperatures, 
we gained a better understanding of the deconfinement 
region and of the transitions leading to it. 

In 3 dimensions it is the center-magnetic monopoles 
rather than the vortices that play a role dual to the 
center-electric charged states. We have 1,3,5 in princi- 
ple (for discrete G in detail) given a method to construct 
the monopoles. 

Let us mention a few important open problems and 

tasks for the future: 

• Clarify the theoretical situation in massless phases. 
• Compute the VOOP in perturbation theory. 
• Compute the FCOP in simulations. 
• Can the FCOP be computed perturbatively? 
• Are vortices in the Higgs region stable excitations, 

can they be used to detect new particles, or are they 
purely theoretical string-like objects? 

• What is the connection between the characteristic 
lengths RH and Re, and the usual picture of screen- 
ing in the deconfinement region? 
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