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Abstract. We present a detailed discussion of the
elctroweak radiative corrections to the partial decay
widths of the Z boson into lepton and quark pairs
(g #t) and to the total width for 5 flavors. The results
are only very weakly dependent on the Higgs mass.
The top mass dependence leads to sizable variations
of I, which have to be taken into account for precision
experiments at the e*e” colliders LEP and SLC.

1 Introduction

One of the basic measurements at the near future e* e~
colliders LEP and SLC will be the determination of
the shape of the Z resonance. This will provide us with
two of the most interesting and important electroweak
parameters: the mass and the width of the neutral
vector boson. For precision tests of the Standard
Model and for searches for signals of possible new
physics it is indispensible to know the predictions of
the Standard Model with high accuracy, including
higher order corrections. The QED corrections [1], in
particular real and virtual photonic corrections in the
initial state, constitute the largest part of the radiative
corrections and lead to a distortion of the shape of
the resonance and to a shift in the peak value. In view
of the high accuracy with which the mass and width
will probably be measured (+20MeV[2]) we are
forced to go beyond the O(x) contributions in these
observables. The effect of O(«?) initial state radiation
on the Z shape has been studied in [3]. It was found
that the 2-loop QED corrections reduce the shift of
the Z peak by 88 MeV. Combined effects of initial
state bremsstrahlung and weak corrections in the Z
propagator, ie. the s-dependence of the width and
2-loop corrections to the imaginary part of the Z self
energy, have also been investigated recently [4].

* Supported by the Stichting FOM

The higher order corrections to the Z width are
therefore of twofold importance:

o They influence the shape of the resonance and have
consequently to be considered for precision measure-
ments of the Z mass. _

o The partial widths for Z — ff will allow one to study
the weak coupling constants of the various fermions
at the level of quantum corrections.

In this note we discuss in detail the radiative
corrections to I'(Z—ff), f=v, I, q(#t), which enter
the results presented in [4]. Previous calculations have
been performed for the leptonic widths [5] and also
for Z— g4 [6,7]. In [7] the influence of the top quark
on the Z —bb decay width has been considered in a
unitary gauge calculation.

The underlying schemes for the various calculations,
however, as well as the choice of the input parameters,
are different in general, and a numerical comparison
at the high precision level as required nowadays has
not been performed so far. Moreover, the on-shell
renormalization scheme based on the boson masses
My, M, together with the electromagnetic fine struc-
ture constant o = 1/137.03604 has become generally
accepted meanwhile and has been widely used also in
other practical applications {8-10] and references
therein).

The basis for our calculation is the on-shell scheme
as specified in [12]. In contrast to [7] we perform our
calculation in the renormalizable 't Hooft-Feynman
gauge. Since we have to include virtual top quarks and
unphysical Higgs bosons in the Z - bb decay vertex
corrections the renormalization procedure of [12] has
to be extended keeping finite mass effects of the type

2 2
mi/Ms,.

QCD corrections in Z — g4 decays are not explicitly
discussed. They can easily be included by multiplying
the electroweak partial widths I',,(ff) by the QCD
correction factor [22,23] yielding (f+#t, massless
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quark approximation)
Few-\‘-QCD(ff) = Few(ff—)
2 23\ 2
-<1 + %(M) + <a3(242)> (198 — 0.115nf)) (1.1

T

for f=gq with n, = number of flavors.*

Electroweak corrections to open top final states in
case of m, < M ,/2, a possibility which is experimentally
not completely ruled out, have been considered in [ 13].
They are less important in view of the uncertainties
from the top mass in the phase space factors and from
large QCD corrections near threshold [17]. Therefore
in this article we study the case m, > M,/2.

The paper is organized as follows: Section 2 contains
the tree level results and the specification of our
notation; in Section 3 we include the electroweak
corrections to the partial widths, and Section 4 gives
numerical results and a comparison with previous
work. Relevant formulae including the top dependent
vertex corrections are put together in the Appendix.

2 Notations and tree level results

Inlowest order the Z propagator has the Breit—Wigner
form

1
s—MZ+iM, 9

The lowest order total width I'$ is related to the
one-loop self energy X ,(s) of the Z boson by

M,I'=ImX,(s= M2). (2.2)

It can be written as the sum of the partial fermionic
decay widths I"3(ff) with m, < M,/2:

F°=;F2(ff)- 23)

DY(s) = 2.1

These partial widths can be expressed in terms of the
vector and axial vector coupling constants of the
fermion f to the Z

. 20,5y

I 2spew

__ I (2.4)
I 2spey '
with

Sy =sinfy, cyp=cosly
as follows:
3
=N£§MZ\/W(U}(1 +2u,)+aX(1—4u)) (2.5)

* Recently the next order term has been calculated [24] which is
even larger than the 0(«2) term. For five flavours it is given by 64.835

(o/m)?

with N{ =3 for quarks, N{ =1 for leptons, and

2

m

py==%. (2.6)
¥4

The mixing angle is used in the standard on-shell

definition in terms of the boson masses:

=1 M @7

For actual calculations the dependence on My is
eliminated in favor of the precisely measured Fermi
constant G, by means of the relation [14]

A
1 _Ar((x’MW’MZ5MHsmt)

M5 (1 — M3/M3) = (2.8)
with

A=—"% _(37.281 GeV):.

76,

For our calculation we use the expression Ar in the
form as given in [11,12].

3 Electroweak one-loop contributions

The partial widths (2.5) in lowest order are influenced
by next order corrections in terms of the vector boson
2-point functions, external wave function renormaliza-
tion of the fermions, and irreducible vertex corrections.
In the following all symbols for the loop contri-
butions denote the corresponding renormalized finite
quantities. The explicit expressions for the 2-point
functions can be found in [12].

The Z propagator (2.1) becomes modified replacing
the constant width term by the Z boson self energy
2, (s)

1
s — M2+ ReX,(s) + iIm X,(s)

Dy(s) = (3.1)

where Re X' ,(M32) = 0 due to the on-shell renormaliza-
tion condition for the Z boson. Around the Z pole
approximately a Breit—Wigner form

1 1
1— I, (M%) s— M2+ iM, TP

is recovered by a re-definition of the total width

Dy(s) =

(3.2)

i — Iz (3.3)
T 1— M) ‘
with I"? from (2.3-5) and
0
I1,(5) = = =Re Z,(s). (3.4)

This global normalization (3.3) corresponds to the
wave function renormalization of the Z line in the
decay diagram la. For each partial width this means



that (2.5) has to be muitiplied by a common factor:

TP =Ty (1 - T(M3) ™" (3-5)

Furthermore, the reiation (2.8) can be utilized in order
to re-express (3.5) in terms of the Fermi constant G,
yielding:

— Ar

ryuN=riif )—Hz(—Mz) (3:6)

The quantity

Ty = Nf \/ﬂ

(1—- 4uf+(2lf—4QfsW)2(1+2,uf)) (3.7

represents another possible tree level parametrization
of the partial decay width leading to an approximate
total width*

;= ZT (7). (3.73)

Since the large contributions from the light fermions

o ., My
X S 02jog
3n;Qf o8 m%

in Ar and in IT,(M3) cancel in the expression (3.6),
I'Y turns out to be a sufficiently good approximation
(for m, < 100 GeV) including already the major part of
the one-loop corrections.

In addition to (3.6) we have to incorporate the y-Z
mixing contribution (Figure 1b) and the vertex correc-
tions together with the external fermion self energies
(Figures2,3). Since we do not consider radiative
corrections to Z — ¢t we can neglect all terms of order
m3/M% (f #t) in the loop expressions. This means that
also Higgs contributions in vertex and fermion self
energy diagrams are neglected, except for f=b.

In case of the Z—bb decay channel the full top
mass dependence coming from the virtual ¢ quarks
in Figs. 2,3 are included. Due to the underlying
’t Hooft—-Feynman gauge also “unphysical” charged
Higgs bosons enter the diagrams as virtual states with
poles at g* = M3, .

The final result for the partial width can be written
in the following way:

T(fN) =T+ AT(N) (1 —MMD)™" (38)
with I"'%(ff) from (2.5), and
AT ,(ff)= ci“Mz(Uf(F{f +Q,IT,;) + a;Fj). (39

The y-Z mixing term is related to the mixing energy
PIPH

IT,;=Re X ,(M2)/MZ. (3.10)

* Others than Z —ff decay channels in higher order of the coupling
constant are very small [21] and can be neglected for our discussion
of the total width
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X, is taken from [12] The finite vector and axial-
vector form factors F{, , are listed in the appendix for
the various types of fermions.

Finally we have to include the QED corrections due
to virtual photon exchange and real bremsstrahlung
integrated over the full phase space. For light final
fermions the result can be simply obtained [21] by
multiplying (3.8) with the correction factor 1+ 84gp,
with

3a
8%ep = y Q3. (3.11)

Its relative influence is < 0.17%.

4 Results and discussion

Besides the quantities «, G,, M, which are sufficient
to determine I, at the tree level, the unknown
parameters My and m, enter the higher order result.
For our numerical discussion we proceed in the
following way:

After specifying the values for M,, My, m, we derive
from (2.8) the corresponding value for M resp. sin? 0,
thus fixing the coupling constants v, a, and the next
order terms in (3.8-9). To this end we have to specify
the hadronic vacuum polarization from the light
quarks which enters the quantity Ar in (2.8) as well as
the Z wave function renormalization IT,(M2). We do
this by adjusting our hadronic QED part of Ar to
the result of Jegerlehner [15], which, for 5 flavors, is
(M;=93GeVy):

Ar) oep = 0.0286 + 0.0007. 4.1

This is slightly different from the value 0.0274 in [16]
which was adopted in [7]. In order to perform a
comparison with [7] we have to modify our hadronic
input accordingly.

Table 1 contains the total electroweak Z width I,
(including QED corrections) for fixed My = 100 GeV.
The tree level values I'§ correspond to the standard
parametrization given in (2.3-5), I'$ is the tree level
width (3.7a) in the G, representauon For top masses
not too large (m, < 100 GeV) I'Y gives already an
approximation which is good within 5 MeV. For large
top masses, however, I' 2 becomes insufficient as well;
in some cases the parametrization I'$ in (2.5) is the
better approximation.

The Higgs and top mass dependences of the total
width I, are put together in Table 2 for various Z
masses. The variation with m, is strong enough that it
has to be taken into account if one wants a theoretical
precision of 10 MeV. For example, the variation of m,
between 50 and 150 GeV leads to an increase in Iy,
by 21 MeV (for M, =92 GeV, Mz = 100 GeV). On the
other hand, the variation of I, with the Higgs mass
remains smaller than 10 MeV.

The hadronic uncertainty coming from (4.1) is
responsible for a hadronic uncertainty in I, amount-
ing to (Al ;g = +0.6MeV. The somewhat larger
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Table 1. Total Z width without QCD corrections. All
values in GeV. I': tree level width, parametrization
(2.3-5), I'%: tree level width, parametrization (3.7), I'y:
with electroweak corrections

M, m, re I Iy

90 50 21305 22936 2.2948
90 100 21739 23056 23035
90 200 22966 23386 23275
91 50 22176 23889  2.3898
91 100 22648 24019 23993
91 200 23997 24379 24244
92 50 23071 24869 24876
92 100 23584 25010 24978
92 200 25062 25401  2.5240
93 50 23992 25878  2.5881
93 100 24545 26029 25992
93 200 26161 26451 26264
94 50 24938 26914 26911
94 100 25531 27075 27033
94 200 27295 27531 27316
95 50 25910 27978 27968
95 100 26543 28149 238102
95 200 28464 28639 28396
96 50 26907 29070 29049
96 100 27581 29250 29199
96 200 29670 29776 29504

hadronic error in the photon vacuum polarization of
+0.0012, as estimated in [19], results in (A Ty} =

1 MeV. In both cases the uncertainty coming from the
light quarks is of no practical importance for I',.

Next we discuss the partial decay widths for Z — ff
and their dependence on the model parameters, listed
in Table 3. Again, the variation with the Higgs mass
is not very striking: 0.2 MeV for the leptonic channels,
and somewhat more in the hadronic decay modes, but
still smaller than 1 MeV.

The dependence on m, is strongest in the Z—»udu
and Z—dd decays. In the Z—bb partial width,
however, the top mass dependence is much weaker.
The reason for this behaviour is the additional top
dependence of the vertex corrections in Z — bb which
cancels (partly) the top contributions in the gauge
boson 2-point functions. This is exhibited in more
detail in Table 4 (for M; =92 GeV, My = 100 GeV):

The tree level approximations I"9(ff) as defined in
(3.7) are slightly different for d and b quarks due to
the finite m,. The determination of sin? f, by means
of (2.8) and the dependence of Ar on m, are responsible
for the variation of I"9(ff) with the value of m,. The
weak corrections AT }*(ff) defined as

AT 3 (ff) = I2(ff) - T3(f1) 42)

with the corrected partial width I',(ff) from (3.8)
induce additional top quark contributions. Those
entering via the Z-Z and Z-y propagators (Fig. 1) are
identical for both d and b, whereas the vertex and
quark self energy diagrams (Figs. 2, 3) yield different
corrections for d and b final states. For bb they tend

Table 2. Total Z width including electroweak corrections
(no QCD corrections). All values in GeV

Mz MT MH=10 MH=100 MH =1000GeV
90 50 2.2924 2.2948 2.2870
90 100 23011 2.3035 2.2958
90 150 23112 2.3137 2.3062
90 200 2.3249 2.3275 2.3203
90 230 23349 2.3376 2.3305
91 50 23872 2.3898 2.3818
91 100 2.3966 2.3993 2.3913
91 150 24072 2.4099 2.4022
91 200 24215 24244 24169
91 230 24319 24349 24276
92 50 2.4847 2.4876 2.4793
92 100 2.4949 24978 2.4897
92 150 2.5059 2.5090 2.5010
92 200 2.5208 2.5240 2.5163
92 230 2.5316 2.5349 2.5274
93 50 2.5848 2.5880 2.5795
93 100 2.5959 2.5992 2.5908
93 150 2.6074 2.6108 2.6026
93 200 2.6229 2.6264 2.6185
93 230 2.6341 26377 2.6301
94 50 2.6875 26911 26823
94 100 2.6997 27033 2.6946
94 150 2.7117 2.7154 2.7070
94 200 2.7277 27316 2.7235
94 230 2.7393 2.7433 2.7355
95 50 2.7928 2.7968 2.7878
95 100 2.8062 2.8102 2.8013
95 150 2.8187 2.8228 2.8141
95 200 2.8353 2.8396 2.8313
95 230 2.8473 2.8517 2.8437
96 50 2.9005 2.9049 2.8956
96 100 29155 29199 29107
96 150 2.9284 2.9330 2.9241
96 200 2.9457 2.9504 29418
96 230 2.9580 29629 2.9547

to cancel the increase of the lowest order term for large
m,.
Finally we want to compare our results with those
of the previous calculations by Wetzel [6] and
Akhundov et al [7]. Wetzel employs a different re-
normalization scheme; therefore only a comparison of
the corrected values for I',(ff) is meaningful. For
M;=92GeV, My;=100GeV and m,=40GeV, as
specified in [6], we find agreement within 0.5 MeV for
the v, e, u, and d partial widths. Heavy quarks are not
discussed in detail in [6].

In order to make our results comparable with those
of Akhundov etal [7,20], obtained in the on-shell
scheme and the unitary gauge, we have to put m; =0
in the tree level formula and to adjust our value for
hadronic QED vacuum polarization in a way that it
fits the table for sin? 0, given by Lynn and Stuart [16]
(since their hadronic part was adopted in [7]).

Doing this, we find excellent agreement in all partial
widths within 0.1 MeV, sometimes 0.2 MeV, for the
whole range, of the considered top and Higgs masses.
This underlines the high level of reliability in the
calculation of electroweak radiative corrections.



145

G8SE0 665£0 S65€0 090 1LEVO £9¢¥°0 123944 LSO [G2540) 0£C 96
79¢¢°0 SLSEQ TLSE0 TLEVO £8¢h'0 9LEYD 90S¥°0 0Zsy'o (89 4V] 00T 96
625€°0 (32321 0rse0 121344 L6EV0 060 oLYr 0 ¥8PP0 8LYY'0 0ST 96
G0SE0 [174% %V L1SE0 16£1°0 Sovv'0 86£1°0 2224\ 1452740 $S44Y 001 96
£8v€°0 L6YED rore0 9LEV'O 06£Y°0 123340\ 61¥°0 154 24Y LTYY0 0s 96
SEVE0 e 0 ShPe0 6170 [Sir440) 86110 9¢¥°0 SLEVO 69¢¥°0 0€T S6
¢Iveo 9re0 €Tre0 YOTY'0 910 0FZt0 9¢et’0 6bet0 132344 00T $6
18£€°0 S6££°0 76£€°0 91ITr0 6TV 0 [x444\] TOEY'0 M85 4V 60¢v°0 (U $6
86EE0 TLEL0 0LEED £TTH 0 LETYO 1€TV'0 SLTYO 067Y°0 80 001 S6
8€EE0 76€€°0 6¥€L0 11270 STTH0 61TH0 13Y42V] L9Tv0 197¥°0 0s $6
6820 0£e0 662¢°0 1600 woro 9¢0t'0 Y61¥°0 LOTY'O 20er0 0€T ¥6
89C¢°0 087E0 8LTE0 ¥0v°0 [340) 4V LyOr'0 6910 810 LLIVO 00T 6
8€TE0 162¢°0 8YCE0 °s0r0 S90v0 090¥°0 SETF0 (4840 348 4V 0sT 6
SIZe0 6CCE0 LTTE0 8S0¥'0 TLOY0 L90V0 V1R8] 174340 611v°0 001 v6
961€0 012¢€0 802¢°0 8Y0Y'0 79010 LSOY0 63010 €01¥'0 86010 0S 6
LYIE0 091¢°0 LSTE0 TL8E0 £88¢0 8L8€0 0£0v'0 €00 8¢0r'0 0¢¢ €6
9ZI£0 6£1€°0 LETEO0 188¢€°0 £63£°0 883¢°0 S00V0 610t°0 PI0v'0 00C £6
860£°0 011€0 60180 168£°0 Y06£°0 668£°0 €L6£0 986£°0 186£°0 0s1 €6
LLOEO 680£°0 880£°0 L68E0 116£°0 906¢£°0 6v6€£°0 796£°0 866£°0 001 £6
650£°0 cLoe0 0L0£°0 688¢°0 £06€°0 868€°0 626£°0 £V6E°0 6£6£°0 0s €6
010€°0 170€°0 020¢°0 LILED 8CTLEOD €TLEO 698¢°0 788£°0 8LRE0 0ee 76
06620 °00€0 000€°0 YZLED 9¢LE0 TELEQ 98¢0 658€0 SC8E0 00C 26
79620 YL6T0 €L6T0 PELEQ LYLEO €PLED P18€°0 LT8€0 £€78¢0 0sT 6
w6l 5620 £€567°0 ovLED €5LE0 6vLE'0 T6LE0 08¢0 008¢0 00T 6
§T6C0 8¢6C°0 LE6TO £ELED 9LED TrLE0 CTLLED 98LE0 78LED 0S 6
9L82°0 L88T0 98870 ¥95€0 SLSED TLSE0 TILE0 STLED 12LEQ 0£T 16
LS8T0 898C°0 L98T0 1LSE0 £86€°0 6L5€°0 689¢°0 70LE°0 669£°0 00T 16
0£8C0 r8C0 1+8C°0 085¢°0 £65€°0 6850 869¢°0 1L9€°0 899¢°0 0S1 16
11820 €870 728T0 98¢0 665£0 S6SE°0 9£9¢°0 6¥9£°0 999€°0 001 16
96L2°0 80820 L08T0 085€0 £65£°0 065€°0 619¢°0 £9¢0 6C9¢°0 s 16
IPLTO LSLTO0 96LT0 SIPE0 9ZTre0 %42V 86S€°0 ILSE0 895€°0 0¢T 06
8TLTO 6£LT0 8¢LT0 Treo £EPED 0eveEo 9€5€0 6vSE0 9pSE0 00T 06
€0LT0 YILTO €ILTO 0EPE0 weo 6¢PE°0 905¢€°0 61S£°0 915¢°0 0sT 06
+¥897°0 96970 $697°0 SeEveo /e 0 Shreo ¥8+E0 L6vE0 S6vE°0 001 06
0L9T0 789T°0 189C°0 0Ere0 evPreo ovre0 89%€°0 18¥€°0 8LYE0 0s 06

0001 00T OI=HW 0001 001 01 00071 00T OI=HW LN ZN

syrend) syrend g syrend @

"ASD) UI SaN[BA [[Y 'SUOTRLIOd (IO PUe (JHO INOYNM syipim ArOdp oruoIpey [enied ‘qg dqe],

LTOT'0 67010 8I0T0 +961°0 L9610 79610 0¢T 96
ZI0T'0 ST0T'0 €T0T0 95610 6561°0 ¥s610 00T 96
S00I'0 800I'C 90010 9¥61'0 6v610 61’0 0ST 96
66600 TO01'0 T001'0 8t61'0 1¥610 9¢610 00T 96
£6600 L6600 $6600 0610 €€61°0 87610 0¢ 96
LL600 08600 8L600 €061°0 LO6TO 0610 0EC  S6
€L600 SL60°0 PL6DO 96810 66810 6810 00T  S6
99600 69600 L9600 S881°C 68310 78810 0ST  S6
19600 #9600 €960°0 8L8T'0 T881°0 LL8TO 00T  S6
96600 65600 85600 IL81°0 vL8I0 0L8T0 0§ £6
6£600 T¥60°0 OV600 +¥810 LPBTO ¢8I0 06T v6
SE600 8£60°0 9€600 LEST'O O¥BIO Ce8I'0 00C V6
6T60C TE600 0£600 LT8I'0 OE8TO ST8T0 0ST  ¥6
¥2600 LT60'0 97600 61810 €T8TO 81870 001  ¥6
02600 £€2600 12600 €I8T0 91810 ZI8T0 0OS ¥6
£060°0 €S0600 +0600 98LT°0 68L10 S8LTO 0T €6
00600 0600 00600 6LLT0 TBLLO 8LLT'O 00T €6
P680°0 96800 S6800 69L1'0 TLLI'O 39L10 OST €6
68800 T6800 716800 CTILI'0 SILIO 19L10 00T €6
$880°0 8880°0 L8800 9SLI0 6SLIO SYASVUEVY €6
69800 T.800 69800 6TLI0 TELIO 8CLT'0 0tC  T6
9980°0 89800 99800 <TZLI'0 STLIO 1TL10 00T T6
19800 €£980°0 1980°0 <TILIO 9TILIO CILTO0 OST  T6
LS800 6580°0 85800 90LI'0 60L1°0 SOLT'0 001  T6
£680°0 9S80°0 +S80°0 QOLT'0 €OLTO 00,10 0 76
LEBO0 8E80'0 LERODD €L9T0 9L9TO 910 0t 16
$€80°0 SE€800 HEB0'0 99910 69910 9991°0 00T 16
67800 T€£80°0 0€800 LS9T'0 09910 LSOT'0  OST 16
97800 87800 97800 IS91°0 ¥SOI0 05910 00T 16
€780°0 <S780'0 €T8O0 SYII'0 6¥91°0 Y910 0§ 16
L0800 8080°0 90800 61910 TTITO 8191°0 0€CT 06
$080°0 S0800 $080°0 TI9N0 <I910 <1910 00T 06
00800 TO80'0 00800 €09T0 90910 €0910 OST 06
L6LO0  66L0°0 L6LO'0 L6STO 00910 L6ST0 00T 06
6,00 96L00 $6L00 T6SI'0 S6STO 6510 0§ 06

0001 001 01 0001 001 OI=HW 1IN ZI

uoI09[q OULINAON

A9D UI sanjeA
[IV 'SuomoarIod (IO moym syipim oruoido] Jenied °ef s|qeL



146

Table 4. Partial widths for Z—dd and Z—-bb in GeV. I'3: tree
level approximation, (3.7), AI'y**: weak corrections, (4.2), m, =
4.5GeV, M, =92GeV, M, = 100GeV

m, IFYddy  Arys<dd) TYbb)  AIry=*(b)
50 0.3784 0.0001 0.3748 —0.0002
100 0.3809 —0.0005 0.3773 —0.0020
150 0.3838 —0.0011 0.3801 —0.0055
200 0.3875 ~0.0017 0.3839 —0.0102
230 0.3904 —0.0021 0.3867 —0.0139

f
Z wz <f 7 m Y ‘/\
(a) {b)

Fig. 1a,b. Contributions of the vector boson 2-point functions to
the Z —ff width

5—\
{f) (g)

Fig. 2a-g. Weak vertex corrections to the Z —f7 width. f denotes
the isospin partner of the fermion f

—

Z W o
r’JN\( ;J‘N‘l( 4 N
f f f f f f ot f t
{a) (b) (c)

Fig. 3 a—c. Weak contributions to the fermion self energy

In conclusion, our discussion of the Z width has
shown that the electroweak corrections play a role for
precision experiments, in particular the top mass
dependence. The variation with the Higgs mass does
not exceed the aimed experimental accuracy.

5 Appendix

5.1 Z —ff vertex corrections for f#b

For those external fermions which do not get virtual
top contributions in the vertex diagrams only diagrams

2a—c and 3a, b have to be considered. The finite result
after renormalization can be summarized in terms of
vector and axial vector form factors:

T2 =iey, (v, —asys) +iey, (FH(s)— ysFi(s)). (5.1)

The quantities F}, , entering the Z width formula in
(3.9) are given by the on-resonance values

F{ =ReF{(M3), F,=ReF}(M}). (5.2)

The explicit expressions for the form factors in (5.1)
read for

Neutrinos:
FU) = Py =4 A, My)
v 4 4 4chW 4chW e
258 — c%
+ 252 Z(SaMW)+ As(s, My)
Charged leptons:
FL(s) = :—n{u,(vf +3a2)A,(s, M) + FL) (5.3)

o
FL) = - (@307 + @) A (s, Mg) + FL)

with
1 3¢
P =8_3_A2(s,MW)——§1A3(s,Mw)-
SwCw w

u-type quarks:

Fy(5) = o= {0u(03 + 3a2) A5(5. M) + F1}

Fi(9) = o= (@303 + ) 455, M) + F1)

with

1= %SW
853 cw

d-type quarks:

Fi

Ay, MW)+ As(s, My)

o
Fy(s)= Z;r-{va(v.? +3ad)A (s, Mz) + Fi}

F‘,’i(s)— {ad(Bvd +a) A, (s, M)+ F$}

with

1-—-
F}‘, 3swAz(S:]MW)

853 WA3(s My).

In the range m? « s <4Mj, the functions A,, Aj
have the form*

(w= M?/s, where M = M, or My)

* Since we need only the real parts we drop here the imaginary parts



Ay, M)= —F —2w— (2w + 3)log(w) + 2(1 + w)*

-<log (w)log <1—-|;W) — Li2< — %>>,
5 2w 2

As(s, M)—f——+ (2w+1) 4w — larctan-— ———
N J—

8
——ww+2) <arctan —;> . (5.4)
3 4w—1

5.2 Vertex corrections for Z—bb

The situation for the bb final state is more complicated
due to the presence of the top quark and the charged
Goldstone Higgs bosons in virtual states.

The form factors according to (5.1) can be written
in a way analogous to (5.3):

o
Fy(s)= E{vb(vl? +3ad)A, (s, Mz) + F}

Fi(s) = %{ab(wf +a2)A,(s, M)+ F2) (5.5)

F? is the sum of the top dependent diagrams Fig. 2
b-g and the Z-bb counter term [12] involving the b
quark self energy diagrams Fig. 3b, ¢

F = Z ReF, LEsw— Lszim (5.6)
4swew

8Z%n is the finite part of the left-handed b-quark

renormalization constant which would vanish for

m, < My:

) 1 2\ _
5me ___—<2 + 5 i >(Bl(ml%’mt7MW)

253 M2
+m§B,1(mb7mtaMW))
1 m2
= 2s 2 +M2 B, (mZ,m,, My). (5.7)

For the function B, see (5.14).

The F, in (5.6) are the expressions corresponding
to the diagrams Fig. 2b-g after subtracting those
(divergent) parts which are cancelied by the vertex
counter term after renormalization:

v, +a, 3

452, { 2

—2s5(C3 (s, mnmnMW)

+4sC{(s,m,,m,, My)—
v, —a,
45z,

Fb=

mtaMW)

CZ (S’ m,, My, MW))
2SC0(S’ m,, m,, Mw)}

2mt2 Co(s, mp mta MW)

c
F,=—"{—3+12C%(s, My, My, m,)
4SW

- 2S(C; (ssMWsMW9mt) -
+ 4SCf— (S: MWaMWa mt)}

C2_ (S, MW) MWa mt))
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2
=G ) e
+2CY(s, m;, m,, M)

—s(CF (s,m;,m,, Myp)—C5 (s, mt,m,,MW))}
_v,+a,< m,
45, \ My,

2
> mtz Co(s,m;,m,, My)

S M Ny 09, My, My,
e SS%VCW MW s w> W’mt}
2
Ff = Fg = — Co(S Mw,Mw, m,) (5.8)
4chW

The functions C;, C5, C; , C3 are specified in terms
of the scalar 3-point integral C, and the finite parts
of the 2-point integrals By, B; defined below in
(5.13-14):

(4my —s)C{ (s, M, M, M) =

M, M)

—Eo(m,f,M M)

+ (M — M? +m3)

‘Cols, M, M, M’) (5.9
CO(s, M, M, M') = L(Bo(s, M, M) + 1)

+3(M? = M2 —m)C{ (s, M,M, M)
+IM2Co(s, M, M, M)
(4m; —s)C3 (s, M, M, M')

=1By(s, M, M)
+ 5By (m3, M, M) —3) + (M"* —
“CH(s, M,M,M)— CS(s, M, M, M),
sCy (s, M, M, M) = —5(B,(m}, M', M)— %)
— C(s, M, M, M').

M2+ m)

The scalar vertex integral for equal external masses m,
d*k
@2m)*

6n 2Co(s,MMM) |

1

(5.10)

®E—M)((k—p) —MD)((k+p,) —M?)

corresponds to the diagram

with
s=(p+p)% p=pi=
Applying the method of *t Hooft and Veltman [18]
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the integral (5.10)
Col(s, M, M, M)

1 ¥y
= —f{dy[dx(ay* +bx*+cxy+dy+ex+f)!
4] 0

with
a=m;, b=—c=s, d=M*—M?*—m3,
e=0, f=M?—

is expressed in terms of dilogarithms*

Cols, M,M,M’) = +2abz Z( 1){le< —y;-)

I=1j=1

—1
-1(35,)
Xp— Yij

(5.11)

together with

_d+2a+ca
T c+2ab
d
(1 —o)(c+2ab)’
d
afc +2ab)’
—ct./c2—4bla+d+f)
Yi;= 2b )
—d+./d*—4f(a+b+o)
2a ’

>

x2=——

X3=

YV2j=Y3;= (5.12)

Finally we have to specify the functions B, and B,
appearing in (5.7) and (5.9). B, is the finite part of the
scalar one-loop integral B,:

BO(SsM’MI)z%(AM +AM’) + EO(S’Ma M,)

with
2 4 p?

AM=m—y+logW,
and
_ M2+M?* M
Bo(s,M,M’)zl—MzJ_rTI g+ Fs MM)

_ ldl x2s—x(s+M*—M'?)+M*—ie

=] dxlog MM

(5.13)

The analytic expression for the function F(s, M, M’)
can be found in [12].

The finite function B, is related to F in the following
way:

* Because we are dealing with real internal masses no extra
logarithm from crossing some cuts have to be added

M
log—

- M?
By(s M,M)=—~
l(s’ H ) + M

4T MM
—M?—
+ 2 T TS ps, M, M),
2s

It is the finite part of the 2-point integral

(5.14)

on ztu (¢>, M, M)

=,u4—Dj dk ku
2m)P (k> —M?)((q+k)* — M%)
defined with the following subtraction:
BI(S’M’ MI) = _%(AM’ +%) + El(sa M: M/)

Acknowledgements. We are grateful to D. Yu. Bardin for supplying
us with detailed information on the numerical resuits of the Dubna
group. In particular we want to thank G.J.H. Burgers for numerous
valuable discussions.

References

1. M. Greco, G. Pancheri, Y. Srivastava: Nucl. Phys. B 171 (1980)
118; E: B 197 (1982) 543; F.A. Berends, R. Kleiss, S. Jadach:
Nucl. Phys. B 202 (1982) 63; M. Bohm, W. Hollik: Nucl. Phys.
B 204 (1982) 45

2. Physics with LEP, J. Ellis, R. Peccei, (eds.) CERN 86-02

3. F.A. Berends, G.J.H. Burgers, W.L. van Neerven, Phys. Lett.
185 B (1987) 395; CERN-TH 4772/87

4. F.A. Berends, G.J.H. Burgers, W. Hollik, W.L. van Neerven:
Phys. Lett. 203B (1988) 177

5. M. Consoli, S. LoPresti, L. Maiani: Nucl. Phys. B 223 (1983)
474; P. Antonelli, M. Consoli, C. Corbo; Phys. Lett. 99 B (1981)
475; F. Jegerlehner: Z. Phys. C— Particles and Fields 32 (1986)
425

6. W. Wetzel, in [2], and Nucl. Phys. B 227 (1983) 1

7. A.A. Akhundov, D.Yu. Bardin, T. Riemann: Nucl. Phys. B 276
(1986) 1

8. B.W. Lynn, J. Wheater. Radiative Corrections in SU(2) x U(1)
(eds.) World Scientific 1984

9. A. Barroso et al, CERN-EP/87-70, in: ECFA Workshop on
LEP 200, (eds.) A. Bohm, W. Hoogland, CERN 87-08, ECFA
87-108 (1987)

10. W. Hollik: EPS Conference on High Energy Physics, Uppsala
1987, DESY Preprint DESY 87-129 (1987)

11. M. B6hm, W. Hollik, H. Spiesberger: Z. Phys. C—Particles and
Fields 27 (1985) 523

12. M. Béhm, W. Hollik, H. Spiesberger: Fortsch. Phys. 34 (1987)
687

13. W. Beenakker, W. Hollik: in [9]

14. A. Sirlin: Phys. Rev. D 22 (1980) 971

15. F. Jegerlehner: Z. Phys. C—Particles and Fiélds 32 (1986) 195

16. B.W. Lynn, R.G. Stuart: Nucl. Phys. B 253 (1985) 216

17. J.Jersak, E. Laerman, P.M. Zerwas: Phys. Rev. D 25(1980) 1218

18. G.’tHooft, M. Veltman: Nucl. Phys. B 135 (1979) 365

19. J. Cole, G. Penso, C. Verzegnassi: Trieste Preprint 19/85/EP
(1985)

20. D.Yu. Bardin: private communication

21. W.). Marciano, D. Wyler: Z. Phys. C—Particles and Fields 3
(1979) 81; D. Albert, W.J. Marciano, D. Wyler: Nucl. Phys.
B 166 (1980) 460

22. T.H. Chang, K.J.F. Gaemers, W.L. van Neerven: Nucl. Phys.
B 202 (1982) 407

23. K.G. Chetyrkin, A.L. Kataev, F.V. Tkachov: Phys. Lett. 85 B
(1979) 277, M. Dine, I. Sapirstein: Phys. Rev. Lett. 43 (1979) 668
W. Celmaster, R. Gonsalves: Phys. Rev. Lett. 44 (1980) 560

24. S.G. Goriehny, A.L. Kataev, S.A. Larin: Preprint JINR Dubna
and INR Moscow (1987)



