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The Jacoblan for a fimte gauge transformation of the fermlon fields m the choral Schwlnger model 1s calculated In contrast to 

the results publlshed before this Jacoblan IS suitable for the constructlon of a gauge mvarlant fermlonlc quantum theory 

The choral Schwmger model [ 1 ] (choral QED2 ) has 
become a popular tool frequently used for the dem- 
onstration of ideas concerning anomalies (See ref 
[ 21 and references therem ) The reason is twofold 
the model 1s exactly solvable and it is consistent m 
spite of the apparent anomaly [ 1 ] The consistency 
relies on a nonzero value of a regularization parame- 
ter a which reflects the ambiguity m the treatment of 
choral fermlons In the path integral approach, where 
the anomaly originates m the gauge nonmvarlance of 

the fermlomc measure [ 3 1, a depends on the regular- 
ization of the Jacobian belonging to a choral gauge 
transformation of the fermlons This is not unique, 
since there 1s no requirement for gauge mvanance, 
contrary to the nonchlral case This has been put to 
question [ 4,5 1, but explicit regularlzatlon prescnp- 
tlons have been given which are able to mtroduce such 
an arbitrary a [ 6-91 #’ Therefore the consistency of 
the model is established by now 

This can be understood as a consequence of gauge 
mvarlance In fact, it has been shown that the proce- 
dure of quantlzmg the gauge field automatlcally leads 
to a gauge invariant quantum theory [ 1 l-1 31 This 
1s achieved by a Wess-Zummo scalar field which can 
be viewed upon as the (survlvmg) gauge degree of 
freedom contained m the gauge field For gauge m- 
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*I Ref [lo] also tries to Introduce a free parameter r However, 

the authors used a regularlzatlon operator which effectively 1s 

independent of c Hence the Jacobian cannot depend on <, 
either 

variance the gauge variation of the Wess-Zummo ac- 
tlon has to cancel the abovementioned Jacobian of 
the fermlomc measure It has been proven by general 
arguments that this procedure works [ 1 l- 13 ] Also, 
gauge invariance of the choral Schwmger model has 
been demonstrated at the level of a purely bosomc 
theory [ 14,15 ] Of course, m the choral Schwmger 
model it should also be possible to show exphcltly that 
the gauge variation of the Wess-Zummo action can- 
cels the fermlonic Jacobian This has not been done 
up to now 

Indeed, d one would try to do so by taking the 
Wess-Zummo action and the regularlzatlon of the 
fermlomc measure from the literature, one would fail 
The reason is that some Jacobians are incorrect 
[ 7,9, lo] and that the correct ones [ 6,8] are not suit- 
able for the design of a gauge invariant quantum the- 
ory Therefore an exphclt construction of a gauge 
mvanant version of the choral Schwmger model at the 
fermlomc level IS still lacking The present letter is 
going to fill this gap 

The classical fermlomc action reads 

where the conventions of ref [ 2 ] are used Under a 
gauge transformation with group element h= 
exp ( -I(Y), the fermlons transform according to 

$=exp( -iaPL)ry, ph=Wexp(i(YPR) (2) 

The Jacobian with respect to this transformation 1s 
not unity [ 3 1, but 
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dyhdt,Dh=dydv J[A, h] , (3) 

because the ys part does not cancel Let the effective 
action @[A ] be the result of integrating out the fer- 
mlon fields 

ev(l@‘[Al)= j dvdVw(lS[y/,v,Al) (4) 

Then the Wess-Zummo actlon is defined by the 

difference 

ciI [A, g-l]= @[AR-‘] - l?‘[A] (5) 

with the transformed gauge field 

A$-’ =A,+e-‘t&O, g=exp( -10) (6) 

Now the claim is that the quantum theory defined by 

the generating functional 

Z= ~&WMg))Art4gl dvW s 

Xexp i 
((?’ 

- +&Ffi”d2X+ W[A, g] , (7) 

W[A, g] = fi[A] +a, [A, g-‘1 , (8) 

is gauge invariant [ 1 l-l 3 ] This 1s fulfilled if ?+‘[A, 

g] IS gauge invariant Therefore we calculate 

exp(lW[A”,gh])= j dvdtj 

xexp(l{S[ylh-‘, vhm’,Al +a, [Ah, (gh)-‘I}) 

=exp(lW[A,g])(J[A, h-I])-’ 

xexp(-w [A, hl) , (9) 

where we used gauge invariance of the classical ac- 
tion and the one-cocycle condltlon for the Wess- 
Zummo action 

a,[Ah, (gh)-‘l=cu,[A,g-‘l-LY,[A,hl 

Hence the theory 1s gauge mvanant, If 

(10) 

J[A, h-‘1 =exp( -101, [A, h]) (11) 

In the choral Schwmger model, however, none of the 
existing explicit regularizatlon prescriptions for the 
calculation of J [ 6-9 ] fulfills this condltlon, not even 
for mfimteslmal transformations This makes a new 
calculation of the JaCOblan necessary 

The Jacobian of an mfiniteslmal transformation 
w-v/“, h=exp( -&Y), can be calculated by the 

method of Fujikawa [ 3 1, appropriately adjusted to 
the present case After a Wick rotation to euchdean 
space, the sum 1,~: y5vn has to be evaluated, where 
the ~1, form a complete set of elgenfunctlons Since 
the sum 1s ill-defined, it has to be regularized This 1s 

done by suppressing the large elgenvalues 

Which operator do these elgenvalues correspond to? 
This 1s the point where the arbitrariness enters mto 
the regularlzatlon procedure In the vector case, the 
requirement for vector current conservation fixes the 
operator to be the covarlant derivative which ap- 
pears in the classical action Here such a requirement 
cannot be satisfied, gauge invariance would demand 
that the choral current 1s conserved, which 1s lmpos- 
sable Hence we are free to choose (m Mmkowskl 

space) [ 6-91 

@=yP[a,--le(rA; +sA, )] , 

A: = 1 (g,” k E,, )A” (13) 

As was pointed out in ref [ 9 1, the correspondmg co- 

variant derivative m euchdean space 

~,=y~[a,-le((r+s)g,,+l(r-s)E~,,)A”l (14) 

is not hermltean This can be cured by an analytlcal 
contmuatlon of r-s to imaginary values [ 91 Then 
the calculation of the Jacobian IS standard [ 31 and 
leads to the result (m Mmkowskl space) 

J[A, exp( -&)I 

d2x8atu”iF&(rA:+sA;) (15) 

This agrees with the result of refs [ 6,8], though there 
the authors did not care about hermltlclty Unfortu- 
nately, ref [ 9 1, where this has been taken mto ac- 
count, contains a sign error m the mfimteslmal 
Jacobian 

What we really need is the Jacobian for a finite 
transformation This can be derived from eq ( 15 ) 
by an iteration procedure [ 161 Here two dlmen- 
slons offer another speciality there are two posslbll- 
ltles to iterate the gauge field In the step c~--ta + 6a 
the regulator has to contam the actual gauge field, 
which differs from the original one by a transforma- 
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tlon with exp ( XX) Since m the fermlomc action only 

A; occurs, one might think that only A; has to be 

iterated This has been done m ref [ 6 ] for the choral 
Schwmger model and m ref [ 81 for its nonabehan 
extension Certainly, because @,=d - 1s true only 
m two dimensions, the iteration of A - alone is a two- 

dimensional speciality In any other dimension the 
only chance is to iterate the complete gauge field 
Therefore this seems to be reasonable m two dlmen- 
sions, too More than that, only the latter procedure 
is able to satisfy eq ( 11)) as will be shown below 

In order to confront the finite Jacobians with each 
other, both procedures will be presented If only 
A- IS iterated, the Jacobian (denoted by J1 [A, 

exp ( -I(Y) ] ) IS the solution of the differential equa- 
tion which 1s lmphcltly given by 

J, [A, exp{ -l((.u+&)}] =J, [A, exp( -icw)] 

xJ[A+e-‘a-o!, exp( -GSa)] (16) 

J, 1s easily calculated to be 

lnJ,[A,exp(-la)]=& [-$s,cvOa 
I 

+2e&P(r,A; -s,A;)]d2x (17) 

In the other case, where the complete gauge field 1s 
iterated, the differential equation reads 

J2 [A, exp{--l(cu+i!ia)}] =J2 [A, exp( -KY)] 

xJ[A+e-‘&q exp( -16a)] , (18) 

which has the solution 

lnJ,[A,exp(--la!)]= 2 
s 

[f(r,-~~)(~nc~ 

+2ecuP(r,A; -szA, )]d2x (19) 

The effective action @‘[A] can be calculated as the 
Jacobian for the transformation with a!= - (a-p) 
[ 5 1, where 0 and p determine the gauge field 

A,=e-qa,o+6puaa”p) (20) 

The parameters r and s are adjusted m such a way 
that @[A] 1s the same for both prescriptions, namely 
the effective action given m ref [ 1 ] 

@IAl = (l/lYn JI [A, ew(l(~--p)ll 

=(l/l)ln J2[A,ew{l(o-p))l 

= (e2/8n) j [ uA,A”-A/, (gfla+@““) 

x (a&j/o) kP”--tP”)A, ld2x > 

where now J, and J2 are given by 

r, = fa, s,=l * 

(21) 

lnJ,[A,exp(--lo!)]=& [-fcuua 
s 

+2e(ua”( $aA; -A; )]d2x, (22) 

rz = $a, sz=l-fa =+ 

lnJ,[A,exp(-la)]= & 
1 

{f(a-1)culJa 

+2eaP[ taA: -(l-$a)A,]}d2x (23) 

J, corresponds to the iteration procedure of refs 
[ 6,8] As far as the bosomzed version of the choral 
Schwmger model 1s concerned, it 1s sufficient to have 
only one free parameter to reflect the regularlzatlon 
ambiguity, because the other one can be absorbed mto 
the gauge couplmg constant e In the ordinary 
Schwmger model [ 161 as well as m the choral 
Schwmger model [ 5 ] with a = 0 it turned out that the 
effective action 1s one half of the exponent of the m- 
finitesimal Jacobian where 6a is Just replaced by the 
appropriate finite transformation This result has 
been adopted for the choral Schwmger model with 
a # 0 as well [ 7,9 ] It is, however, related to the fact 
that the gauge field which is going to be “rotated 
away” comcldes with the regulator field This 1s not 
true for a # 0, such that the finite Jacobians presented 
m refs [7,9] are incorrect This can easily be seen 
from the coefficient of the mass term It 1s given by 
the coefficient of the A+ term m the mfimteslmalJa- 
coblan, which cannot be changed by the Iteration, be- 
cause a-p only depends on A- Hence there 1s no 
modlficatlon of the mass term coming from the iter- 
ation procedure, especially no factor f 

Starting from the effective action (21) it is 
straightforward to calculate the Wess-Zummo action 

a,[A,g-‘I= $K {f(l-a)eoe 
s 

-2eBa~[~aA:-(1-qu)A,]}d2x, (24) 
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where g=exp( -10) A comparison of eq (24) with 
eqs (22) and (23) shows that Jz satisfies eq ( 11) 
and J, does not Hence the method to iterate A - only 
1s not appropriate for the construction of a gauge m- 
variant quantum theory contammg fermlon fields 
For this purpose there is only one posslblhty to reg- 
ularize the fermiomc Jacobian use {aAl + (l- 
fa)A; as a regulator field and iterate the complete 

gauge field to build up a finite transformation out of 
mfimteslmal ones This results m eq (23 ) 

I would like to thank G Kramer for valuable 

dlscusslons 
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