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The jacobian for a finite gauge transformation of the fermion fields in the chiral Schwinger model 1s calculated In contrast to
the results published before this jacobian 1s suitable for the construction of a gauge invarant fermtonic quantum theory

The chiral Schwinger model [1] (chiral QED ) has
become a popular tool frequently used for the dem-
onstration of 1deas concerning anomalies (See ref
[2] and references therein ) The reason 1s twofold
the model 1s exactly solvable and 1t 1s consistent 1n
spite of the apparent anomaly [1] The consistency
relies on a nonzero value of a regularization parame-
ter a which reflects the ambiguity 1n the treatment of
chiral fermions In the path integral approach, where
the anomaly originates in the gauge noninvariance of
the fermionic measure [3], a depends on the regular-
1zation of the jacobian belonging to a chiral gauge
transformation of the fermions This 1s not unique,
since there 1s no requirement for gauge invariance,
contrary to the nonchiral case This has been put to
question [4,5], but explicit regularization prescrip-
tions have been given which are able to introduce such
an arbitrary g [6-9] #' Therefore the consistency of
the model 1s established by now

This can be understood as a consequence of gauge
invariance In fact, 1t has been shown that the proce-
dure of quantizing the gauge field automatically leads
to a gauge invariant quantum theory [11-13] This
1s achieved by a Wess—Zumino scalar field which can
be viewed upon as the (surviving) gauge degree of
freedom contained 1n the gauge field For gauge in-
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#1 Ref [10] also tries to introduce a free parameter £ However,
the authors used a regularization operator which effectively 1s
independent of ¢ Hence the jacobian cannot depend on &
either

variance the gauge variation of the Wess-Zumino ac-
tion has to cancel the abovementioned jacobian of
the fermionic measure It has been proven by general
arguments that this procedure works [11-13] Also,
gauge invariance of the chiral Schwinger model has
been demonstrated at the level of a purely bosonic
theory [14,15] Of course, in the chiral Schwinger
model 1t should also be possible to show explicitly that
the gauge variation of the Wess—Zumino action can-
cels the fermionic jacobian This has not been done
up to now

Indeed, 1f one would try to do so by taking the
Wess—Zumino action and the regularization of the
fermionic measure from the literature, one would fail
The reason 1s that some jacobians are incorrect
[7,9,10] and that the correct ones [6,8] are not suit-
able for the design of a gauge invaniant quantum the-
ory Therefore an explicit construction of a gauge
invariant version of the chiral Schwinger model at the
fermionic level 1s still lacking The present letter 1s
going to fill this gap

The classical fermionic action reads

St A= | oo, +ea, P lyd, (1)

where the conventions of ref [2] are used Under a
gauge transformation with group element A=
exp ( —1a), the fermions transform according to

y'=exp(—1aPL )y, W=y exp(1aPr) (2)

The jacobian with respect to this transformation 1s
not unity [3], but
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dy*dy"=dw dy J[A, k], (3)

because the ys part does not cancel Let the effective
action W[A] be the result of integrating out the fer-
mion fields

ep(W141)= | dy dpexp(STvw A1) (4)
Then the Wess—-Zumino action 1s defined by the
difference

o [4, g7 1= WA - W[A] (5)
with the transformed gauge field

A5 =4, +e7'9,0, g=exp(—10) (6)

Now the claim 1s that the quantum theory defined by
the generating functional

z= [ 44dg 614, £))A,14.5) dv dy

><exp<1{ J ~3F, F*d>x+ W[A,g]}) , (7)

W4, gl=WlAl+a,[4,87'], (8)

1s gauge invariant [11-13] Thas 1s fulfilled if W[ A,
g] 1s gauge invanant Therefore we calculate

exp(1W[A", ghl)= J dy dy

Xexp(({S[y" ", w" ', A1+ o, [4", (gh)~'1})
=exp(1W[4,g])(J[4, h='])!
xXexp(—1¢, [4, h]), 9

where we used gauge invariance of the classical ac-
tion and the one-cocycle condition for the Wess—
Zumino action

a, (4%, (gh) ' I=a,[4,87 "] -, [4, h] (10)
Hence the theory 1s gauge invarant, 1f
J[4, h=']=exp(—10 [4, h]) (1)

In the chiral Schwinger model, however, none of the
existing explicit regularization prescriptions for the
calculation of J [6-9] fulfills this condition, not even
for infinitesimal transformations This makes a new
calculation of the jacobian necessary

The jacobian of an infinitesimal transformation
y—y", h=exp(—1da), can be calculated by the
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method of Fujikawa [3], appropriately adjusted to
the present case After a Wick rotation to euclidean
space, the sum 2>, ¢,¥ v;¢, has to be evaluated, where
the ¢, form a complete set of eigenfunctions Since
the sum 1s 1ll-defined, 1t has to be regularized This 1s
done by suppressing the large eigenvalues

207 vs@.— im 3 orys expl—(4,/ M) ]9,

Moo n
(12)

Which operator do these eigenvalues correspond to?
This is the point where the arbitrariness enters into
the regularization procedure In the vector case, the
requirement for vector current conservation fixes the
operator to be the covariant derivative which ap-
pears 1n the classical action Here such a requirement
cannot be satisfied, gauge invariance would demand
that the chiral current 1s conserved, which 1s impos-
sible Hence we are free to choose (1n Minkowski
space) [6-9]

D=yp"[8,—1e(rA;} +s4,7)],
A;-zt=%(g;wie;w)Ay (13)

As was pointed out in ref [9], the corresponding co-
variant derivative 1n euclidean space

De=y"[9, —1e((r+5)gu +1(r—s)€,)A4"] (14)

1s not hermitean This can be cured by an analytical
continuation of r—s to 1maginary values [9] Then
the calculation of the jacobian 1s standard [3] and
leads to the result (in Minkowski space )

J[A4, exp(—10a) ]
=1+(1e/2n)jd2x8a €9, (rAf +54;) (15)

This agrees with the result of refs [6,8], though there
the authors did not care about hermiticity Unfortu-
nately, ref [9], where this has been taken into ac-
count, contains a sign error in the infinitesimal
Jacobian

What we really need 1s the jacobian for a finite
transformation This can be derived from eq (15)
by an iteration procedure [16] Here two dimen-
sions offer another speciality there are two possibil-
1t1es to iterate the gauge field In the step a—»a+da
the regulator has to contain the actual gauge field,
which differs from the original one by a transforma-
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tion with exp (1) Since 1n the fermionic action only
A, occurs, one might think that only 47 has to be
iterated This has been done 1n ref [6] for the chiral
Schwinger model and in ref [8] for 1ts nonabelian
extension Certainly, because AP =4 " 1s true only
1n two dimensions, the 1teration of 4 ~ alone 1s a two-
dimensional speciality In any other dimension the
only chance 1s to iterate the complete gauge field
Therefore this seems to be reasonable in two dimen-
sions, too More than that, only the latter procedure
1s able to satisfy eq (11), as will be shown below

In order to confront the finite jacobians with each
other, both procedures will be presented If only
A~ 1s 1terated, the jacobian (denoted by J,[A4,
exp(—1a)]) 1s the solution of the differential equa-
tion which 1s implicitly given by

Ji[4, exp{—1(a+da)}]1=J, [4, exp(—1x)]
XJ[A+e 9", exp( —18c) ] (16)

J, 15 easily calculated to be
1
InJ, [4, exp(—10) ] = o [ [~ ds.a0a

+2ead”(r A —s,4; )]d*x (17)

In the other case, where the complete gauge field 1s
1terated, the differential equation reads

Jo[A4, exp{ —1(a+8a)}]=J;[4, exp(—1) ]
XJ[A+e '8, exp(—18a) ], (18)

which has the solution
InJ, [4, exp(—1x) ] = iz J[%(rz —s;)eda

+2ead (r A —s,4;7 )]d*x (19)

The effective action W[A4] can be calculated as the
jacobian for the transformation with a= — (g—p)
[5], where o and p determine the gauge field

A,=e '(8,0+¢,0"p) (20)

The parameters » and s are adjusted 1n such a way
that W[ A] 1s the same for both prescriptions, namely
the effective action given in ref [1]
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Wi4]=(1/0)InJ, [4, exp{r(c—p)}]

= (1/1)In J[4, exp{1(g—p)}]

=(e*/8x) j[aA,,A”—A# (g“*+e#)

X (8a85/01) (€7~ ™) 4, 1d%x (21)

where now J, and J, are given by

Y, =34, S|=1 =

Ni—

InJ, [4, exp(—1)] = 4L7z j[—%alja

+2ead”(Yadf —A4;)]dx, (22)

rn=ia, s;=1-ia =
InJ, [4, exp(—1c) ] = ﬁj{%(d—l)a{ja

+2ead"[Lad; — (1—Ya)d; 1}d2x (23)

J, corresponds to the iteration procedure of refs
[6,8] As far as the bosonized version of the chiral
Schwinger model 1s concerned, 1t 1s sufficient to have
only one free parameter to reflect the regularization
ambiguity, because the other one can be absorbed into
the gauge coupling constant ¢ In the ordinary
Schwinger model [16] as well as 1n the chiral
Schwinger model [5] with a=0 1t turned out that the
effective action 1s one half of the exponent of the 1n-
finitesimal jacobian where 8« 1s just replaced by the
appropriate finite transformation This result has
been adopted for the chiral Schwinger model with
a#0as well [7,9] It 1s, however, related to the fact
that the gauge field which 1s going to be “rotated
away” coincides with the regulator field This 1s not
true for a# 0, such that the fimite jacobians presented
mn refs [7,9] are incorrect This can easily be seen
from the coefficient of the mass term It 1s given by
the coefficient of the 4™ term 1n the infinitesimal ja-
cobian, which cannot be changed by the 1teration, be-
cause o—p only depends on 4~ Hence there 1s no
modification of the mass term coming from the 1ter-
ation procedure, especially no factor 1

Starting from the effective action (21) 1t 1s
straightforward to calculate the Wess—Zumino action

a[4,g7']= %J {(3(1—a)om0

—2e60”[3a4,f — (1—3a)A; 1}d>x, (24)
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eqs (22) and (23) shows that J, satisfieseq (11)
and J, does not Hence the method to iterate A ~ only
1s not appropriate for the construction of a gauge 1n-
variant quantum theory containing fermion fields
For this purpose there 1s only one possibility to reg-
ularize the fermionic jacobian use iad; +(1—
Sa)A; . as a regulator fieid and iteraie the complet
gauge field to build up a finite transformation out f
infinitesimal ones Thisresultsineq (23)

I would like to thank G Kramer for valuable
discussions
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