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Abstract. In the following report we describe a method 
for calculating the envelope of a particle bunch in 
linear coupled storage rings and transport  systems in 
the presence of transverse and longitudinal space 
charge forces using the (canonical) variables x ,  Px,  z ,  

p~, a = s - Vo ' t ,  p~ = A E / E  o of the fully six-dimensional 
formalism. This work is an extension of earlier calcu- 
lations on transverse space charge forces [1] to include 
the synchrotron oscillations. The extension is achieved 
by defining a 6-dimensional ellipsoid in the x -  p ~ -  
z - p ~ -  a - p ~  space. The motion of this ellipsoid 
under the influence of the external fields and the 
instantaneous space charge forces can be described by 
six generating orbit vectors which can be combined 
into a 6-dimensional matrix _B(s). This "bunch-shape 
matrix", _B(s), contains complete information about  
the configuration of the bunch. The solution of the 
equations of motion is carried through in the thin lens 
approximation. The formalism can also encompass 
acceleration by cavity fields. 

1 Introduction 

In [1] we described a technique for calculating the 
beam envelope in a storage ring when transverse space 
charge forces are taken into account. The method 
consists of calculating the motion of the 5-dimensional 
ellipsoid in the x -  P x -  z -  p z -  A p / p  space of the 
kinematic variables. The beam envelope at each place 
in the ring is obtained by projecting this ellipsoid on 
the x - z, x - p~ and z - p~ planes. 

In that paper we dealt only with transverse 
(betatron) oscillations. 

The aim of the following report is to generalise these 
investigations by including the synchrotron oscil- 
lations. 

To achieve that, additional coordinates o- = s - v o" t 
and rl = A E / E  o which describe the longitudinal motion 
are introduced. Here a measures the distance of a 

particle from the centre of the bunch and t/designates 
the energy variation with respect to the average energy 
E o �9 

With the complete set x ,  Px,  z ,  Pz,  a, tl we are in a 
position to provide, in the framework of this 6- 
dimensional formalism, a linear analytical technique 
which handles the combined external magnetic and 
transverse and longitudinal space charge forces in a 
consistent canonical manner and which includes con- 
sistently and canonically the synchrotron oscillations 
in the electric fields of the accelerating cavities. 

In Chap. 2 the equations of motion are derived by 
a simultaneous treatment of synchrotron and betatron 
oscillations taking into account the coupling of the 
longitudinal and transverse motion where we assume 
at the beginning that the space charge forces are 
known. It is shown that these equations may be written 
in a canonical form if t/ is chosen as the generalised 
momentum canonical to a. 

In order to describe the particle distribution in a 
bunch in Chap. 3 we consider a 6-dimensional ellipsoid 
in the x -  P x -  z -  P z -  a -  p~ space. The motion of 
this ellipsoid is described by six generating orbit 
vectors which are combined into a 6-dimensional 
"bunch-shape-matrix" _B(s). 

Since this matrix, _B(s), contains complete infor- 
mation about  the configuration of the bunch we are 
then in a position to estimate the space charge forces. 
This is done in Chap. 4 by calculating the electric fields 
in the rest system of the bunch. The space charge forces 
are then obtained by a Lorentz transformation into 
the laboratory system of the bunch. 

In Appendix A some space charge integrals are 
investigated. 

The solution of the complete equations of motion 
containing the transverse and longitudinal space 
charge forces is presented in Chap. 5 in the form of 
the thin lens approximation. Because these equations 
are canonical the corresponding transfer matrix is 
symplectic. Thus well known techniques may be used 
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to investigate the stability of the mot ion  and eigen- 
vector  methods  may  be applied to est imate the tune 
shifts. 

In Appendix B it is shown that  the acceleration by 
cavity fields can also be encompassed  in this formalism. 

The equat ions so derived could be used to study 
bo th  dynamic  and stability behaviour  of a whole bunch 
in t ranspor t  systems and storage rings. 

A s u m m a r y  is presented in Chap.  6. 

2 The equations of  motion 

Our  investigation of synchro-be ta t ron  oscillations in 
the presence of space charge forces begins with a 
s ta tement  of the equat ions of mot ion.  We will use the 
same variables as those in [-2]: x , z ,a  = s - V o ' t  and 

= AE/Eo,  where x and z describe the ampl i tude of 
transverse mot ion  (betatron oscillations), while a and 
~/describe the longitudinal  (synchrotron) oscillations. 
Since Vo designates the average velocity of the particles, 
the quant i ty  a describes the longitudinal  separa t ion 
of a particle from the centre of the bunch�9 

The equat ions for t ransverse mot ion  have already 
been given in [1]. They  are: 

x" = - G l"x + (N + H')'z + 2H'z '  

1 
+ �9 fSx elf + K ~ - f ( t / ) ;  (2.1 a) 

7o'rno'v2 

z" = - G2"z + (N - H') 'x  - 2H 'x '  

1 
-']- fSz elf + K ; f ( t l )  (2.1b) 

7 o ' m o ' V 2  

with 

1 e (~Bx  c?B~ ; (2.2a) 
N - 2  po'c \ ~x ~zz j . . . .  o 

1 e 
H . . . . .  B~; (2.2b) 

2 po'c 

g = Po "c k ~x / . . . .  o 

and 

G l = K ~  +g; G 2 = K  2 - g ;  (2.3) 

f (O  = p - p ~  Ap Po pO - x / ( l + t / )  2 (mocZ/Eo) 2 1 

(2.4) 

and where F~f f and F~ ~lr are the space charge forces 
in the x and z directions. 

In  the following we put  

1 
./?self = Fxx'X + Fx~'Z; (2.5a) 

~/O'mO'/)2 --x 

1 
.is,~lf = F~x'X + F=.z (2.5b) 

'~ 0 " t o o "  v 2  - -  z 

where Fxx, Fxz, Fz~,, F= are in t roduced in Chap.  4. 
Fo r  now, we only need to use the fact that  

Fxz = Fzx. (2.6) 

The quant i ty  f(t/)  in (2.1) can be developed in a 
power  series in ~/: 

f(t/)  = f ' ( 0 ) . t / +  �89 + . . .  (2.7) 

with 

1 l + r /  

f ' (q )  = fl~ x/(1 + q)2 _ (moc2/Eo)2 

1 E 1 
(2.8a) 

f l  o p . c f l  o " f l  ' 

1 
~ f ' ( o )  - f i g ,  (2.8b) 

1 

1 E o 1 
(2.9a) 

flo E fl372, 

1 
~ f " ( 0 )  - flo<y 2 . (2.9b) 

To  obtain  the equat ions for longitudinal  mot ion  we 
recall that  the field in a cavity can be writ ten in terms 
of a as 

e~av~ty = V ( s ) . s i n [ k . 2 ~ . a  + ~o]; (2.10) 

~o = 0, rc for protons�9 

Wri t ing the longitudinal  space charge forces as 

1 
- -  F ]  elf = F~(s)'cr (2 .11)  
Eo 

the equat ion for the var ia t ion of 7/is: 

e V(s) 2~ 
11' = Eo . c o s ~ o ' k ' _ _ ' a + F ~ ( s ) ' a .  (2.12) 

The  calculation of F~ is given in Chap.  4. 
The var ia t ion of a = s - v o" t(s) is given by: 

dt 
or' = 1 - vO'd~s; 

dl 
dt = - - ;  

u 

d l=ds . [1  + Kx 'x  + Kz 'z  +-:.]; 

~ a '  = 1 - v~~ [1 + Kx 'x  + Kz 'z  + .. .] .  (2.13) 
D 



With the relation 

Vo = flo2-f'(t/); 
V 

if(t/) =if(O) + t/.f"(O) + . . .  
1 1 

from (2.8 and 2.9) we then obtain in linear approxi- 
mation: 

1 
a' = --'fl2o7 2 ~ - ( K x ' x  + K~'z) .  (2.14) 

Equations (2.1, 2.12 and 2.14) provide a complete 
description of transverse and longitudinal motion in 
the presence of space charge forces. 

TO proceed further, it will be useful to write these 
equations in canonical form: 

af t  
x ' =  ; p ; , -  ; 

Opx Ox 

on aB 
z ' -  ; p'z = -  ; 

OPz ~z 

an an a ' =  p ; -  
Op t '  Oa 

using the Hamiltonian 

1 1 2 
f i  = - (Kx'  + G ' z ) ' p o  

1 e g ( s )  
k ' ~ ' c o s  cp'a 2 - �89 2 

2 E o 

1 
+ ~ ' {  [Px + f lZ 'H ' z ]  2 + [P~ - f l Z ' H ' x ]  2} 

1 2 2 + g f l o ' [ G l ' x  + G z ' Z  2 - 2 N ' x z ]  
1 2 2 - - ~ f l o ' [ F x ~ ' x  + 2F: , z ' x z  + F=' z2] .  (2.15) 

By eliminating the quantities p~ and pz from the 
resulting canonical equations 

1 
x' =N[px + 

Px = K~'p~ + [p= -- f l Z - H ' x ] ' H  

-- fl2"[G 1 "x - N ' z  -- Fx~ 'x  -- F~,z'z]; 

, 1 
z = ~ o [ p z - - f l g ' H ' x ] ;  

P'z = Kz'P, ,  - [p~ + f l~ -H'z]  "H 

__ t ic .  [ G 2 .  z __ N ' x  - Fx~ 'x  - F = ' z ] ;  

1 
a' = R-~T#~,2"P~, --  ( K x ' x  + Kz 'z ) ;  

t, oYo 
eV(s )  , 2r~ 

P'~'= Eo " t c ' ~ ' c o s q ~ ' a  + F, , (s) 'a  (2.16) 
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and putting 

p~ = t/, (2.17) 

we recover (2.1, 2.2 and 2.14) with the help of (2.6) 
provided the linear approximation 

1 
f(q)  =~o2. q (2.18) 

is valid. 
Since the equations of motion are linear they can 

be solved in the form 

y(s) = _M (s, So) y(so) (2.19) 

with 

X 

Y= p: 

O" 

Pc 

Because the variables x, px, z, Pc, a, p~ are canonical, 
the transfer matrix _M(s, So) is symplectic [1]: 

_Mr(s, So). S_. M_ (s, So) = _S (2.20a) 

where 

0 - 1  0 0 0 O~ 
1 0 0 0 0 0 

0 0 0 - 1  0 0 (2.20b) 
s - = o  o 1 o o �9 

0 0 0 0 0 - 
0 0 0 0 1 

In order to construct the matrix _M(s, So), the quant- 
ities Fxx, F ~ ,  Fz~, Fzz and F~ of (2.16) which describe 
the self induced space charge forces _~F se~f, --zFSe~f and F~ elf 
must be known. This is the topic of the next chapter. 

3 The beam envelopes 

3.1 T h e  s ix  dimensional  ellipsoid in 
x - p~, - z - Pz - e - p~ space 

To obtain the space charge forces we must know the 
particle distribution. 

We will assume that at the start point, So, the 
ensemble is distributed on the surface of a six dimen- 
sional ellipsoid in x - Px - z - p~ - o- - p~ space of the 
form 

y(So; ~o, Z, 6i, 5ii, 6iii) 

= COS q~' COS )~" [ y  1 (S0)'COS 61 + Y2 (S0)" sin 6i] 

+ cos ~0" sin Z" [Y3 (So)" cos 6Ii + Y4 (So)" sin 61i ] 

+ sin~,o'[ys(so) 'COS6m + y 6 ( s o ) ' s i n 6 m ] .  (3.1) 
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This 
dent vectors 

ellipsoid can be spanned by six linearly indepen- 

Ykl~ 
l Yk21 

=lena|; (k= 1,2,3,4,5,6) (3.2) 

\yk6 

which are defined by the starting shape of the ellipsoid. 
The corresponding vector y at position, s, is given by 

(3.3) 

y(s; q), Z, 6I, 6II, 6III) 
= COS qO'COS Z" Fyl(s) 'cos (3: -I- y2(s)-sin 6i] 

+ cos ~o.sin Z" [y3(s)'cos 6H + y4(s)'sin 611] 
+ sin (p. [Y5 (s)'cos 6 m + Y6 (s)" sin 6m]  

where 

yk(S)=M_(S, So)Yk(So); ( k =  1,2,3,4,5,6).  (3.4) 

Thus the ellipsoid remains an ellipsoid. 
The beam envelopes can then be obtained by 

projecting the ellipsoid of (3.3) on the individual phase 
planes. 

3.2 The projections of  the six dimensional ellipsoid 

To define the projections we first of all write the 
ellipsoid (3.3) in component  form: 

X(S', ~0, )~, 6i,  6 i i  , 61ii) 
= cos q," cos Z" [Yl 1 (s)" cos 6i + Y21 (s)" sin 6i] 

+ cos ~0. sin Z" [Y31 (s)'cos I~i1 + Y4-1 (S)' sin 6u]  

+ sin q~. [Y51 (s)'cos (~II1 + Y61 (S)" sin 6iu]; (3.5a) 

px(S; ~0, X, 6i, 6ii, 6m)  
= cos ~o'cos Z" [yl2(s)" cos 6i + Y22(s)' sin 6,] 

+ cos (p' sin Z" [Y32 (S)'COS 611 ~- Y42 (S)" sin 6ii  ] 
+ sin (o'[ysz(S).COS 61ii + y62(s)'sin 6m] ;  (3.5b) 

Z(S; q), )~, 6i ,  611 , 6 i i l )  
= cos ~o'cos Z" [Yla(s) "c~ 61 + Y23(s) "sin 61] 

+ cos ~0" sin Z" [Y3 a (s)" cos 6ii + Y43 (s)" sin 611] 
+ sin q,'[Ysa(S)'COS 6 m  + Y63(s)'sin 6iii];  (3.5c) 

Pz( s' q), Z, 6I, 611, 6lII)  
= cos (p'cos Z" [yl4(s) 'cos 6: + y24(s)'sin 6:] 

+ cos q," sin Z" [Y34(s)'cos 611 -I- Y44(S)" sin 61i] 

+ sin q~'[y54(s)'cos 6ii  I -I- y64(S)'sin 6iu];  (3.5d) 

a(s; ~0, Z, 6i, 6II, 61ii) 
= cos q~" cos Z" [Yl 5 (s)' cos 61 + Y25 (s)' sin 61] 

+ cos ~0. sin Z" [Ya 5 (s)" cos 611 + Y45 (S)" sin 6u]  

+ sin ~o.[y55(s).cos 61i I -t- y6s(s)'sin 611i]; (3.5e) 

\ 

\ 
\ 
\\ Ex 
\ 
\ 
\ 
\ 
\ 

Fig. l. Beam cross section at position s 

p~(s; (p, Z, 6I, 611, 6ill) 
= cos q)'cos Z" [YI 6(s)" cos 6t + Y26 (s)" sin 61] 

+ cos (p" sin Z" [Ya6(s) "cos 6u + Y46(s)" sin 61,] 
+ sin q," [y56(s)'cos 6111 -~- Y66(s)'sin 6ill]. (3.5f) 

The computa t ion  of the single projections is then 
similar to that  in [1] in which the functional relation- 
ship between pairs of components  was investigated. 

Since the details of the method  have already been 
given in [1, 3] only a summary will be needed here. 

3.2.1 Projection on the x - z plane. We first investigate 
the projection on the x -  z plane. This describes the 
beam cross section. We will need the maximum 
amplitude in the x and z directions. 
a) Maximum oscillation ampli tude in the x direction: 

Using the relation 

Max(~){A.cos (p + B.sin ~o} = ~ B E 

and (3.5a), the largest possible x amplitude is 

Max(e,z, at, au,aiu)x(s; q), Z, 6I, 6**, 6i::) 
= N/y21 -l- y21 -~ y21 + y21 -t- y21 + y21 = gx(S ). (3.6) 

This occurs for the values: 

cos 6 z - YI 1 ; sin 61 = Y21 . 
,/y l + ,/y l + 

Y31 ; s in61/=  Y41 ; 
COS(~II=~/Y~I + 221 %/Y~I + Y~I 

COS 6iI 1 ~--- Y51 ; sin 6 1 1 1  = Y61 . 

%/y21 + y21 x/y21 + y21 

%/2211 -~- 221 
cosz  = ,/y l + + + yl ' 

sin Z = x/Y21 + Yll ," 
x/y21 + y21 d- y21 + y2 i 



,,~12~ + y~ + y~l + y]1 
cos ~0 - , / y ~  + y~1 + y3~ + y ~  + y ~  + y ~ '  

, / y ~  + y6~1 
sin ~0 ,/y~1 + y ~  + y ~  + y21 + y ~  + y~1 

(3.7) 

The corresponding z coordinate is given by (3.5c) 
together with (3.9): 

1 
G:, = E x ( ~ "  {Ytl "713 + Y21 "Y23 4- 731 "733 

4- 741 'Y43 4- Ysl "Y53 4- 761 '763}" (3.8) 

b) Maximum oscillation amplitude in the z direction: 
Correspondingly, the maximum amplitude in the 

z-direction is obtained from (3.5c): 

Max(~,z,h,h~,h,)z(s; (P, Z, 5i, 5H, fro) 

= ~ 7 2 3  4- 723 4- 723 4- y23 4- y23 4- y263 = Ez(s)" (3.9) 

The accompanying x-coordinate is then: 

1 
Gz = E=(s) "{Y11"Y13 + Y21"723 4- 731 "733 

+ Y41 '743 4- Yst "Y53 4- 761 'Y63}" (3.10) 

Thus 

E~.G~=E~.G~. (3.11) 

c) The boundary curve of the beam cross section�9 
The projections of the ellipsoid (3�9 are ellipses, and 

these are described by the three independent quantities 
E~,  G~, E~. The parameter Gz depends on the other 
three (see (3.11))�9 In terms of E~,  Gx,  E z ,  the ellipse 
can be written as: 

2 2 (3.12a) E ~ ' x  - 2 E ~ G ~ ' x z  + E Z ' z  2 - 2 -- ~'xz 

with 

e~z = E ~ ' x / ~  - -  GZx �9 (3.12b) 

and where rCe~z is the area of the ellipse�9 
The half axes E t and E 2 of the elliptical beam cross 

section are: 

, = ~ { [ E x + E ~ ] + , / [ E x - E z ]  2 2 E t  2 a 2 z 2 z + 4 E ~ G ~ }  

and the twist angle 0 of the beam is given by: 

(3.13) 

2 E x G x  
t a n 2 0 -  z ~ .  (3.14) 

E~ - E z 

3.2.2 P r o j e c t i o n  on  t he  x - a p lane .  To find the projec- 
tion of the ellipsoid (3.3) onto the x - cr plane we need 
(3.5a and 3.5e). Since these have the same general form 
as (3.5a and 3.5c), we can obtain the projections using 
exactly the same methods as in the previous section. 

The boundary curve of the elliptical projection on 

I X  

. . . .  3--0~ 

' ~ - - E o  

Fig. 2. Projection of the ellipsoid on the x - tr plane 
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\ 
\ 
\ 
\ 
\ 
\ 

\ 

\\ E o" 

\ 
\ 
\ 

Fig. 3. Projection of the ellipsoid on the z - ~ plane 

I I I !  f l  

6 

the x -  a plane is: 

2 2 2 2__ 2 (3.15) E~'cr  - -  2E~G(~X)'~rx + E ~ ' x  - -  e ~  

with 

E ~ = x / Y Z ~ ,  + Y ~ 5  +y25 +Y]s +Y5Z5 +Y~5; (3.16a) 

G(X) -- 1 .  {Yll "215 4- Y21 'Y25 4- Y31 'Y35 
a E~ r 

4- 74-1 '745 4- 751 "255 4- 761 "765}; (3.16b) 
�9 2 e~x = E, x/Ex - (G(,X)) 2. (3.16c) 

The meaning of E,  and G(~ ~) is explained by Fig. 2. 
~e,~ is the area of the ellipse (3.15). 

3.2.3 P r o j e c t i o n  on  the  z - a p lane .  Finally, the projec- 
tion of the ellipsoid on the z - a plane (see Fig. 3) has 
the boundary curve: 

2 z 2 E ,  G ~ Z ) . a z +  2 2 2 E . . z  (3.17) E z �9 tr - -  = aaz 
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with 

1 
G~ ) = ~ - f  {Y13'Y15 + Y23 'Y25 + Y33"Y35 

+ Y43"Y45 -[- Y53"Y55 + Y63"Y65}; (3.18a) 

�9 2 e,~z = E ,  ~/Ez - (G~)) 2 (3.18b) 

(~e~ is the area of the ellipse (3�9 
Now that we have the projections of the ellipsoid 

on all three planes we can calculate the space charge 
forces�9 We assume that the particle distribution is 
uniform in the x -  z -  s space. 

4 Calculation of space charge forces 

In calculating the space charge forces, we assume that 
the synchro-betatron coupling is small and we there- 
fore ignore the twist angles 0~ and 0~, of the bunch 
with respect to the a axis (Figs. 2, 3). 

Since (see Chap. 2) the variable a describes the 
distance of a particle from the centre of the bunch, 
then E~ describes the half length of the bunch in the 
laboratory system. E~ and E e describe the transverse 
bunch extensions. 

The whole bunch can now be represented by a three 
dimensional ellipsoid which, in a rotated (~,~,a) 
coordinate system (see Fig. 1), can be described by the 
equation 

.~2 ~2 0.2 
+ ~2 + ~ =  1 (4.1) 

E~ E z E~ 

in the laboratory system and by the equation 

3~2 ~2 62 
E~ + ~ 4 (2o.E~)~ - 1 (4.2) 

in the rest system of the bunch (6 = 7o'a describes 
the longitudinal coordinate in the rest system)�9 

Now for a uniform charge distribution in the (rest 
system) ellipsoid 

~2 /12 ~2 
a2 k ~ - + ~ =  1, (4.3a) 

the potential inside is given by [4] 

U = --  A ' ~  2 - - B ' r ]  2 --  C�9 2 + D (4.3b) 

with 

oO 
A =rcabc.p.  ~ 2 de . 

o(a + e ) � 9  ) ' 

oo dr . 
B : n a b c ' p ' !  ( b2 + v) � 9  

co 
C = ~abc" p" ! de . 

(c + 

D = ~ a b c ' p ' 7  dr 
o 

(p(e) = (a 2 + v)'(b 2 + z)'(c 2 + r); 

(p = charge density)�9 (4.3c) 

The total charge in the bunch is 

4re 
Q = ~ -  a b c' p�9 (4�9 

Thus comparing (4.2 and 4.3) the space charge force 
in the rest system is 

F ~  ) = 3  eQ. I1. 2; (4.5a) 

F~ ~ = 3eQ.I2.5; (4�9 

F~ ~ = 3e Q.I3.6 (4.5c) 

with 

11 = 
d z  . 

o + 

dr 
12= 

o + 

d e  . 
13 = 2 2 

o + e)' /OIe) 

2 2 ~O(e) = (E~ + e)-(E 2 + z)'(7oE, + ~). (4.6) 

The terms 11,12,13 can be expressed in terms of 
elliptical integrals of the second kind. 

As shown in Appendix A, if 

7oE,~>> E 1 , E 2  

11,12,13 can be calculated approximately by analytical 
means. 

We now Lorentz transform to the laboratory frame 
to obtain the forces 

_ % .  F ( o ) .  F ~ -  -~ , 
70 

_ % . F ( O ) � 9  F s -  ~ s  , 
7o 

Fs = --sF(~ 

so that the space charge forces in the laboratory system 
are 

F) e'e = 1--�9 (4�9 
70 

1 
f self = � 9 1 4 9  (4�9 

7o 

F] elf = 3eQ'I3"70"a, (4.7c) 

where in (4.7c) we use the relation (Lorentz contrac- 
tion): 

~ = ~0'0". 

The components of space charge force in x and z 



directions are 

FSe~f = cos 0. F~ -- sin 0. F~ x 

1 
= - - . {eQ.[x . ( I  a cos 20 + 12 sin 20) 

?o 
+ z'sin 0cos 0"(11 - 12)];  (4.8a) 

FS2 if = sin O'F~ + cos O'F~ 

1 
-- - - ' {eQ" Ix'sin 0 cos 0"(11 - 12) 

~o 
+ z'(I1 sin 20 + 12 COS 2 0)] .  (4.8b) 

By comparing (4.7c) and (4.8a, b) with (2.11) and 
(2.5a, b) we finally obtain the coefficients F~x, F~,  Fzx, 
F= and F,:  

1 
F ~  = {eQ. - "[11 cos 20 + 12 sin 20]; (4.9a) 2.  Z 

~]o mo Vo 

1 
F = = } e Q .  2 2 [-I~sin20+I2c~ (4.9b) 

7o'moVo 

1 
F~,~ = 3eQ . s i n  0 c o s  O . ( I  1 - 12) 2 2 o" mo Vo 

= Fzx; (4.9c) 

3 e ~  ~0 - 
F . = ~  ~ '~0  "13. (4.9d) 

The angle 0 is defined by (3.14) and the quantities Ix, 
12 and 13 by (4.6). 

In particular, we see that (4.9c) reproduces (2.6) 
which was used to derive the Hamiltonian (2.15). 

Equation (4.9) can now be used together with (2.16) 
(and with the help of (3.6, 3.8, 3.9, 3.16a, 3.13 and 3.14)) 
to obtain explicit forms for the (canonical) equations 
of motion under the influence of both external and 
space charge effects. 

Remark. In (4.8) the effects of orbit curvature described 
in [-5] are not included but the linear part of these 
additional forces could be easily incorporated. Linear 
wakefield effects could be taken into account in the 
same way. 

5 Solution of  the equations of  motion 

The solution of these equations will be obtained in 
transport matrix form. We write 

d 
ds y = _A(s)-y (5.1) 

with 

1 
A12 = ~ o ;  

A13 = + H; 
A 2 1  ~--- - -  f l 2 " [ G 1  - -  Fxx + H 2 ] ;  

& 3  = + I-N + rxz];  
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A24 = -Jr" H; 

A26 = K~; 

A31 = - -  H; 
1 

A41 = +/~g.[N + F=J;  

A42 = - -  H; 
A43 = - -  fl2o. EG 2 Fzz + H 2 ] ;  

A46 = Kz; 
A51 = - K G  

A53 = -- K~; 
1 

A 5 6  - -  fl2.]102 , 

e V(s) 2re 
- 'k-~-.cos ~o + Fo; A65 Eo 

Aik  = 0 o t h e r w i s e .  (5.2) 

We solve (5.1) using thin lens approximation [1]. 
Using notation similar to that of [1], we obtain for 

the transfer matrix 

As 
M(s + As, s)= M_D(S + ds, s + ~ - ) ' [ l  + C_(s)'As] 

with 

C ( s )  = A ( s )  - D - E;  

0 1 0 0 
0 0 0 0 

1 0 0 0  1 
P= o o o o 

0 0 0 0 
0 0 0 0 

I 0 0 1 
0 0 0 

- 1  0 0 
E = H  o - 1  o 

0 0 0 
0 0 0 

M_ D(s + t, s) = ! + t.D_; 

0 0 ~ 
0 0 
0 0 
0 0 ' 
0 1/7~ 
0 0 00 1 1 0 
0 0 . 
0 0 ' 
0 0 
0 0 0 /  

(transfer matrix 

R(AO) = 

( A O = H . A s ) .  

(5.4a) 

(5.4b) 

(5.4c) 

(5.4d) 

cosAO 0 + s i n A O  0 0 0 ~ 

0 cosAO 0 + s i n d O  0 0 

- s i n A O  0 cosAO 0 0 0 

0 - - s i n A O  0 c o s A O  0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

(5.4e 

for a simple drift space of length 1); 
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As in [1], this thin lens form is symplectic and the 
matrix A_ depends on the shape of the bunch. The 
latter depends on the generating orbit vectors Yk 
(k = 1, 2, 3, 4, 5, 6) which change during the motion of 
the bunch according to the equation [1] 

yk(s + As)  = M_(s + As,  s)'Yk(S ). (5.5) 

Periodic solutions must be obtained by self consis- 
tent iteration [1]. 

Finally, we point out that the 6 equations (5.5) for 
the generating vectors Yk (k = 1 -  6) can be handled 
in a compact way by introducing the "bunch-shape 
matrix" 

_B = (y~, Y2, Y3, Y4, Ys, Y6) (5.6) 

so that 

B_ (s + As ,  s) = M_ (s + As,  s)'B_ (s). (5.7) 

Acceleration by a cavity field is described in Ap- 
pendix B. 

6 Summary 

We have investigated the influence of longitudinal and 
transverse space charge forces on the motion of 
charged particles in storage rings and transport 
systems by a simultaneous treatment of synchrotron 
and betatron oscillations. 

The motion is described in terms of the fully six- 
dimensional formalism with the canonical variables 
X, px, z,p~, a = s - Vo . t ,p ,  = A E / E  o. 

In order to describe the bunch we have introduced 
a 6-dimensional ellipsoid in the x - p ~ - z - p ~ -  

- p~ space represented by the "bunch-shape matrix", 
_B(s), which contains as columns, six independent orbit 
vectors. As in [1], this matrix _B(s) contains complete 
information about the configuration of the bunch at 
the point s and can be obtained by matrix multi- 
plication with the transfer matrix _M. 

In thin lens approximation the matrix takes a simple 
form which can be conveniently coded for computer. 

The equations so derived are valid for arbitrary 
velocity Vo (below and above transition energy). 
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Appendix A: calculation of the space charge 
integrals 11, 12, 13 

In order to calculate the space charge integrals I~, 12, 
13 of (4.6) we assume that 

E3 = ?oE~ >> El,  E2. (A.1) 

In this case, for I~ we may write (approximately): 

oo 
la , .~ - - "  S dz  

E3 o + + + 

With the substitution 

t 2 = Z" + E 2 

we get 

2 ~ I1 ~ - - .  ~ dt  
E3 E2 x/(t  2 + E 2 - E2) 3 

E3 E12 E2  2 t 2 + E 2 - -  g 2 E2 

2 1 

E3 E l(E1 + E2) 

12 can be obtained in the same way: 

2 1 
12 

E3 Ez(E1 + E2)" 

Finally, also using assumption (A.1): 

1 E3 dr 
13 ~ ~ '  ! x/(E~ + z)' (E2 2 + z) 

or with the substitution (A.3): 

2 ~3 d t  
1 3 ~ - ' ~ "  J" / 2 

+ - 

2 
[In (t + x / t  2 + E 2 - L:,2 ~3E3 

- - "  ~ 2  ]dE2 

2 E3 + + 
= E3.1n-- EI + E 2 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

Appendix B: the accelcration process 

In the solution of the equations of motion we assumed 
that the average energy E o remained constant i.e. that 
the cavity phase was either set at 0 or Tc so that no 
acceleration took place (see (2.10)). 

To describe the acceleration process we now 
consider the case where 

sin ~p # 0, r~. 

In linear approximation, the cavity field ecavlty varies 
as 

2re 
ecavity = V(s) sin ~0 + V(s) cos ~o.k.~-.a, (B.1) 

and if the cavity is point like at s = s o" 

V(s) = V'6(s  - So) (B.2) 

the energy gain is 

E(so + O) - E(So --  O) 

= e V sin (p + e V cos (p. k '~-" a(s o - 0). (B.3) 



The average energy gain is thus 

A E o  = e f~'sin q~, (B.4) 

so that we can put: 

Eo(s o + O) = Eo(s o - O) + AEo;  (B.5) 

Po(So + O)= ~ ' E 2 ( s o  + O)--moc2;  (B.6) 

c2"po(So + O) 
Vo(S o + 0 ) -  Eo(s  ~ + 0) " (B.7) 

Writing the variable 

, r ( s )  = s - V o ' t ( s )  

in the form 

a(s) = Vo(S).[to(S ) - t(s)] 

(to(S) is the time for the synchronous particle) and 
recalling that  to(S) and t(s) are continuous functions: 

to(So + O) = to(So - 0); 

t(So + O) = t(So - O) 

we then obtain 

Vo(So + O) 
a(s o + O) = Vo(S ~ _ O) a(s~ - 0). (B.8) 

Fur thermore ,  using (B.3, B.4 and B.5) we find that  

E(so + O) -- Eo(so + O) 
~l(So + O) - 

Eo(so + O) 

- E o ( s  o + O) E o ( s o  - -  0)'t/(So - 0) 

+ e f" cos (p. k '~ - ' a (So  - 0) . (B.9) 

For  the variables x, x', z, z' of the transverse mot ions  
we have (see [2]): 

x(s  o + O) = x(s  o - 0); (B.10a) 

po(So - O) 
x ' ( s  o + O) po(So + O) x ' ( S o -  0); (B.10b) 

z(s  o + O) = z(s  o - 0); (B.10c) 

Po (So - 0) 
z '(so + O) - z ' (s  o -- 0). (B.10d) 

po(So + O) 

Equat ions (B.8, B.9 and B.10) can now be collected 
together in matr ix form to give 

y(s  + 0)Mcavi/y(S 0 "~- 0, S 0 - -  0 ) 'y ( s  - 0) (B.I  1) 
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where 

Meavity(S 0 -~- 0, S O - -  0)  

M l l  

M 2 z  

M33 

M44 

M55 

= ( (M,k ) ) ;  

= 1 ;  

Po(So -- O) 

po(So + 0 ) '  

=1 ;  

= M22;  

Vo(So - O) 

Vo(So + 0) '  

e l "  2re 
M65 Eo( so+0)  c o s ( p ' k ' ~ - ;  

Eo(so - 0) .  
M66 : 

Eo(so + 0 ) '  

M i k = O  otherwise (B.12) 

and where Eo(s o + 0), Po(So + 0), Vo(S o + 0) can be 
taken from (B.5, B.6 and B.7). 

In particular we get for the generating vectors yk(S) 
of the 6-dimensional ellipsoid: 

yk(S0 + 0) = M c a v i t y ( S  0 -q- 0 ,  s O - -  0)'yk(S o --  0); (B.13) 

In the variables (x, x', z, z') the transfer matrix 

Mcavity(S 0 "[- 0, S O - -  0) 

is no longer symplectic and transverse damping occurs 
in x, x', z, z' space. For  a symplectic t reatment  of the 
acceleration process within the framework of a non- 
linear theory see [6 and 7]. 

The transfer matrices for the magnetic lenses 
remain as in Chap. 5. 

References  

1. I. Borchardt, E. Karantzoulis, H. Mais, G. Ripken: Z. Phys. C, 
to be published 

2. D.P. Barber, G. Ripken, F. Schmidt: DESY 87-36 
3. G. Ripken: Untersuchungen zur Strahlftihrung und Stabilit/it der 

Teilchenbewegung in Beschleunigern und Storage-Ringen unter 
strenger Beruecksichtigung einer Kopplung der Betatron- 
schwingungen; DESY R1-70/04 

4. O.D. Kellog: Foundations of potential theory. Berlin, Heidelberg, 
New York: Springer 1967 

5. The effects of orbit curvature on interparticle forces have recently 
been discussed in: R. Talman: Phys. Rev, Lett. 56 (1986) 1429; 
A. Piwinski: CERN/LEP-TH/85/43; M. Bassetti: CERN/LEP- 
TH/86-13; M. Bassetti, D. Brandt: CERN/LEP-TH/86-04 

6. G. Ripken: DESY 85-84 
7. F. Schmidt: Phd. Thesis: DESY HERA 88-02 


