PREDICTIONS OF THE CKM MODEL FOR CP ASYMMETRIES IN B DECAY

P KRAWCZYK*, D LONDON, R D PECCEI and H STEGER
Deutsches Elektronen Synchrotron (DESY), Hamburg, FRG

Receıved 29 December 1987

Abstract

We discuss present-day uncertainties for the value of the $C P$-violating phase δ in the CKM matrix and point out how a knowledge of m_{t} and/or x_{b} could substantially reduce this uncertanty A model-independent measurement of δ is, in principle, possible by studying certain $C P$-violating asymmetries, involving B^{0} mesons decaying into $C P$-conjugate hadromic final states There exist three different classes of these asymmetries and we give estimates for their values, based on our present knowledge of the CKM matrix Some comments on the experimental requirements for detecting these asymmetries are also presented

1. Introduction

In the standard electroweak model, with three generations of quarks and leptons, $C P$-violating phenomena arise simply from the presence of a nontrivial phase δ in the Cabıbbo-Kobayash1-Maskawa (CKM) mıxıng matrix V_{i}, Although the standard model cannot explain the deeper origin for this phase, it is obviously very important to know whether or not the observed $C P$ violation in the kaon system arises from the phase δ All the evidence we have at present, including the recent positive signal of a nonvanishing value for $\varepsilon^{\prime} / \varepsilon[1]$, is consistent with this hypothesis However, the evidence for $C P$ violation being due only to the CKM phase δ is weak, and this phase itself is badly determined

In the coming years this situation is likely to be improved by new experimental observations Of particular importance would be a determination of the top quark mass and of the value of the mixing parameter x_{s} in the $\mathrm{B}_{\mathrm{s}} \overline{\mathrm{B}}_{\mathrm{s}}$ system It may well be that, with these measurements in hand, one will find an inconsistency with the simple CKM mixing scheme However, even if this turns out not to be the case, there is likely to remain considerable uncertainty attached to the value of δ This is because we are still unable to calculate the hadronic matrix elements of weak operators reliably and this, obviously, directly affects δ. The purpose of this note is

[^0]to discuss critically what future experımental information is most likely to provide clear tests of the CKM scheme and, in particular, will allow for a reliable determination of the $C P$-violating phase δ

The plan of this paper is as follows We shall begin by briefly reviewing the present uncertanties in determınıng the $C P$-violating phase in the CKM matrix, which stem both from our ignorance of a precise value for m_{t} and of the value of the ratio $\left|V_{\mathrm{ub}} / V_{\mathrm{cb}}\right|$, as well as from the unreliability of hadronic-matrix-element calculations We shall show, next, that these latter uncertannties, however, can be largely obviated by studying certain classes of $C P$-violating asymmetries in B decays, involving decays of neutral B's into $C P$-conjugate hadronic final states The non-negligible asymmetries of this type, either time integrated or time dependent, measure one of three possible combinations of phases of the matrix elements V_{u} (in a convenient parametrization), each of them, of course, being a function of δ Using the best information avalable at present on the CKM matrix, we then present ranges of predictions for these important $C P$-violating asymmetries in the B system and draw some conclusions on their likely observability

2. The mixing matrix

For our purposes, it is convenient to parametrize the CKM matrix in the form suggested by Maıanı [2]

$$
V=\left(\begin{array}{ccc}
c_{1} c_{3} & s_{1} c_{3} & s_{3} \mathrm{e}^{\imath \delta} \tag{1}\\
-s_{1} c_{2}-c_{1} s_{2} s_{3} \mathrm{e}^{-\iota \delta} & c_{1} c_{2}-s_{1} s_{2} s_{3} \mathrm{e}^{-\delta \delta} & s_{2} c_{3} \\
s_{1} s_{2}-c_{1} c_{2} s_{3} \mathrm{e}^{-\iota \delta} & -c_{1} s_{2}-s_{1} c_{2} s_{3} \mathrm{e}^{-\iota \delta} & c_{2} c_{3}
\end{array}\right),
$$

where $s_{1} \equiv \sin \theta_{1}, c_{1} \equiv \cos \theta_{1}$, etc Snce the angles θ_{1} are known to have a hierarchical pattern, it is useful to write, following Wolfenstein [3]

$$
\begin{equation*}
s_{1}=\lambda, \quad s_{2}=A \lambda^{2}, \quad s_{3}=A \rho \lambda^{3} \tag{2}
\end{equation*}
$$

with λ corresponding essentially to the Cabibbo angle, $\lambda \simeq 022$ Then, to $O\left(\lambda^{4}\right)$, but keeping for the moment the phase information for each of the elements of the CKM matrix, one has

$$
V=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \rho \lambda^{3} \mathrm{e}^{t \delta} \tag{3}\\
-\lambda\left(1+A^{2} \lambda^{4} \rho \mathrm{e}^{-i \delta}\right) & 1-\frac{1}{2} \lambda^{2}-A^{2} \rho \lambda^{6} \mathrm{e}^{-t \delta} & A \lambda^{2} \\
A \lambda^{3}\left(1-\rho \mathrm{e}^{-i \delta}\right) & -A \lambda^{2}\left(1+\lambda^{2} \rho \mathrm{e}^{-\iota \delta}\right) & 1
\end{array}\right)
$$

One sees immediately that, with this parametrization, only two elements of V can have a significant imaginary part. V_{ub} and V_{td} It is these phases which will play a
crucial role in the B-decay $C P$ asymmetries and which should give rise to rather substantial experımental signals. In evaluatıng the $C P$-violating ε and ε^{\prime} parameters in the K-sector, however, one needs also to keep track of the "small" phase in $V_{\text {cd }}$ Of course, all $C P$-violating phenomena disappear if the CKM phase $\delta=0$ or π

The parameters A and ρ are, in principle, obtanable from B decay. For the estimate of these quantities, we rely (as is commonly done) on the quark picture supplemented by some hadronization model The ratio*

$$
\begin{equation*}
R=\frac{\Gamma(\mathrm{b} \rightarrow \mathrm{u})}{\Gamma(\mathrm{b} \rightarrow \mathrm{c})} \simeq 2 \frac{\left|V_{\mathrm{bu}}\right|^{2}}{\left|V_{\mathrm{bc}}\right|^{2}} \simeq 2(\lambda \rho)^{2}, \tag{4}
\end{equation*}
$$

measures ρ, while the B lifetıme fixes A A recent analysis by Altarelli and Franzinı [5] gives

$$
\begin{equation*}
\left|V_{\mathrm{bc}}\right|^{2}=\lambda^{4} A^{2}=\frac{(29 \pm 0.6) \times 10^{-3}}{\tau_{\mathrm{B}}\left(10^{-12} \mathrm{~s}\right)} \tag{5}
\end{equation*}
$$

Using $\tau_{\mathrm{B}}=(111 \pm 016) \times 10^{-12} \mathrm{~s}[6]$, the above implies

$$
\begin{equation*}
A=105 \pm 017 \tag{6}
\end{equation*}
$$

In the analysis which follows, we shall take A equal to its central value. The ratio R is subject to more theoretical uncertanty which is related to problems with the interpretation of the lepton spectra from semuleptonic B decays From a study of these decays [7], one infers the rather conservative upper bound $R \leq 008$, which implies $\rho \leq 09^{\star \star}$ On the other hand, the recent observation of charmless B decays by the ARGUS collaboration [9] shows that $V_{\mathrm{ub}} \neq 0$ and so provides a lower bound for ρ. Another very conservative analysis [9] gives $\rho \geq 0.3$, so that ρ lies in the range

$$
\begin{equation*}
0.3 \leq \rho \leq 09 \tag{7}
\end{equation*}
$$

The phase δ is directly, but far from uniquely, determined by the $C P$-violating parameter ε in the K system. A further constraint on δ is also provided by the recent observation of $B_{d}-\bar{B}_{d}$ oscillations The mixing parameter x_{d} is proportional to $\left|V_{\mathrm{td}}\right|^{2}$ and hence it is sensitive to the combination $\left(1+\rho^{2}-2 \rho \cos \delta\right)$ In principle, the new data on $\varepsilon^{\prime} / \varepsilon$ [1] provide a further constrant on δ. However, the theoretical uncertainties are such that this measurement does not restrict δ beyond the range allowed by ε and x_{d} [10] Since m_{t} is not known, and ρ is only fixed to be in the interval of eq (7), we will display, below, the allowed values of δ as a function of

[^1]these two parameters, indicating, furthermore, the effects of the uncertainties induced by the hadronic matrix elements Simılar analyses have been carried out by a number of different groups recently [11-14]

The standard analysis of Buras et al [15] gives for $|\varepsilon|$ the formula

$$
\begin{align*}
|\varepsilon|=\frac{G_{\mathrm{F}}^{2} f_{\mathrm{K}}^{2} M_{\mathrm{K}} M_{\mathrm{W}}^{2}}{6 \sqrt{2} \pi^{2} \Delta M_{\mathrm{K}}} B_{\mathrm{K}}\left(A^{2} \rho \lambda^{6} \sin \delta\right) & \left(y_{\mathrm{c}}\left\{\eta_{3} f_{3}\left(y_{\mathrm{c}}, y_{\mathrm{t}}\right)-\eta_{1}\right\}\right. \\
& \left.+\eta_{2} y_{\mathrm{t}} f_{2}\left(y_{\mathrm{t}}\right) A^{2} \lambda^{2}(1-\rho \cos \delta)\right)+\sqrt{\frac{1}{2}} \xi \tag{8}
\end{align*}
$$

Here, $y_{l}=m_{l}^{2} / M_{\mathrm{W}}^{2}$ and f_{2} and f_{3} are weakly dependent functions of the top and charm masses

$$
\begin{gather*}
f_{2}\left(y_{\mathrm{t}}\right)=1-\frac{3 y_{\mathrm{t}}\left(1+y_{\mathrm{t}}\right)}{4\left(1-y_{\mathrm{t}}\right)^{2}}\left(1+\frac{2 y_{\mathrm{t}}}{1-y_{\mathrm{t}}^{2}} \ln y_{\mathrm{t}}\right), \tag{9a}\\
f_{3}\left(y_{\mathrm{c}}, y_{\mathrm{t}}\right)=\ln \frac{y_{\mathrm{t}}}{y_{\mathrm{c}}}-\frac{3 y_{\mathrm{t}}}{4\left(1-y_{\mathrm{t}}\right)}\left(1+\frac{y_{\mathrm{t}}}{1-y_{\mathrm{t}}} \ln y_{\mathrm{t}}\right) \tag{9b}
\end{gather*}
$$

The η_{1} are QCD correction factors ($\eta_{1} \simeq 07, \eta_{2} \simeq 06, \eta_{3} \simeq 04$ [16]), while B_{K} encapsulates our present ignorance of the matrix element of $\left(\bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) s\right)^{2}$ between K^{0} and $\overline{\mathrm{K}}^{0}$, with $B_{\mathrm{K}}=1$ corresponding to the vacuum insertion approximation Finally, ξ is the phase parameter of the $(I=0) \mathrm{K} \rightarrow 2 \pi$ weak amplitudes ($\xi=$ $\operatorname{Im} A_{0} / \operatorname{Re} A_{0}$) In the quark phase convention which we are using, its presence guarantees that $|\varepsilon|$ is actually convention independent ξ is directly related to $\left|\varepsilon^{\prime}\right|$ [15] and one has

$$
\begin{equation*}
\left|\varepsilon^{\prime}\right|=\frac{1}{\sqrt{2}} \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{0}}|\xi| \simeq 0.035|\xi| \tag{10}
\end{equation*}
$$

where the numerical value above uses experımental information for the kaon amplitudes The recent determination of $\left|\varepsilon^{\prime} / \varepsilon\right|[1]$ implies that $|\xi| \simeq 0.1|\varepsilon|$ In view of this, and of the other uncertanties in eq (8), we shall neglect ξ altogether in our analysis

3. $\mathbf{B}_{\mathrm{d}}-\overline{\mathbf{B}}_{\mathrm{d}}$ mixing

The observation of $\mathrm{B}_{\mathrm{d}}-\overline{\mathrm{B}}_{\mathrm{d}}$ mixing by the ARGUS collaboration [17] has provided an independent constraint on the parameters of the Cabıbbo-Kobayashı-Maskawa matrix. Since for the B_{d} system one expects [15] $\Delta \Gamma \ll \Delta M$ and the magnitude of
the $\Delta B=2 C P$-violation to be small $\left(\left|\left(1-\varepsilon_{\mathrm{d}}\right) /\left(1+\varepsilon_{\mathrm{d}}\right)\right| \simeq 1\right)$ the measured ratio,

$$
\begin{equation*}
r_{\mathrm{d}}=\frac{\Gamma\left(B_{\mathrm{d}} \rightarrow \ell^{-} X\right)}{\Gamma\left(B_{\mathrm{d}} \rightarrow \ell^{+} X\right)}=021 \pm 008 \tag{11}
\end{equation*}
$$

directly fixes the mixing parameter $x_{\mathrm{d}}=\Delta M / \Gamma$. Using the expression

$$
\begin{equation*}
r_{\mathrm{d}} \simeq \frac{x_{\mathrm{d}}^{2}}{2+x_{\mathrm{d}}^{2}} \tag{12}
\end{equation*}
$$

and the ARGUS measurement [17] yields $x_{\mathrm{d}}=073 \pm 018 \mathrm{In}$ our analysis, following Alı [11], we shall use for x_{d} the 90% confidence limit provided jointly by this measurement and the upper bound of the CLEO collaboration [18]

$$
\begin{equation*}
078 \geq x_{\mathrm{d}} \geq 044 \tag{13}
\end{equation*}
$$

Theoretically, x_{d} receives its dominant contribution by the presence of top quarks in the box diagram and one finds $[15,19]$

$$
\begin{equation*}
x_{\mathrm{d}}=\tau_{\mathrm{B}} \frac{G_{\mathrm{F}}^{2}}{6 \pi^{2}} M_{\mathrm{B}} M_{\mathrm{W}}^{2}\left(f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}\right) \eta_{\mathrm{B}} y_{\mathrm{t}} f_{2}\left(y_{\mathrm{t}}\right)\left\{A^{2} \lambda^{6}\left(1+\rho^{2}-2 \rho \cos \delta\right)\right\} \tag{14}
\end{equation*}
$$

Here, the hadronic uncertanty is hidden in the factor $f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}$, whose meaning is analogous to that of the corresponding quantities in the kaon system, except that here also f_{B} is not measured The parameter η_{B} is a QCD correction factor, which in refs $[15,19]$ has been estımated to be $\eta_{B} \simeq 0.85$. A recent calculation [20], however, including certain higher order QCD effects, obtains a lower value, $\eta_{\mathrm{B}} \simeq$ 0.63 . We shall adopt this value here, but we note that since $f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}$ is quite uncertain, one cannot really tell the difference between these two assumptions Being rather conservatıve, we shall allow, for $\left(f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}\right)^{1 / 2}$, the range $100-200 \mathrm{MeV}$, which is slightly larger than that used in ref. [5].

We have not included in our analysis the MARK II [21] or UA1 [22] results on $B-\bar{B}$ oscillations, since these experiments cannot distinguish $B_{s}-\bar{B}_{s}$ from $B_{d}-\bar{B}_{d}$ oscillations. As Alı [11] has pointed out, these results can powerfully constrain the CKM matrix, given a knowledge of the relatıve amount of B_{d} and B_{s} produced However, these constraints are very dependent on the B_{d} / B_{s} production ratio The experiments measure the quantity χ, which is

$$
\begin{equation*}
\chi=P_{\mathrm{d}} \frac{x_{\mathrm{d}}^{2}}{2\left(1+x_{\mathrm{d}}^{2}\right)}+P_{\mathrm{s}} \frac{x_{\mathrm{s}}^{2}}{2\left(1+x_{\mathrm{s}}^{2}\right)} \tag{15}
\end{equation*}
$$

where $P_{\mathrm{d}}\left(P_{\mathrm{s}}\right)$ is the probability that a $\mathrm{B}_{\mathrm{d}}\left(\mathrm{B}_{\mathrm{s}}\right)$ is produced. The MARK II

Table 1
The upper bound on x_{d} from the MARK II data [21], assuming a value of $x_{\mathrm{s}}=7$, is shown here as a function of the production probabilities P_{d} and P_{5}

P_{d}	P_{s}	$\left(x_{\mathrm{d}}\right)_{\max }$
04	02	035
	015	055
0375	01	074
	02	037
	015	057
	01	078

experiment gives a 90% confidence level upper limit on χ

$$
\begin{equation*}
\chi \leq 0.12 \tag{16}
\end{equation*}
$$

Thus, for a given $P_{\mathrm{d}}, P_{\mathrm{s}}$ and x_{s}, this gives an upper limit on x_{d} In table 1, we have shown this upper limit, for $x_{\mathrm{s}}=7$ (a typical value), as a function of P_{d} and P_{5} As is evident from the table and eq (13), depending on the values of P_{d} and P_{s} taken, this data can either rule out the standard model (e g. $P_{\mathrm{d}}=04, P_{\mathrm{s}}=02$) or give no bounds whatsoever (e g $P_{\mathrm{d}}=0375, P_{\mathrm{s}}=01$) Given the uncertainty in the information which these experıments provide, we have preferred to be conservative and ignore this information altogether

Assuming some (typical) values for B_{K} and $f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}$, eqs (8) and (14) determine δ as a function of m_{t} and ρ^{\star} For example, taking $B_{\mathrm{K}}=1$ and $f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}=(150 \mathrm{MeV})^{2}$ and letting m_{t} vary from 40 to $180 \mathrm{GeV}^{\star \star}$ gives the "moon-shaped" allowed region in the $\rho-\delta$ plane of fig. 1 (a simılar analysis has been carried out in ref [13]) Low values of m_{t} require that the phase δ be near π [11-14], so as to enhance the $\left(1+\rho^{2}-2 \rho \cos \delta\right)$ factor in eq (14) A substantial portion of the allowed δ values is eliminated when one imposes the lower bound of $\rho>03$ For this choice of theoretical parameters, the observation of charmless B decays [9] cuts the moon in half, elımınating all δ-values below $\delta \leq 27$! This effect is still present, although less sharply so, when one allows variations in the theoretically uncertan parameters over sensible ranges $1 / 3 \leq B_{\mathrm{K}} \leq 1,(100 \mathrm{MeV})^{2} \leq f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}} \leq(200 \mathrm{MeV})^{2 \star \star \star}$ This is demonstrated in fıg 2 . We see that for $B_{\mathrm{K}}=1$, but ranging over $f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}$, the moon shaped region of fig. 1 expands. This expansion grows further as B_{K} is lowered to $\frac{2}{3}$ and a considerable portion of the $\rho-\delta$ plane is filled if $B_{K}=\frac{1}{3}$ In the analysis of

[^2]

Fig 1 The domain in $\rho-\delta$ space (δ in radians), within which the standard model is compatible with the measurements of ε and x_{d} (90% confidence limit) We vary m_{t} between 40 GeV and 180 GeV and use $\left(f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}\right)^{1 / 2}=150 \mathrm{MeV}$ and $B_{\mathrm{K}}=1$ The dashed line represents the lower bound $\rho \geq 03$ inferred from the observation of charmless B decays by ARGUS [9]

Fig 2 As in fig 1 , but now, in addition, $\left(f_{\mathrm{B}_{\mathrm{o}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}\right)^{1 / 2}$ is varied between 100 MeV and 200 MeV (a) $B_{\mathrm{K}}=1$, (b) $B_{\mathrm{K}}=\frac{2}{3}$, (c) $B_{\mathrm{K}}=\frac{1}{3}$

Fig 3 As in fig 1 , but now m_{t} is kept fixed while B_{K} and $\left(f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{R}_{\mathrm{d}}}\right)^{1 / 2}$ are allowed to vary within the ranges $\frac{1}{3} \leq B_{\mathrm{K}} \leq 1$ and $100 \mathrm{MeV} \leq\left(f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}\right)^{1 / 2} \leq 200 \mathrm{MeV}$ (a) The areas $1,2,3,4$ correspond to fixed values $m_{\mathrm{t}}=60,90,120,180 \mathrm{GeV}$, respectively (b) Taking $m_{\mathrm{t}}=150 \mathrm{GeV}$, the strips $1,2,3,4$ correspond to $B_{\mathrm{K}}=\frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1$, respectively
$C P$-violating phenomena in the B -system, we shall take, for definitıveness, $B_{\mathrm{K}}=\frac{2}{3}$, but shall contınue to allow m_{t} and $f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}$ to vary over the ranges indicated above

A direct measurement of m_{t} and/or of $B_{s}-\bar{B}_{s}$ oscillations would do much to clarify the above situation, even if ρ cannot be restricted better than eq (7) This is illustrated in fig 3a, where we show the allowed $\rho-\delta$ ranges for four values of m_{t} ($m_{\mathrm{t}}=60,90,120,180 \mathrm{GeV}$), for the full uncertan theoretical ranges. This uncertainty comes mainly from our lack of knowledge of B_{K}, as is demonstrated in fig. 3b. There, we plot the allowed areas corresponding to fixed values of $B_{\mathrm{K}}=\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ and 1 , for $m_{\mathrm{t}}=150 \mathrm{GeV}$ In the $\mathrm{SU}(3)$ limit we have $\tau_{\mathrm{Bd}_{\mathrm{d}}} M_{\mathrm{B}_{\mathrm{d}}} \eta_{\mathrm{B}_{\mathrm{d}}} f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}=$

Fig 4 As in fig 1 , but now all three parameters $m_{\mathrm{t}},\left(f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}\right)^{1 / 2}$ and B_{K} are vaned $40 \mathrm{GeV} \leq m_{\mathrm{t}} \leq 180$ $\mathrm{GeV}, 100 \mathrm{MeV} \leq\left(f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}\right)^{1 / 2} \leq 200 \mathrm{MeV}$ and $\frac{1}{3} \leq B_{\mathrm{K}} \leq 1$ In addition, the further restrictions given by fixed $x_{\mathrm{s}}=3,7,15$ are shown
$\tau_{\mathrm{B}_{\mathrm{s}}} M_{\mathrm{B}} \eta_{\mathrm{B}_{\mathrm{s}}} f_{\mathrm{B}_{\mathrm{s}}}^{2} B_{\mathrm{B}_{\mathrm{s}}}$ and thus the ratio $x_{\mathrm{d}} / x_{\mathrm{s}}$ is given by

$$
\begin{equation*}
\frac{x_{\mathrm{d}}}{x_{\mathrm{s}}}=\lambda^{2}\left(1+\rho^{2}-2 \rho \cos \delta\right) . \tag{17}
\end{equation*}
$$

Even if $f_{\mathrm{B}_{\mathrm{s}}}^{2} B_{\mathrm{B}_{\mathrm{s}}}$ should turn out to differ from $f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}$ by a factor of 2, a measurement of x_{s} would still give substantial restrictions in the $\rho-\delta$ plane To illustrate this point, in fig. 4 , using eq (17), we plot the constraints on the allowed $\rho-\delta$ range, for three values of $x_{\mathrm{s}}\left(x_{\mathrm{s}}=3,7,15\right)$, using the range of eq (13) for x_{d} Because fixing x_{s} gives correlated ranges for $f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}$ and m_{t}, the interval (13) for x_{d} is not always fully allowed. This has been taken into account in fig 4 Thus, a measurement of x_{s} is partıcularly constranıng for the Cabıbbo-Kobayashı-Maskawa model and we very much hope it will be attempted at Cornell (or DESY?).

4. $C P$-violating asymmetries

Because B mesons possess many more decay channels than K mesons, there exist a considerable variety of $C P$-violating phenomena that one can search for experımentally This subject, naturally, has generated intense theoretical interest and has, in some sense, been fully explored [24-27] However, most of the investigations to date have been "broad band", concentrating on the totality of the phenomena, without looking at any one decay, or class of decays, in detall Furthermore, in many instances, predictions are given only for what the maximum signal of $C P$ violation could be Thus, many optımistic dynamical assumptions are made and the Cabıbbo-Kobayashı-Maskawa parameters are stretched to their limıts [26,28] Here, we would like to take a rather more "narrow band" approach, by concentrating on $C P$ asymmetries which are essentially independent of theoretical assumptions Furthermore, we want to predict what are reasonable expectations for these asymmetries, based on the constraints which we know today already exist for the CKM matrix elements

To observe $C P$-violating effects in B decays requires that there should be interference between two amplitudes with different phases Because the B and the \bar{B} states mix, if one looks at decays of B mesons into a final state f which can be reached by both B^{0} and $\overline{\mathrm{B}}^{0}$ decays, then the required interference exists The interesting asymmetry to consider is the difference between the decay probability of a state which at $t=0$ started as B^{0} - denoted here by $\mathrm{B}^{0}(t)$ - into f , compared to the decay probability of $\overline{\mathbf{B}}^{0}(t)$ into $\overline{\mathrm{f}}$ (for a recent discussion, see [25,26]) One finds the time integrated asymmetry

$$
\begin{equation*}
A_{\mathrm{f}}=\frac{\Gamma\left(\mathrm{B}^{0}(t) \rightarrow \mathrm{f}\right)-\Gamma\left(\overline{\mathrm{B}}^{0}(t) \rightarrow \overline{\mathrm{f}}\right)}{\Gamma\left(\mathrm{B}^{0}(t) \rightarrow \mathrm{f}\right)+\Gamma\left(\overline{\mathrm{B}}^{0}(t) \rightarrow \overline{\mathrm{f}}\right)}=-\frac{2 x \operatorname{Im} \lambda_{\mathrm{f}}}{2+x^{2}+x^{2}\left|\rho_{\mathrm{f}}\right|^{2}} . \tag{18}
\end{equation*}
$$

Here, x is the mixing parameter of the B meson, while

$$
\begin{align*}
& \rho_{\mathrm{f}}=\frac{A\left(\overline{\mathrm{~B}}^{0} \rightarrow \mathrm{f}\right)}{A\left(\mathrm{~B}^{0} \rightarrow \mathrm{f}\right)}, \tag{19}\\
& \lambda_{\mathrm{f}}=\frac{1-\varepsilon_{\mathrm{B}}}{1+\varepsilon_{\mathrm{B}}} \rho_{\mathrm{f}}, \tag{20}
\end{align*}
$$

where ε_{B} is the analogue of ε for the B system This asymmetry becomes independent of strong interaction effects if f is a $C P$ eigenstate ($\overline{\mathrm{f}}= \pm \mathrm{f}$), and the weak-decay process is domınated by just one amplitude ${ }^{\star}$ [27]. In this case $\left|\rho_{\mathrm{f}}\right|=1$ and eq (18) reduces to

$$
\begin{equation*}
A_{\mathrm{f}}=-\frac{x}{1+x^{2}} \operatorname{Im} \lambda_{\mathrm{f}} \tag{21}
\end{equation*}
$$

Observe that the sign of A_{f} depends on the $C P$ eigenvalue of f , thus, final states with opposite $C P$ properties give rise to asymmetries of opposite sign [25]. Various comments are in order
(1) The asymmetry A_{f} vanishes, etther in the case of no muxing ($x \rightarrow 0$) or full mixing $(x \rightarrow \infty)$ For B_{d}, eq (13) puts one almost in an ideal situation since $x_{\mathrm{d}} /\left(1+x_{\mathrm{d}}^{2}\right) \simeq 05$ For B_{s}, on the other hand, the situation ss less favourable. Using eq. (17), our analysis suggests x_{s} extends over the range $3 \leq x_{\mathrm{s}} \leq 20$, so that $03 \geq x_{\mathrm{s}} /\left(1+x_{\mathrm{s}}^{2}\right) \geq 005$
(ii) The magnitude of the factor $\left(1-\varepsilon_{\mathrm{B}}\right) /\left(1+\varepsilon_{\mathrm{B}}\right)$ in eq (20) is very nearly unity [15]. However, one must be careful about its phase, since only by including this phase information will $\operatorname{Im} \lambda_{f}$ be independent of the phase convention adopted In the quark phase convention we are using, since the top-quark graph totally domınates, one finds sımply that

$$
\frac{1-\varepsilon_{\mathrm{B}}}{1+\varepsilon_{\mathrm{B}}}= \begin{cases}\frac{V_{\mathrm{tb}}^{*}}{V_{\mathrm{tb}}} \frac{V_{\mathrm{td}}}{V_{\mathrm{td}}^{*}}=\frac{V_{\mathrm{td}}}{V_{\mathrm{td}}^{*}} \equiv \mathrm{e}^{2 \iota \phi}, & \left(\mathrm{~B}_{\mathrm{d}}\right), \tag{22}\\ \frac{V_{\mathrm{tb}}^{*}}{V_{\mathrm{tb}}} \frac{V_{\mathrm{ts}}}{V_{\mathrm{ts}}^{*}}=1, & \left(\mathrm{~B}_{\mathrm{s}}\right),\end{cases}
$$

where the second line follows from the form of our CKM matrix, eq (3), in which only two elements have non-negligible phases, V_{ub} and V_{td}
(iii) Since $\left|\rho_{\mathrm{f}}\right|=1$, ρ_{f} itself is also a pure phase In fact, since only one weak-decay amplitude enters by assumption, ρ_{f} is a ratio of two Cabıbbo-Kobayashı-Maskawa

[^3]matrix elements (times a CP-sign, which we take to be positive in what follows). The ratio of CKM matrix elements in ρ_{f} containing only light quarks ($u, \mathrm{~d}, \mathrm{~s}, \mathrm{c}$), with the convention of eq. (3), is essentially real and unity Thus, it can be ignored in the following Since V_{cb} is real, only for Cabibbo suppressed decays will ρ_{f} involve a phase.
\[

\rho_{\mathrm{f}} \simeq $$
\begin{cases}\frac{V_{\mathrm{ub}}}{V_{\mathrm{ub}}^{*}} \equiv \mathrm{e}^{2 \iota \delta} & (\text { Cabıbbo suppressed }) \tag{23}\\ \frac{V_{\mathrm{cb}}}{V_{\mathrm{cb}}^{*}}=1, & \text { (Cabibbo allowed) }\end{cases}
$$
\]

The above simple considerations tell us that, in B decays, there are three classes of model-independent asymmetries which can be sizeable Each of these classes measures a different combination of phases of the CKM matrix elements - all, of course, related ultimately to δ
(1) Cabıbbo-allowed B_{d} decays (e.g. $B_{d} \rightarrow \Psi K_{S}$ [29]),

$$
\begin{equation*}
\operatorname{Im} \lambda_{1} \simeq \operatorname{Im} \frac{V_{\mathrm{td}}}{V_{\mathrm{td}}^{*}}=\sin 2 \phi=\frac{2 \rho \sin \delta(1-\rho \cos \delta)}{1+\rho^{2}-2 \rho \cos \delta} \tag{24}
\end{equation*}
$$

(2) Cabibbo-suppressed B_{d} decays (e.g. $\mathrm{B}_{\mathrm{d}} \rightarrow \pi^{+} \pi^{-}$[25]),

$$
\begin{equation*}
\operatorname{Im} \lambda_{2} \simeq \operatorname{Im} \frac{V_{\mathrm{td}}}{V_{\mathrm{td}}^{*}} \frac{V_{\mathrm{ub}}}{V_{\mathrm{ub}}^{*}}=\sin 2(\phi+\delta)=\frac{2 \sin \delta(\cos \delta-\rho)}{1+\rho^{2}-2 \rho \cos \delta}, \tag{25}
\end{equation*}
$$

(3) Cabibbo-suppressed B_{s} decays (e.g $B_{s} \rightarrow \rho^{0} K_{S}$ [14]),

$$
\begin{equation*}
\operatorname{Im} \lambda_{3} \simeq \operatorname{Im} \frac{V_{\mathrm{ub}}}{V_{\mathrm{ub}}^{*}}=\sin 2 \delta=2 \sin \delta \cos \delta \tag{26}
\end{equation*}
$$

It is obviously very interesting to know what ranges of $\operatorname{Im}\left(\lambda_{t}\right)$ are allowed by present data. The relevant plots are presented in fig. 5 , where $\operatorname{Im}\left(\lambda_{l}\right)(l=1,2,3)$ is plotted against ρ, in the range $0.3 \leq \rho \leq 0.9$. In these graphs we have let m_{t} range from 40 to 180 GeV , have fixed $B_{\mathrm{K}}=\frac{2}{3}$ and let $100 \mathrm{MeV} \leq\left(f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}\right)^{1 / 2} \leq 200 \mathrm{MeV}$ Fig 6 presents the same quantities but now for specific m_{t} values $\left(m_{t}=60,90,120\right.$, $150,180 \mathrm{GeV}$).

One sees from figs. 5 b , c that $\operatorname{Im}\left(\lambda_{2}\right)$ and $\operatorname{Im}\left(\lambda_{3}\right)$, for $0.3 \leq \rho \leq 0.9$, can take on rather large values. For $\operatorname{Im}\left(\lambda_{1}\right)$, on the other hand, values greater than ~ 04 appear to be excluded. The actual measured asymmetries are, however, reduced by the mixing factor $x /\left(1+x^{2}\right)$ This is, at least, a factor of 2 for B_{d} and could be near a factor of 10 for B_{s}. From this viewpoint, therefore, the most promising processes

Fig 5 Varying $\left(f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}\right)^{1 / 2}$ and $m_{\mathrm{t}}, 100 \mathrm{MeV} \leq\left(f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}\right)^{1 / 2} \leq 200 \mathrm{MeV}$ and $40 \mathrm{GeV} \leq m_{\mathrm{t}} \leq 180 \mathrm{GeV}$, and fixing $B_{K}=\frac{2}{3}$, the areas within which the standard model is compatible with the measurements of ε and $x_{\mathrm{d}}(90 \%$ confidence limit) are shown for the following parameter spaces (a) $(\sin 2 \phi, \rho)$, (b) $(\sin 2(\delta+\phi), \rho),(\mathrm{c})(\sin 2 \delta, \rho)$
appear to involve $\operatorname{Im}\left(\lambda_{2}\right)$ However, since these asymmetries concern Cabibbo-suppressed B_{d} decays, this overall rate is going to be considerably smaller For instance, the branching ratio $\mathrm{B}_{\mathrm{d}} \rightarrow \pi^{+} \pi^{-}$is probably of $\mathrm{O}\left(10^{-5}\right)$, while we know that $\mathrm{BR}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \Psi \mathrm{K}_{\mathrm{S}}\right)$ is of $\mathrm{O}\left(10^{-3}\right)$ If it is possible to follow the time development of the B decays $[24,27,30]$, then one gets rid of the reduction factor $x /\left(1+x^{2}\right)$, since the probability of obtanning a state f at tıme t, for a beam which at $t=0$ was pure B^{0}, is sımply

$$
\begin{equation*}
N_{\mathrm{f}}(t)=N_{\mathrm{f}}(0) \mathrm{e}^{-\gamma_{t}}\left[1-\operatorname{Im} \lambda_{\mathrm{f}} \sin \Delta m t\right] \tag{27}
\end{equation*}
$$

If one has a large mixing parameter, $x=\Delta m / \gamma$, as is likely to be the case for B_{s}, then the non-exponential behaviour of eq (27) should be visible, provided of course that one can track the decay at all

It is difficult to estimate the number of B^{0} decays needed to perform the $C P$-violation tests we have discussed First of all, these asymmetries A_{f} require that one know if the decaying B was originally a B^{0} or a \bar{B}^{0} To determıne this, perhaps

Fig 6 As in figs $5 \mathrm{a}, \mathrm{b}, \mathrm{c}$, but now the strips $1,2,3,4,5$ correspond to fixed values of $m_{\mathrm{t}} 60,90,120$, $150,180 \mathrm{GeV}$, respectively
the best method is to try to establish the charge of the associated B [27] This requires looking for another secondary vertex, besides that of the onginal decaying B Even being optımıstic, this should cost at least a factor of 10 Consider the decay $\mathrm{B}_{\mathrm{d}} \rightarrow \pi^{+} \pi^{-}$and imagine $\operatorname{Im}\left(\lambda_{2}\right) \simeq-05$, so that $A_{\pi^{+} \pi^{-}} \simeq+0.25$ Establishing this asymmetry at the 3σ level requires approximately 150 tagged $\mathrm{B}_{\mathrm{d}}(t) \rightarrow \pi^{+} \pi^{-}$events, which, with $\operatorname{BR}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \pi^{+} \pi^{-}\right) \simeq 10^{-5}$ and a tagging efficiency of 10%, calls for $10^{8} \mathrm{~B}$ decays. This number is quite typical and appears discouraging* Perhaps it is more ımportant, therefore, to look for final states with clear experımental signals The decay $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{p} \overline{\mathrm{p}}^{\star \star}$, for instance, whose branching ratio should also be of $\mathrm{O}\left(10^{-5}\right)$, appears very interesting. However, a cautionary remark is in order Since the p $\overline{\mathrm{p}}$ pair in the final state can either be in a p - or an s-wave configuration, which have opposite $C P$ ergenvalues, one may expect a large cancellation of the asymmetry,

[^4]unless there is a dynamical suppression of the p-wave configuration. In this respect, the final state $\pi^{+} \pi^{-}$is safe since it involves only spin- 0 particles

Although the number of $10^{8} \mathrm{~B}$'s is unpleasant to countenance, perhaps we should point out that the situation would be much worse if the predicted asymmetries were below 10%. Fortunately, as fig. 5 shows, $\operatorname{Im}\left(\lambda_{t}\right)$ in the standard model seems to be well away from this unfortunate region Obviously, as fig. 6 shows, a knowledge of m_{t} would allow a much more restricted prediction for these $C P$-violatıng asymmetries in B decays.

We would like to thank A Alı and P. Langacker for helpful conversations.

References

[1] I Mannell, Nucl Phys B (Proc Suppl) 3 (1988) 367
[2] L Maranı, Phys Lett B62 (1976) 183
[3] L Wolfenstein, Phys Rev Lett 51 (1983) 1945
[4] G Altarellı, N Cabıbbo, G Corbo, L Maanı and G Martınellı, Nucl Phys B208 (1982) 365
[5] G Altarells and P Franzım, CERN prepint CERN TH4745/87
[6] D M Ritson, in Proc XXIII International Conference on High energy physics (Berkeley, USA, 1986)
[7] M Gilchnese, in Proc XXIII International Conference on High energy physics (Berkeley, USA, 1986)
[8] A Chen et al (CLEO Collaboration), Phys Rev Lett 52 (1984) 1084
[9] W Schmidt-Parzefall, Nucl Phys B (Proc Suppl) 3 (1988) 257
[10] G Altarellı and P Franzını, CERN prepint CERN TH4914/87, J Ellis, J Hagelm, S Rudaz and D D Wu, CERN preprint CERN TH4816/87
[11] A All, DESY preprint DESY 87-083
[12] G Altarellı and P Franzın, ref [5],
J Donoghue, T Nakada, E Paschos and D Wyler, Phys Lett B195 (1987) 285,
J Ellis, J Hagelin and S Rudaz, Phys Lett B192 (1987) 201,
I I Bıgı and A I Sanda, Phys Lett B194 (1987) 307,
J Maalampı and M Roos, Phys Lett B195 (1987) 489,
V Barger, T Han, D V Nanopoulos and R J N Phillips, Phys Lett B194 (1987) 312
[13] H Harani and Y Nir, Phys Lett B195 (1987) 586, Y Nir, SLAC-PUB-4368, July 1987
[14] V A Khoze and N G Uraltsev, Lenungrad preprnt 1290, June (1987)
[15] A J Buras, W Slominskı and H Steger, Nucl Phys B238 (1984) 529, B245 (1984) 369
[16] F J Gilman and M B Wise, Phys Rev D27 (1983) 1128
[17] H Albrecht et al (ARGUS Collaboration), Phys Lett B192 (1987) 245
[18] A Bean et al (CLEO Collaboration) Phys Rev Lett 58 (1987) 183
[19] J Hagelin, Nucl Phys B193 (1981) 123
[20] W A Kaufman, H Steger and Y P Yao, University of Michigan preprint UM-TH-87-13, July (1987)
[21] T Schaad et al (MARK II Collaboration), Phys Lett B160 (1985) 188
[22] C Albajar et al (UAI Collaboration), Phys Lett B186 ((87) 427
[23] (a) M Veltman, Nucl Phys B123 (1977) 89,
(b) U Amaldı et al, Phys Rev D36 (1987) 1385
[24] Y Azımov, V A Khoze and N G Uraltsev, Yad Fız 45 (1987) 1412
[25] 1 I Bigı and A I Sanda, Nucl Phys B281 (1987) 41
[26] D Du, I Dunetz and D Wu, Phys Rev D34 (1986) 3414
[27] I Dumetz and J Rosner, Phys Rev D34 (1986) 1404, I I B1gı and A I Sanda, ref [25]
[28] L L Chau and H Y Cheng, Phys Rev Lett 59 (1987) 958
[29] I I Bigı and A I Sanda, Nucl Phys B193 (1981) 85
[30] I I Bigı and A I Sanda, Comments Nucl Part Phys 14 (1985) 149
[31] D Du and Z Zhao, Phys Rev Lett 59 (1987) 1072
[32] (a) H Harani, in 1987 Int Symposium on Lepton and photon interactions at high energy, (Hamburg, 1987), unpublished,
(b) R D Peccer, in Proc Workshop on the experımental program at UNK (Protvino, September, 1987),
(c) B Stech, Heidelberg preprint HD-THEP-87-19

[^0]: * Alexander Von Humboldt fellow On leave of absence from the Institute of Theoretical Physics, Warsaw Unıversity, Warsaw, Poland

[^1]: * The factor 2 in eq (4) anses from phase space and QCD correctors See, for example, ref [4]
 ** Theoretical analysis (for a discussion, see ref [5]), along with the CLEO result [8], indicate that $\rho \leq 06$ However, in light of uncertainties in extracting R from expenments, and in eqs (4) and (5), we will use the conservative upper bound $\rho \leq 09$ Since we will plot the allowed region in $\rho-\delta$ space, the CLEO bound is easily seen

[^2]: ${ }^{*}$ The measurement of ε and the allowed range for ρ constrain $\sin \delta$ to be positive
 ** While the lower bound on m_{t} follows from the internal consistency of the presented analysis and refs [11-14], the upper bound results from the study of radiative corrections within the standard model (see ref [23a]), a bound of $m_{t} \leq 180 \mathrm{GeV}$ at 90% confidence hmit is obtained in ref [23b]
 *** These ranges are extensive enough that they compensate any reasonable variation in A

[^3]: * This will happen, in general, if the quark subprocesses in the decay do not contan both a u and a \bar{c} quark Decays where the quark subprocess involves, for instance, $b \rightarrow$ uūd or $b \rightarrow c \bar{c} s\left(e g B_{d} \rightarrow \pi^{+} \pi^{-}\right.$, $\mathrm{B}_{\mathrm{d}} \rightarrow \Psi \mathrm{K}_{\mathrm{s}}$) are examples where one expects $\left|\rho_{\mathrm{f}}\right|=1$

[^4]: * One should, of course, do a detaled study for any given process, before quotıng a definitive number of B mesons needed However, we are skeptical of optımistic statements in the 1iterature [31]
 ** This decay was suggested by Haran [32a], but see also ref [32b] The relevance of B decays into baryonic final states has also been stressed (although not in the context of $C P$ violation) by Stech [32c]

