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A general and simple framework for treating path integrals on curved manifolds is presented. The crucial point will be a product
ansatz for the metric tensor and the quantum hamiltonian, i.e. we shall write gup=/h,hs and H=(1/2m)h*ppsh? + V+AV,
respectively, a prescription which we shall call “product form” definition. The p, are hermitian momenta and AV is a well-defined
quantum correction. We shall show that this ansatz, which looks quite special, is in fact - under reasonable assumptions in quan-
tum mechanics - a very general one. We shall derive the lagrangian path integral in the “product form” definition and shall also
prove that the Schrédinger equation can be derived from the corresponding short-time kernel. We shall discuss briefly an appli-
cation of this prescription to the problem of free quantum motion on the Poincaré upper half-plane.

1. Introduction

Many problems in theoretical physics make it desirable to have a precise and comfortable formulation of
path integrals on curved manifolds. Approaches towards a general theory exist due to DeWitt [ 1], McLaughlin
and Schulman [2], Dowker and Mayes [3], Mizrahi [4], Gervais and Jevicki [5], Omote [6], Marinov [7],
Lee [8] and Grosche and Steiner [9]. Let us recall first the most important facts.

We start with the generic case where the time dependent Schridinger equation in some riemannian manifold
M with metric g,; and line element ds?=g,sdg*dq” is given by

ha

2
(—-;—mALB+V(q)>V/(q;t)=;aw(q;t)- ()

¥ is some state function, defined in the Hilbert space L2(M) - the space of all square integrable functions in
the sense of the scalar product

Gof)= [ VEhH @3 dg

M
[g:=det(gp), fi, LeL?(M)] and A, is the Laplace-Beltrami operator
Avpi=g~"/20a8" g0y =80a05+8™ (3 In \/8) 3y +8% ady

(implicit sums over repeated indices are understood).

The hamiltonian H:= — (A2/2m) A, s+ V(q) is usually defined in some dense subset D(H) cL?*(M), such
that H is selfadjoint. In contrast to the time independent Schrédinger equation Hy= Ey, which is an eigenvalue
problem, and eq. (1) which are both defined on D (H), the unitary operator U(T) :=e~7#/% describes the time
evolution of arbitrary states wel?(M) (time-evolution operator); H is the infinitesimal generator of U. The

! Supported by Graduiertenstipendium Universitit Hamburg.
1 We only consider systems which such a simple structure; see ref. [4] for a generalisation.
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time evolution for some state ¥ reads: |w(¢")> =e~ 77" w(t'))> (T=t"—t"). Rewriting the time evolution
with U(T) as an integral operator we get

wa:e)= [ V@K@, ¢ D 1) dg @)

where K(T) is the celebrated Feynman kernel. Eqgs. (1) and (2) are connected. Having an explicit expression
for K(T) in (2) one can derive in the limit T=¢—0 eq. (1). This, on the other hand proves that K(T) is
indeed the correct integral kernel corresponding to U(T). A rigorous proof includes, of course, the check of
the selfadjointness of H, i.e. H=H*.

It was Feynman’s (and Dirac’s) genius [10] to see that K(7T) can be expressed as a sum over all possible
paths connecting the points ¢’ and ¢” with weight factor exp[ (i/%)S(q”, ¢’; T)] where S is the action, i.e.
K(q",q';T)= Y expl[(i/A)S(q",q;T)]. (3)

all paths

In the case of a euclidean space, where g,5=0J.s, S is just the classical action,

Sa= | Umir-v1 =] 2a.d) &,

and we get explicitly [AgY = (g’ —qV~1), ¢V =q(), t;=t' +je, €= (t" —1') /N, N-co, d=dimension of the
euclidean space]:

Ndj2 .
K(q", q;T)= li (l) T [ g9 ex [lﬁ (ﬂAZ W — eV U>)>] (4)
q aq ’ - m 27ti€fl i - q p hj:l 2e q q .

N-ooo

For a proof see e.g. refs. [11,12].
For an arbitrary metric g, things are unfortunately not so easy. The first formulation for this case is due
to DeWitt [1]. His result reads

L 2
K(q".q:T)= j J2Da(1) exp[%j <5mgap(q)qaqﬁ_ Vig)+ %f—) dt:I
DeW

r

Nd/2 X

m Nl _ . iy /m _ _ -

== i ) ) = i G-1) a,() 8.()
bim <2nieh> [l | +&(a™)dq exp[hj; (26 8ap(q¥™1)Ag*VAq

N-roo Jj=1

- h2 o
—eV(qV l))+e—6—’;R(qU ))>:| (3)

(R=g*(I'tgy—Tlpa+T 55— hs): scalar curvature; I'g,=g%(gps,+8spp—8pys): Christoffel sym-
bols). Two comments are in order:

(1) Eq. (5) has the form (3) but the corresponding S=[£dt is not the classical action, respectively the
langrangian #is not the classical lagrangian %,(q, §) =4mg.s4*¢*— V(q), but rather an effective one:

Seff= J..%ffth J («Z:I_AVDeW) dt . (6)

The quantum correction AVp.w= — (#2/6m)R is indispensible in order to derive from the time evolution (2)
the Schrédinger equation (1), see also ref. [ 13]. The appearance of a quantum correction AV is a very general
feature for path integrals defined on curved manifolds; but, of course, AV~ %2 depends on the lattice definition.

(2) A specific lattice definition has been chosen. The metric terms in the action are evaluated at the *“pre-
point” g1, Changing the lattice definition, i.e. evaluation of the metric terms at other points, e.g. the *“post-
point” ¢¢ or the “midpoint™ GV := 4 (g¥’ +¢Y~") changes AV, because in a Taylor expansion of the relevant
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terms, all terms of O(¢) contribute to the path integral. This fact is particularly important in the expansion
of the kinetic term in the lagrangian, where we have A*q9/e~O(e).

A very convenient lattice prescription is the midpoint definition, which is connected to the Weyl-ordering
prescription in the hamiltonian H. Let us discuss this prescription in some detail. First we have to construct
momentum operators [14]:

nf o T, aln\/g
- — = — 7
Pex i(aq“ 2 ) > Te dq* (7)

which are hermitian with respect to the scalar product (f;, )=/ flf‘f\/g dg. In terms of the momentum op-
erators (7) we rewrite H by using the Weyl-ordering prescription [4,8,9] (W=Weyl):

1
H(p,q)=¢~ (8°%Pa P+ 2D 8D+ Pa P8°F) + AV () + V(q) . (8)
In eq. (8) a well-defined quantum correction appears which is given by [4,6,9]
h? h?
AVw= o= (8T % o= R) = g~ [§¥Tul; + 28 a) g +8%.,] - 9)

Using the Trotter formula e ~““*8 =g-limy_ ., (e~ “/Ne~#B/¥)N [12] and the short-time approximation for
the matrix element (g"|e~*f/%{4’> one obtains the hamiltonian path integral

N—~1 N [¢)] 1 N
K@D =18@)8@)1 " 11 [ 00 [T [ L exp(3 5 1809 p0-expa01).  (10)

The effective hamiltonian to be used in the path integral (10) reads

H(P,q9)= 5-g9(a)Y b +V(AP)+AV (4P) (11)
The midpoint prescription arises here in a very natural way, as a consequence of the Weyl-ordering prescrip-

tion. It is a general feature that ordering prescriptions lead to specific lattices *2. The lagrangian path integral
reads (MP=midpoint):

K(q",q';T)=1[g(q' )g(q")]~"* J JgDy(2) exp(%'f-?;ff(q, q) dt)
MP v

Nd/2 N_1 N
=[g(q')g(q")]~"/* lim (2:115!:) ( I1 vdq“’> I1v&(d@?)
Jj=1 Jj=1

Nooo
xexp[—;l- (%gaﬂ(ci”’)Aq“'”’Aq“""’-eV(q"")—eAVw(ti""))} : (12)

Eq. (12) is equivalent with (5). This is due to the fact that different lattices define different AV.

It is straightforward but tedious (see e.g. ref. [6]) to deduce from the short-time kernel of (12) and the
time evolution equation the Schrédinger equation (1).

In our previous publications [9,17,18], we have calculated the path integral for the d-dimensional rotator
(including a discussion of some other interesting problems ), the path integral on the Poincaré upper half-plane
and for Liouville quantum mechanics, and for the d~dimensional pseudosphere, respectively. The midpoint
prescription turned out to be a bit bothersome, such that we have always turned to a path integral defined in

#2 For a general discussion see e.g. refs. [15,16].
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a “product form”. This was possible because the metric g,; in the above examples had the general form
805(q) =17 (q)da,05, with functions f, (y=1, ..., d). We then have changed in (12) the metric expressions as
follows,

gaﬂ(q_(j))=f3(q_(j))aay§ﬁy"’f;(q(n)f;(qu_l))aayéﬁy . (13)

This prescription has to be accompanied by a Taylor expansion in the Kkinetic energy term
(m/2€)8ap(GY’)Ag* Y’ Ag”Y up to fourth order in Ag. This formulation turned out to be more appropriate
to our problems.

Our paper is organised as follows:

In section 2 we shall develop the precise formulation of the “product form”-definition in the path integral.
We shall write the metric tensor g,, in the form (“product form™)

gaﬂ-_-hayhﬁy » (14)

and the hamiltonian (“product ordering™)
1
= — A By Vv
2mh Da D™+ V+AV, (15)

with a well-defined quantum correction AV. We shall show that this ansatz, which looks quite special, is natural
for reasonable manifolds M. An expression like (14) for the metric appears e.g. also in lattice gauge theories.
hqscan be identified in this case with the Maurer—Cartan form o (see e.g. ref. [19]). In (super) gravity theories
hag is also denoted as the “vielbein”. We shall also prove that with K(T') in the “product form”-definition the
time-dependent Schriodinger equation can be derived.

In section 3 we shall discuss the “product form’-definition for the example of quantum motion on the Poin-
caré upper half plane.

Section 4 will summarize our results.

2. The product form

In order to develop the “product form”-definition in path integrals we consider the generic case of a classical
lagrangian on the d-dimensional manifold M given by %= 4mg,s(¢)¢*¢?. We assume that the metric tensor
hap is real and symmetric and has rank(g.s) =4, i.e. we have no constraints on the coordinates. Thus one can
always find a linear transformation C: g, = Cag)p such that &, =imdz*y? with Aas=C,,8,;Css and where A
is diagonal. C has the form C,;=u$’ where the u® (Be{l, .., d}) are the eigenvectors of g,s and
Aup=1204,05, Where f5#0 (ae{l, .., d}) are the eigenvalues of g,z Without loss of generality we assume
%<0 for all ae{l, ..., d}. (For a time-like coordinate g, one might have e.g. /3 <0, but we want to exclude
cases like this.) Thus one can always find a representation for g,; which reads

8o (@) =hay (2) g, (q) - (16)

Here the hgs=Co,f;Cyp=ul® fu” are real symmetric dXd matrices and satisfy /,zh®'=0%. Because there
exists the orthogonal transformation C eq. (16) yields for the y-coordinate system (denoted by M,)

Aaﬂ()’)=ﬁ (J’)aavaﬂy . (17)

Eq. (17) includes, of course, the special case g,s=A,4 The square-root of the determinant of g,g, \/E and
the Christoffels I',, read in the g-coordinate system (denoted by M)

ha o _B( 9 L ha
Je=det(hog) =, Fa=5" ”“‘i(aqa+2h)' (19

116



Volume 128, number 3,4 PHYSICS LETTERS A 28 March 1988

The Laplace-Beltrami operator expressed in the 2% reads on M,

a2 dh* h”’ d
ayh By By a a ayh By
LB_(h "h aq“6q5+( hP 4+ h*? — 30 h /] )6 ﬁ] (19)
and on M,
)]

With the help of the momentum operators (18) we rewrite the hamiltonian in the “product-ordering” form
(PF =product-form)

hZ
H=—-o—A "+V(q)=—h“’(q)pap,sh‘”(q)+V(q)+AV (q), (21)
with the well-defined quantum correction
72 h h hoh
ay ﬁy ayl, By Haf ay| LAy Lo By ayppy a8
AV"F_Sm[ 4hR L+ 2h%h P +2h (h P ~ +h “h) h*h 2 ] (22)

On M, the corresponding AVY s given by

2
fka) 4.f;xaa ﬂxa( f;xa f&a) (ﬁ?a) ]
AV = ( +4 +2 (23)
r 8mf2 [ —S— fo o f fz
Note that we have chosen a specific ordering prescription of momentum and position operators in the ham-
iltonian (21). The expressions (22) and (23) look somewhat circumstantial, so we shall display a special case
and the connection to the quantum correction AVy, which corresponds to the Weyl-ordering prescription.

(1) Let us assume that A, is proportional to the unit tensor, i.e. Ayp=/>3up
The AV} simplifies to

d=2 (4—d) %+ 2 oa
8gm ———f+—
This implies an important corollary:
Corollary. Assume that the metric has or can be transformed into the special form A,s=1?8,5 If the di-
mension of the space is d=2, then the quantum correction AV p¢ vanishes.
An example is the Poincaré upper half-plane see section 3.

(2) A comparison between (22) and (9) gives the connection with the quantum correction corresponding
to the Weyl-ordering prescription:

2
PF—"z

(24)

Ve _.AVW+ — (2h°‘7h"‘7 —h P g B B ) (25)
In the case of eq. (17) this yields

h? foa—tofe
AV =AVy + —=2& casaax |

These equations often simplify practical applications.

Next we have to consider the short-time matrix element (g” |exp[— (i/#)TH]|q' ) in order to derive the
path integral formulation corresponding to the ordering prescription (21). We consider position |¢)> and mo-
mentum eigenstates |p) with the property
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q"1q' >=(g'g")~"*%(q"—q'), <4qlp>=(2m)~**exp[(i/h)pq] . (27)

We have for the Feynman kernel for an arbitrary NeN [which is due to the half-group property of U(T), i.e.
Uty +6)=U)U(L) ]

K(q",q';T)={q"| exp[—-(i/A)TH]|q" >

N—-1 N .
= ( I1 J g dq”’) [T <q9) exp[—(i/R)(T/N)H]|q"~") . (28)
j=1 j=1
We consider the short-time approximation to the matrix element [e=T /N, gV =g(¢Y)]:
(q¥| exp[— (ie/R)H]|qV=" > ~(qPV |1 - (ie/h)H|qV~"))

[g(i)g(i—l) -1/4

88— i D] dp— L= (g0 po Br) gU—1
= = [ expl (/10920 ) dp= 5,2 €@ 1h™Papph?109">

=3 @O VAV (29)

The matrix element of the potential terms is simple, yielding

) ‘ Wgu-D]-1/4 _ _ .
qIV+AV gD = MW [V(a)+AVEE (g)] fexp[(i/h)pAqw] dp. (30)

The choice of the “post point” ¢’ in the potential terms is not unique. A “prepoint”, “midpoint™ or a “product
form™ expansion is also legitimate. However, changing from one to another formulation does not alter the path
integral, because differences in the potential terms are of O(¢), i.e. of O(€)? in the short-time Feynman kernel
and therefore do not contribute.

The kinetic term gives

GV | h¥po pgh®1qU=1 =h* (g )hP (qV~") fdp dg gV paps|P><pPlg><q1qV""))

Do l=3=
= (g0 (qu=) S 2T [ enpl (171080 1t dp (31)

Therefore we get for the short-time matrix element (e<1):

(g9 exp[—(ie/A)H]|¢~ V) ~ —LW

i ; i€ . . i , i .
x| dp exp(%pAqw— S @OV (@9 )paps— 3 V() - }z—‘AV%‘s(qW)) : (32)

The Trotter formula e~ 7“+8) i=s.limy . (e~ 'T/¥ ¢~ i78/N)N []2] states that all approximations in egs.
(28)-(32) are valid in the limit N—oco and we get for the hamiltonian path integral in the “product form”
definition [A$} =hup(q¢?)]:
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)
K(q9",q; T)=1g(q')g(g")]~""* lim (H dg?x H L )
Neoco i (21)¢
i N
XCxp[% ) (pAqm_ Ei_n_haw,whﬁy,u-npg)py) —eV(g¥)—eAVMe (q(n))] (33)

=1

Performing the momentum mtegrauons we get for the lagrangian path integral in the “product form” definition:

K(q",q;T)= jﬁDq(t) exp( I[imhayhﬁyq @*-V(g)— AV%‘ﬁ(q)]dt>

m Nd/2 N1
=i fa(a D )
1\111—-120 (21tieh)) ,l;[l J 8(a7) dq

;i N
X exp[%jzl (5"% hg’,’hg‘”Aq“’U)Aq"*U’—eV(qU))—eAV%",?(qU’)):I . (34)

In the last step we have to check that the Schodinger equation (1) can be deduced from the short-time kernel
of eq. (34). This is, as for egs. (5) and (12), straightforward but tedious. Because one can always transform
from the g-coordinates to the y-coordinates, which is a linear orthogonal transformation and thus does not
produce any quantum correction in the path integral (34) defined on M,, we shall use in the following the
representation of eq. (17). We restrict ourselves to the proof that the short-time kernels of egs. (12) and (34)
are equivalent, i.e. we have to show (F=(y"+y')/2) #

(8 )81 /&) exp(%Aaﬂ(y-)AyaAyﬁ— V- %AVw(f))
zex( 12101 )8y Ky - apy £0")1). (35)

Clearly, exp[ — (ie/A)V(y)] =exp[ — (ie/A) V(y”" )] for the potential term. It suffices to show that a Taylor
expansion of the g and the kinetic energy terms on the left-hand side of eq. (35) yield an additional potential
AV given by

AV(y)=AVEE () - Arw ()= o~

h? 2,a () —fa VM aaa (¥) 36
#” , (36)

fa(y)

We consider the g-terms on the left-hand side of eq. (35) and expand them in a Taylor-series around y’. This

gives (& (va—ya), fo(V' )=12)

1 of —Jy,a.
(802" )4 By~ 1 — g it il goge. (37)
?
Exploiting the path integral identity (see e.g. refs. [2,5,20])
i€h
fafﬂ— _gaﬂ (38)

we get by exponentiating the O(¢€)-terms,

(508014 Ve wexp( - pelalosp=las). (39)

> We use the symbol = (following DeWitt [1]) to denote “equivalence as far as use in the path integral is concerned”.
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Repeating the same procedure for the exponential term gives

ife
ex0 325 Acs (7 ) merp( 221017167 ) (1= 2 (s —fraienerere). (40)

Note that we have to respect the “product form” definition in the kinetic term on the right-hand side of eq.
(4). We use the path integral identity (see e.g. refs. [2,5,20])

éaéﬂérid < > (gaﬁg76+gaygﬁ6+ga6gﬂy) (41 )
to get

i_m g\ Eo ﬂ> ~ (_ﬂ ’ ” o a) lflf ft.Xf;c BB —fgﬁ lhf f!:xft‘x ao fa a)
exp(2 o, Ao (D)5 J=exp| o S (V' )a (7)E%C exgl 3 e +am i . (42)
Combining egs. (39) and (42) yields the additional potential AV and eq. (35) is proven. Thus we conclude

that the path integral (34) is well-defined and is the correct path integral corresponding to the Schridinger
equation (1).

3. Example

In this section we want to illustrate eq. (34) with an example: the quantum motion on the Poincaré upper
half-plane U which is defined by

U:={{=x+iy|y>0, xeR} . (43)

The study of this space (particularly in bounded domains) arises in the Polyakov approach of string theory
(see e.g. refs. [21,22]), and in the theory of quantum chaos [23-25].

A detailed discussion of the path integral on U has been given in ref. [17], so we just state the results. The
metric in U is given by gup=A4p= (1/y?)Jap. It has the form g,,=12d,, with f=1/y. We can immediately apply
the corollary of section 2 and deduce that AV} =0. Thus the path integral in the “product form” reads on
the Poincaré upper half plane:

K(x", x',y",y;, T)= JDx(l)Dy(t) ( J‘x +y? dt)

PF

N x : .
: m | Nl j‘ dx9 dy9 (1m y A2x°’+A2yU))
= ]r—L—— ax Fay 44
Alrlilo <2niefl> ,1=—[1 g yu2 P\ 2 £ 2 yyu-H (44)

The path integral can be calculated (for details of the calculation, especially for the simulaneous space-time
transformation which has to be done, see ref. [17]) yielding

N i7
K(x"y", x', vy D)= f dkfdppsmhupexp(—zinﬁ (p2+%))
—oo o]

XYY" Kip (1K1Y ) Kip (1 k}y" ) exp[ik(x” —x")] (45)

(K, is a modified Bessel function). The energy dependent Green function G(E)=[K(T) exp[(i/#)TE] dT
is explicitly given by
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G(x", x',y", ¥y E)= %-@—1/2+ip(003h r), (46)

p=./2mE~1>0, 3, a Legendre function of the second kind, and r> 1 is the hyperbolic distance in U, which
reads
y"2+y:2+(xn__x/)2—1+ IC’/_C/|2

2y y” 2 Inr(Cytom({")
For details concerning the wave functions and the connection of this problem to Liouville quantum mechanics
consult ref. [17].

cosh r= (47)

4. Summary

In this paper we have presented a general and simple prescription for treating path integrals on cruved man-
ifolds which we call “product form” definition. In order to formulate our prescription we have written the
metric tensor g, in the form

gaﬂ(q)=hay(q)hﬂ7(q) . (48)
Then the hamiltonian in the “product ordering” is given by

h? 1
== 5 AW V(@)= 5 h¥Papsh®+V(q) +AVEE (a) , (49)
where the canonical momenta are defined in (18), and the quantum correction reads
MG_L ayp By ay ﬁrh_ﬂﬁ ar( By h_“ By h_»ﬁ)_ ay hw
AVPF_sm[4h h? 4+ 2h*h p +2h% %, b +h? 5 h*h | (50)

Starting with the hamiltonian (49), the langrangian path integral in the “product form” definition can be de-
duced yielding

¢

K@, a; )= | JzDa() exp(% [ Bmbohyiee—vi@)-aV¥ @) dt) : (51)
PF ]

with lattice definition (34). We have stated a corallary, namely if g,, reads or can be transformed into the
form A,z=/?8,, with some function f and the dimension of the riemannian spaces is d=2, then we have
AVE=0. Our example of an application of the “product form” definition has been the quantum motion on
the Poincaré upper half-plane U endowed with the hyperbolic metric. In this case we could apply our corollary
and found AVM¢=0 on U.

Further examples are, as already noted in the introduction, the d-dimensional sphere S¢~!, d-dimensional
polar coordinates, the pseudosphere 49!, and path integrals in lattice gauge theories. A detailed discussion of
these examples is rather lengthy and therefore will be given elsewhere.

In a forthcoming publication we shall apply the “product form” definition also to the path integral problem
of the Poincaré disc and the hyperbolic strip.

We think that the direct use of the “product form™ definition in path integrals will simplify calculations.
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