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1. INTRODUCTION 

Geometric QCD which describes the quark fields by 

differential forms ('Dirac-K~hler fields '1) 

= ~ ~(~,,/)d~", (1) 
H 

dz  ~ - dz  m A ... Adz'", H = { # , , # = , . . . # h } ,  

I-t~ < #2 < ... < #h.  

is characterized by the action 

S =  f { b T r ( F , F ) o + 4 ( @ , ( d A - ~ A + m ) @ ) o } .  (2) 

As a model it has the great advantage  that 

De Rham mapping leads to a systematic lattice approxi- 

mation. This has positive implications for the discussion 

of symmetry properties and of topological questions on 

the lattice. It leads,in a certain formulation, to the lat- 

tice QCD of staggered fermion fields: 

DeRham 

f[~,H] ~b(y, H)dy H 

1 
- - ~ +  ~en 

(for notations see Fig.l) 

with the action 

S ~ 

Sw = 

s~ = 

= ~ ( ~ , H )  

= X(: ,H(:))  ~ X(:)(3) 

~Sw + s~ (4) 

~-~ Tr(2 - U(~) - U-'(D) ) 
[] 

z 

-~(~ +e . )V-I ( : ,~ )X( : )  + ~ ( : ) X ( : ) ) .  

[e,~.l 

! 

i 
a 

t 

9 

9 ~ 
i 
i 

i 

i 
i 
i 
i 

aT, 

1 -  
Y = 9 + ~en 

1 -  

Y' = 9 + ~e, 

Figure 1: Illustration of the Lattice Notions. Elements 

of the coarse lattice 1" . . . . .  like points ~, unit cells 

[E, H], unit vectors ~. are overlined.Points and unit vec- 

tors of the fine lattice Ft i . .  are: ~c, e. = ½~, etc. 

From the physics point of view geometric QCD has 

the dLsadvani~age that its physical interpretation is not 

clear. The well known decomposition of Dirac-K~hler 

fields in four Dirac fields 

~(=)~ = Z ~(:,H)(C)L (s) 
H 

rises the question of the meaning of the SU(4)-'Susskind 

flavour' index h=i,2,3,4. Does it denote flavours, fam- 

ilies,...? 0nly the investigation of the dynamics of a 

geometric standard model can decide between physical 

sense or nonsense of geometric QCD! 

From a QCD with four species of quarks we would 

expect that it reproduces the results of a corresponding 

semi-relativistic quark model. 2 This means with respect 

to the meson spectrum: the calculation of the masses 
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of the ground states, angular and radial excitations of 

the SU(4) singlets and (15)-plets: 

( F , O - - ) , ( F ,  1 - - ) , ( F ,  2++),(F,I++),  

(F,O +~ ) , ( F , ~ + - ) , . . .  F = (1),(15). 

and their description by Bethe Salpeter amplitudes like: 

(i ¢i~(z)¢~(Y)[ M' p, f ,  F' s > = ei(p'=+y)/2¢A[kF¢'~ s3 

(6) 
Here F may have the form 75, 3,57"P~ for pseudo scalar, 

M ~3 • 3' e, .. for vector mesons etc. ¢ denotes a radial func- 

tion. 

In this talk we contribute to the discussion of this 

question by reporting on investigations of 

1.The Symmetry of the Problem. 

2.'Excited States' in first order strong coupling approx- 

imation. 

3. Lattice approximation of non-relativistic quantum 

mechanics simulating the dynamics of strong coupling. 

2. THE SYMMETRY OF THE PROBLEM. 

Our naive expectation on the structure of the quark 

model is based on the symmetry of geometric QCD. 

As one expects for a relativistic theory with 4 de- 

generate Dirac fields, the action S has the symmetry 

group G ~- SC × SU(4); S£ =- spinorial Euclidean 

group. The group theory of the lattice restriction of 

this symmetry is by now well known from the work 

of M.F.L.Golterman, J.Smit; 3,4 M.G6ckeler 5 H.Joos, 

M.Sch~fer; 6 G.W.Kilcup, S.R.Sharp, 7 and others. 

We want to summarize it shortly in our language. 

The geometrical and technical understanding of the 

lattice restriction GL of the symmetry gets very much 

improved by the introduction of K~;hler's Clifford prod- 

uct for differntial forms 8. 

dz"  V dx ~ = g ~  + dz" A dx ~ 

1. It defines signs 

dz  H V dz K = ~H,Kdz H&'K, 

A = H N K ,  H A K = H u K - A ,  

which appear everywhere in the staggered fermion for- 

malism, e.g. in the action: /~,H(=) = (--1) ='+'''=~-' 

2.The product edx u V e'dz K, e, e' = :1:1, defines a 

group K: of order 2 dim+l. ('Kent group', 9 the group of 

the 3,-matrices.) 

3. Infinitesimal spinorial and geometrical rotations in 

the #v-plane can be expressed with help of S~  -- 

dz" A dzv: 

1 S C 1 S ~ .¢=~  .vv~, ~ .~=~( .~v~-~VS.~) .  

Flavour transformations are expressed by a constant 

form u as 

~'=~Vu. 

Geometrical and spinorial rotations differ by flavour 

transformations! Because the lattice restriction of geo- 

metrical rotations follows geometrically from DeRham 

mapping (in contrast to spinorial rotations), it is advan- 

tageous to compose a general element 

(.f,a,s) =E SU(4) × SE by a flavour transformation 

f ,  a translation: a = 2b(nz,n2,n3,n4), nl 6 Z, and a 

geometrical rotation R :  [ f ,a,R(s)]  = ( ]s,a,s) .  Now 

we can formulate the following proposition on the sym- 

metry of the lattice approximation of geometric QCD: 

PROPOSITION 1. The lattice restriction of ~ is 

~L = {[edK ' 1_ + a,R] I a e :TL, R e W4} - -2eK 

with the composition law 

, L I_ [ed K, - ~g + a, R] o [e d , ---~eL + a', R'] = 

[ee'p( R,  R o L )~K,RoLd K~R°L, 

1 -~(~ + R ~ )  + R~' + ~,RR']. 

It is a symmetry group of the free DKE if it acts on 

staggered fermion fields according to 

H(y -- a~'~,) = I-I(y), 

([R]x)(y,H(y))  = p(R,H(y) )x(R-Xy ,H(R- l y ) ) ,  

(~d~x)(~, H(y)) = ~HC,~.KX(Y + ~K, H(y + ~ ) ) .  
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where the sign p (R ,H)  is the same as in the trans- 

formation of the basis differentials of the continuum: 
Rdx H = R -1 V dx It V R = p(R,H)dz R-'°tt. 

The action S(£, X, U), Eq. (2), with gauge interac- 

tion is invariant, if U(x ,#)  is transformed as a link field 

under translations and geommetric rotations, and as 

1 (~d~U)(~,p) = U(~ + ~K,P) (7) 

under flavour transformations. 

Because of the association of the lattice flavour 

transformation ed K with the translation [½eK,] 

(eK = '~ueK eU, ~'U lattice unit vector of the coarse 
lattice r . . . . . .  ) the flavour transformations form a 'non- 

symmorphous' extension of the translation group: 

.T~/'L ~ TL ~]C4, however JC~TL/T L ~_ K 4 
All irreducible, unitary representations ('irreps') of 

~n are known. 4,6,7 They can be constructed by the 

Wigner-Mackey procedure. 10 We formulate this result 

in another proposition, which we explain by examples: 

PROPOSITION 2. The irreducible, unitary represen- 

tations of the symmetry group ~z, of geometric lat- 

tice QCD are determined by a 'momentum star Stj ', 

a 'flavour orbit Oj,k', and the 'reduced spin a'. 

We give these representations for the case of 

'mesons' ((e, 0,1) --~ 1) in a canonical base: 

(a)Translations. 

U(a)] j' F ' P ,  L, nO" > =ei(p'a) j'p, F,L, na > (8) 

with 'momenta' p :-rr/2b < Pu <- 7r/2b, 

p e S~j = {RIyj[R ~ W4}, 
e.g. reference momentum @4 = (0, 0, 0, E), 

St4 = {(-4-E,O,O,O),(O, +E,O,O),...}. 
(b) Flavour transformations: 

U(edK) j, F, ~r > =e_i(p,~eK)eirC(er,eK) j, F, o" 
p, L, n p, L, n 

(9) 
with 

'flavour character' 

eL : (el,L, e2,L, e3,L, e4,L), eu,L = +1, 

O~,r = { R o  eFIR e s j ,  i.eRp~ = pj}, 

e.g.'reference flavour' eF = (1,0,0,1), for j = 4, 
k=5 ,  
04,5 = {(1,0,0,1),(0,1,0,1),(0,0,1,1)}. 
(c) Geometric rotations: 

U(R) j'  F, ~ > = ~ ,  j, F, 
p, L, n Rp, w oL, 

)D ~ (x) nt ntn 

(zo) 
with appropriate Wigner rotations: 

w(R,p) C Sj, X(R ,L ,p)  ~ Sj,F, 
'reduced spin group' 

Sj, F = {.RIR ~ W4, Rffj ,  _~ o e F ~-- eF}  

D~(X) irrep of Sj,F. 
For j ,  F as above, we get Sj,F ~-- D4 × Z~with eight 

1-dimensional representations: (1±), (1'~)(1"±),(1 "± )  

and two 2-dimensinal representations:(2+). 

For eF = (0,0,0,1) the reduced spin is given by the 10 

irreps of the group Wz of the cube. 

In our treatment of the lattice approximation of ge- 

ometric QCD, the lattice symmetry group OL is geo- 

metrically understood as a sub-group of the continuum 

symmetry SU(4) × S£. Therefore we may pose the 

problem of how a restriction of an irrep of Q : U(~)IL 

decomposes into irreps of ~z,, i.e.one asks for the calcu- 

lation of the intertwining numbers /'(U(~)[~;L, U(~L)). 

Such s calculations are important because of the follow- 

ing hypothesis used in a similar form in the treatment 

of glue balls 11. 

HYPOTHESIS: A lattice state of a particle character- 

ized by the quantum numbers XL of an ~L--irrep can 

be associated with a continuum particle state charac- 

terized by the quantum number X of an ~-irrep, if the 

~L-irrep is contained in the (3 irrep, i.e. if the intertwin- 

ing number I(U×IL, U ×L) ~g 0). 

There are extensive calculations of such intertwining 

numbers. W.Neudenberger performed such calculations 

in the framework of the Wigner-Mackey scheme. 12 We 

want to give two examples of the applications of such 

calculations. 
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(1) Splitting of the ground state continuum multiplets 

in lattice multiplets,( in the cm- system, i.e. for mo- 

mentum star St4, and lattice irreps denoted by [eF, ~]): 

(o- ,  15) -~ [(o,o,o, 1 ) , (1+)~d  ~ [ (1 ,1 ,1 ,o) , (1- )~ ,1  
e{(1,1,1,1),(1+)w~ • [(1, o,o,o),(1'-),~,]) 
~[(1, o,o, 1), (l'+)D,] ~ [(o, 1,1,o),(1'-)~, 
(~[(0, 1, 1, 1), (I'+)D,] 

( I - ,15)  ---* [(0,0,0, I) ,  (3+)w,] (9 [1,1,1,0),(3-)w,] 

el1, 1,1,1), (3+)w,] @ [(1,0, 0, 0), ( I ' -)D,] 

(~[(1,0,0,1), (I+)D,] e [(0,1,1,0), ( I ' -)D,] 

@[(0,1,1,1),(l+)D,] • [(1,0, 0, 0), (2+)D,] 

e l 0 ,  o, o, 1),(2-)~.] ~ [(o, 1,1, o),(2+)~.] 

• [(0, I, 1,1), (2-)m,]. (11) 

(2) Comparison of the splitting in different momentum 
stars. 

For example we consider the lattice irreps with triv- 

ial reduced spin which are contained in the continuum 

multiplet (15, 1-) for the different momentum stars: 

St4 : p~ = (0 ,0 ,0 ,E) ,  

St9 : P9 = (O,O,p,E) ,  

S t n :  Pn  = ( p , p , p , E ) .  

With the transition from the cm-system (St4) to other 

stars the flavour orbit generally splits. From Neuden- 

berger's tables we can read off the splitting pattern for 

this example 

--* (1,0,0,1)9 @ (1,0,1,1) ,  
(1 ,0,0,1) ,  

(1,0,0,1)11 

The dynamical degeneracy of splitted states is an indi- 

cation of the restauration of Euclidean symmetry. 

3. 'EXCITED STATES' IN FIRST ORDER STRONG 

COUPLING APPROXIMATION 

In this Section we discuss the meson spectrum of 

geometric QCD combining strong coupling approxima- 

tion with our group theoretical methods. 13 

In order to describe the large variety of mesons we 

need meson fields representing sufficiently many lattice 

quantum numbers. We choose so-called multi-link op- 

erators 

¢ ' ( 'L+J"" '+ ' " " )~(~)~. (~) ,FU( . r )X(~ + ~r) = 
~L'~(~)~(~)U(~)X(~ + ~F) 

cL,~(~) = +1 (12) 

U(~') is the gauge string field along the path ~" from 

z to z + ej. This makes ~L'F(x) gauge invariant. 

The sign function on the fine lattice ~LP:(x) is choosen 

in such a way that .Mz"~'(z) has 'natural' covariance 

properties under the transformations of ~n: 

a) Flavour transformations: 

(~d~L ,~ )  (~) _ e,-C~L,o~)~n,~(~ + eK) (13) 

b) Geometric Rotations: 

(RA4L'~)(z) = p(R,F)A,4R-*L'R-*~:(R-Zz) (14) 

c) Translations: 

( [ ~ 1 ) ~ , . ( ~ )  = ~ n , * ( ~  _ ~) ( lS) 

Now we have to calculate the meson field propaga- 

tors 

(: ~n , . (~ )~ ,~ ' (y )  :> = 

f f DrYlY[X, ~1~'~(~1~ ~'~'(y) 
× exp(-2-~Sw(U) - %(~,x,u)) (ze) 

In the evaluation of this integral we follow the proce- 

dure" 

a) Fermion integration. 

b) Hopping parameter expansion of the quark propa- 

gator (and of the fermion determinant in higher order 

calculations) in the back ground field. 

c) Gauge field integration in strong coupling approxi- 

mation. 

d) Resumming of the q<~-paths with help of a renormal- 

ized step matrix. This method is due to O.Martin. 14 

It is related to Kawamoto's random walk procedure. 15 



190 H. Joos, M. Mehamid / Strong coupfing approximation of geometric QCD 

li y +  eF 

(a) A general qq-path. 

/ < 

< 

(b) Trunk of path (a) 

(c) Examples of dressings of q-paths 

x ~ y x y < x 
(/~> (8) <u/z - u)(48) <pu)(24) 

(d)Types and numbers of steps. 

~ X ~  X X 
> > 

(e) Screening of multi-link operators with .~" 
from z t o ~ + e F  

Figure 2: Structure of qq-paths. 

It is well known that after the first three steps of 

this procedure we get a representation of the connected 

propagagator 
<: = - 

as a sum of paths which screen the multi-link fields. An 

example of such a path which shows most of the com- 

plexities in a first order calculation is shown in Fig.3.a. 

We express this fact symbolically by 

<: AA(x)A4(y):> = ~-~ N ~ T=u(N,13 ). (17) 

1/4m ~ is the hopping parameter of the qq- propagation. 

For/3 = 0, T=u(N , 0) is the number of qq-paths from x 

to y enclosing zero area, and consisting of 2N q -  and 

q-links. The evaluation of this expression precedes in 

several steps. These show similarities to steps appearing 

in the derivation of the Bethe-Salpeter equation, and to 

techniques treating random walk problems. 16 We can 

merely characterize these steps by key words. 

(1)'Renormalization' of the hopping parameter. 

Closed detours of the q-lines (q-lines) -'dressings'- can 

appear at each point of the qq-double path. There- 

fore we can reorder the sum over all qq-paths by sum- 

ming over qq-paths with no dressings ('trunks') and 

all dressings at each point of the trunk,see Fig.2.b,c. 

This leads in Eq. (17) to the substitution 2m --~ c~ and 

T=u(N, 0 ) -+ B=v(N,0), the number of trunks from z 

to y. A calculation (O.Martin) gives 

a c~ 2 ~ 16(d - 1) 3 
= = a o + a 2 o ~ o - + - 2 d ~ l ) / 3 - a o + f l D ,  

a0 = m + ~ / m  2 + 2 d - 1  (18) 

(2) Generation of trunks by steps. Reeursion rela- 

tions. Counting all simple qq-paths from ~ to y is a 

random walk problem. Using methods of random walk 

theory, we introduce the number B=,~(N) of trunks of 

lengths N arriving at z from/~-direction starting from 

fixed y = O.The following recursion relation is evident: 

B=,~(N) = y~ B=_g~,a(N - 1) 
~(¢-.) 

- S = , . ( g )  = . . . . . .  , ( N -  1) (19) 
s t 

The general form of this recursion relation describes the 

generation of first order paths by the first order steps. 

There are 80 different steps generically indexed by s. 

These are shown in in Fig.3.d. 

(3) Non-backtracking conditions. A random walk of 

qq-paths would generate dressings which we already 

considered. In order to avoid double counting, and 

generate by the recursion relations trunks only, one 

has to forbid backtracking. This implies u ¢ 2#  in 
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the sum above. There are similar, more involved non- 

backtracking conditions in the first order calculation. 

(4) Representation of the propagator by the step ma- 
trix. For the summation over the trunk numbers one 

uses the Fourier transformation on the fine lattice of 

the recursion relation. Summing the resulting geomet- 

ric series leads to 

(: J~L'F(X).,hCIL"F#(y):) = 

m 21 / dpe_i(m,:)r/(p,]:) i + x l_Mz(p)r/(p,.T.,) (20) 

with 

M(p) = ( J~ss,g i(p'e')) 

= (elP.(1 - 6u,_~) ) in zeroth order 

It is ML(p) = M(p + ~eL) as consequance of 

f lavour translation. 

(5)Screening of multi-link fields. The initial and fi- 

nal step vectors r/(p, L, 5r'), r/t(p, L, 5 r )  follow from the 

the superposition of the different screenings compatible 

with the non-backtracking conditions. (See Fig.3.e) 

(6) Particle content.The lattice particle states are given 

by the poles of the Fourier transformation of the prop- 

agator, this means by the eigenvalues .~(p) of ML(p) 
which satisfy the conditions A(p) + a 2 = 0, and belong 

to eigenvectors which lead to a non-vanishing residue. 

(7) Symmetry decomposition of the step space. M L 
is symmetric under the lattice symmetry group ~z. It 

decomposes in block matrices in a base which reduces 

the natural representation D(g) of ~z in the step space. 

The result of a decomposition for t5 = (0,0,0, iE)  is 

for singlet flavour: 

D(g) ~_ l l ( l+)w~ + 10(3-)w~ + 3(2 +) 

+7(2-)w3 + (l'+)w~ + (3+)w, 

+3(3'-)w, + 2(3'+)~, 

for triplet flavour: 

D(g) ~_ 21(l+)D. + 10(1-)D, + 11(1"+)O, 

+13(2-)o, + (1'+)~, + 3(1"-)~, 
+3(2+)0, + 2(l'"+)D, 

# 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Table 

L - (j', (n)sv(,)) 
(1,1,1,1) (l+)w, (0-, 15) 
(1,1,0,1) (I+)D, (1-, 15) 
(0,0,1,1) (1+)~, (1-,1~) 
(0,0,0,1) (l+)w~ (0-, 15) 
(0 ,0 ,o ,1)  

(1,1,1,0)  

(0,0,0,0) 
(1,1,1,1) 
(o,o,l,O) 

(3-)w, 
(3-)w, 
(2+)w, 
(2+)w, 
(1-)o, 

(1+,15) 

(1-,  15) 

(2-,1) 
(2+,15) 
(o-,15) 

(1,1,0,1) (1-)o, (0+,15) 
(0,0,1,0) (l'"+)D, (2+,15) 
(1,1,0,1) (l'"+)o, (2-,15) 
(0,0,1,1) (2+)o, (1+,15) 
(1,1,0,0) (2+)0, (1-,15) 

1: Meson states appearing in First Order 

The eigenvalues of these sub-matrices are computed by 

a reduce program. 

(8)Group theoretical particle content. In order to get 

the lattice quantum numbers of the particles one has 

to project the propagator Eq. (20) on the appropriate 

'irreducible meson fields': 

L a  e" - 1  = D,,m,(s )p(R, MZ:m,(~) Z H(es))ML"-'q~)" 
$654,L 

(21) 
The symmetry of rl(p,L,.T" ) determines the non- 

vanishing of the residues of the fields, i.e. the quantum 

numbers of the particle states. 

The results of our calculation is summarized in Ta- 

ble 1. The first 4 states are the familiar states always 

discussed in the literature. 17,18 Our mass calculations 

agrees within the given order with those calculations. 

We find also a vanishing mass in first order for the 0- 

state, in agreement with the Goldstone picture for this 

state. 

There are 10 additional multiplets which appear for 

the first t ime in first order. We call these 'excited states' 

because 

(a) Non-trivial reduced spin, i.e.higher continuum angu- 
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15 
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10 

I i i I I 

3.6 

Figure 3: Mass of excited state. 

lar momentum, indicates internal motion. This might 

be visualized from the eigen vectors in the step space 

which describe q~2 separation by one lattice unit. 

(b) The masses of these states rise logarithmically to 

oo for/3 -~ 0, i.e. with increasing string constant. As 

an example we give the expression for the energy of the 

state #8  of Table 1. in terms of the renormalized hop- 

ping parameter, Eq. (18) 

^ aao 3ao - 1 
cosh E8 = ~ -  4- - - a 0  + 1 (22) 

The dependence of E8 on/3 for different quark masses 

rob=0,2,3 is given in Fig.3. below. In Fig.4.we give a 

comparison of the physical spectrum (for the low lying 

SU(2)-flavour states with our calculated spectrum for 

/3 = 2.7~ ,mq = 0). We have choosen for the lattice 

constant of the coarse lattice 2b= 0.8f, not an unrea- 

sonable value. The agreement is very poor. In particular 

there are many states missing for a complete spectrum 

of a SU(4) quark model. For the physical ground states 

(/=0), a comparison of Table 1. with Eq. (11) illlus- 

trates this point. The 'non local' description of the 

spin structure by staggered fermions requests an higher 

Ge 

I.( 

0.~ 

0.( 

Experiment 

[ ~  2++ 
1++ If= 1 1 +- 

0++ 

/ = 0  

Theory (F= (i5)) 

- -  0 + ( 3 )  

- -  0 - ( 3 )  

---- I - -  _ _  0-(1) 

--o-(1) 
j =  0 

_ 1 + ( 3 )  
2 - ( 1 )  

_ 1+(1) _ 

- -  1 - ( 3 )  - -  2 - ( 3 )  
i-(1) 

---- 1-(3) 
- - 1 - ( 3 )  - - 2 + (  3 ) 

1 2 

Figure 4: Comparison of the theoretical meson spec- 

trum of first orderstrong coupling approximation with 

experiment. 

order strong coupling approximation even for getting 

only a correct distribution of quantum numbers. 

One reason for the poor agreement of the spin struc- 

ture in our approximation is the fact that'Susskind'- 

coupling of staggered fermions leads for strong coupling 

to a strong spin-F-spin coupling.This can be seen from 

the relativistic spin structure of the B.S.-amplitudes of 

the ground states, Eq. (6). So we get for the two pseudo 

scalar mesons of Table 1: 

# 1 :  r~f = - ~ ( 2 / v ~  s + ~), 
# 4 :  r ~ f  = .~%.P.(-;c + ;~8) 
where the h i denote the SU(4)- GelI-Mann matrices. 

4. LATTICE APPROXIMATION OF NON-RELATI- 

VISTIC QUANTUM MECHANICS. 

In our treatment of the meson spectrum in lattice 

QCD, the internal relative motion of the qci-system is 

described by the step matrix M(p).  This matrix be- 

comes more complex, and it describes more states with 

increasing order of strong coupling approximation. In 

the last part of our discussion we want to show that 
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we have a similar situation in the lattice approximation 

of the bound state problem in non-relativistic quantum 

mechanics. We hope that these remarks give a hint on 

how one can find the usual bound state equations in 

the framework of lattice QCD. 

The path integral representation of the (Euclidean) 

1 2+V(x  ) Green's function of the Hamiltoniean H = ~-~mP 

is given by 

G(x, ~; 0, O) = ,o e- fo v(~(~'))d~'dg,,,(x(.r)) (23) 

Here dp~(z(~r)) denotes the Wiener measure. Now 
it is well known 19 that the lattice approximation of 

Brownean motion is the simple random walk on a lat- 

tice defined by a transition probability ('step matrix'): 

Pc = 1/2d for steps to nearest neighbours, P0 = 0 

for other steps. Therefore we consider as the lattice 

approximation of Eq. (23) for potentials constant on 

lattice links: 

G(x,n;O,O) = tj dPo[to]e_E.~f, v(~,) (24) 

for walks w = (O, x l , . . . , z ~  = x) 

We want to illustrate this idea with the simplest 

example for a 1-dim. lattice F = {:elx = bn,n E Z},  

namely for a potential 

V ( z ) = 0 f o r n = O , . . . , N ,  = o o f o r n < 0 ,  n > 0 .  

For this simple example one can calculate the spectrum 

explicitly 16. 

9" 
E, = 2 N 2 ( 1 - c o s ( ~ - ~ ) ) ,  r = 1 , . . . ,N - t -1 .  

It approaches the continuum limit in the following way: 

(a)For fixed quantum number r it approaches the con- 

tinuum limit E~ = r%r 2 as 

N 2 
E~ -'~ r27r 2 for N - ,  oc. 

(iv + 2)2 

(b) With finer lattice we get a finer desciption of inter- 
nal motion, and together with that more excited states. 
This is the situation which we found in the strong cou- 
pling approximation above. 
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