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At infinite gauge coupling the gauge fields in the fundamental lattice SU(N) Higgs model can be integrated out exactly. In the 

resulting effective theory of the radial Higgs field we derive a string-like correlation function that represents the leading behavior 

of the W two-point function at small /3. For large N we then compute the W-mass and the Higgs mass. These analytical results are 

qualitatively similar to what has been found in Monte Carlo simulations of the SU(2) model. 

Evidence for the confining area law at strong cou- 
pling was one of the main triggers for the explosion 
of interest in lattice gauge theory [ 11. An appealing 
physical picture could also be uncovered with cou- 
pled staggered fermions at strong coupling [ 2 ] : spon- 
taneous chiral symmetry breaking with a baryon mass 
given in terms of the nonvanishing chiral conden- 
sate. In ref. [ 31 QCD and the Higgs model have been 
analysed side by side, and at strong coupling and large 
N some analogies between Higgs radius and chiral 
condensate, staggered pion and Higgs particle, and the 
chiral Goldstone limit and the critical endpoint of the 
confinement to Higgs transition line have emerged. 
In the present note we augment this type of analysis 
for the Higgs model by including the W-meson field. 
In some sense the W completes the analogies by 
matching the baryon. 

The fundamental SU(N) lattice Higgs model can 
be characterized by the partition function [ 3 ] 

Z= 
s 

Dp Dylt DUexp 
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4. XP 

(1) 

Gauge fields are integrated over SU (N) for each link 
and weighted with the standard Wilson action. On 
each site there is a scalar N-component Higgs field 
qXcCN with integration measure 

Da,Dp++ ndRepXdImy?, . 
x 

(2) 

In the much studied [ 4-7 ] N= 2 model the Higgs field 
is usually parameterized by a radial field pXoI?+ and 
an angular part a,,+SU(2), and the action by the 
quartic coupling I, and the hopping parameter K. We 
prefer ( 1) for studying the N-dependence, and for 
N=2 complete equivalence is established by the 
identifications 

q%=Ic”2px(Y, 
1 0 0 

EC2 ) 

l-2il 
A=-$ B=- 

2K ’ 

Excitations of the radial field are associated with the 
Higgs particle. The angular field c11, is gauge trans- 
formed by left multiplication. Under the additional 
global symmetry of SU (2) multiplications from the 
right there is a gauge invariant triplet vector field 

I+‘+= (K/2i)P,P,+pTr(zff~U,,(W,+p), (4) 

where the t are the Pauli matrices. This field may be 
taken to define the W-meson in the standard SU (2) 
lattice Higgs system. Its counterpart in the V-Ian- 
guage is 

W:, + i W& = iq$ UXlrpX+x+p , (5) 

and 
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with the charge conjugate 

I&= ir2vz (7) 

possessing the same gauge behavior as pX. While its 
existence is a special feature of SU(2), the compo- 
nent W:, in (6) exists for general N. In the sequel 
we omit the superscript “3” and use it to probe W for 
general N including the standard case N= 2. 

For /?=O we can perform the independent gauge 
field integrations exactly [ 31 by using the one-link 
integral #’ 

s dUew[NWylfUe)l 
SU-( N) 

(8) 

&(Z2)=(1/N)10g[&_,(NZ)/ZN-‘]+COnSt. (9) 

As a result we have an effective theory for the squared 
radius R, = p& given by 

cc 

Z= I(IldR,exp(-Nx[$iR:+BR, 
X 

0 

- ( 1 - l/NWxKl +N C KN(~&+, (10) 
XP 

This is a self-coupled scalar field theory for the Higgs 
degree of freedom which still cannot be solved. In ref. 
[ 3 ] its phase diagram was analysed in the N+co limit 
with the asymptotic form of KN 

K,(z’)=,/l??-log(l+m)+const. (11) 

The integral ( 10) is then dominated by a saddle point 
of constant R,, and 1 /N is a loop counting parame- 
ter. In the A-B plane a first-order transition line 
emerges where R jumps, and it ends in a critical point 
of vanishing Higgs mass in lattice units (see fig. 1 in 
ref. [ 31). Alternatively one may perform a saddle 
point expansion [4] with the N=2 action in (10). 
The result may then either be regarded as the leading 
term in a mean field 1 /D expansion or as the leading 
contribution for N+oo together with part of the 1 /N 
corrections evaluated at N= 2. In this letter we shall 
follow the second procedure. 

To evaluate correlations of W,, we need some sim- 

p’ &equals -Winref. [3]. 
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ple extensions of the one-link integral (8). With 
Ri = q~f pi we introduce a one-link expectation value 

(O)“=exp[ -NKN(R,R,)] 

x I dUew[NRe(vf Uv2) 10(nT v2, U) . (12) 

Using the SU (N) invariance of the measure and scale 
and phase transformations of pi in (8) it is easy to 
show that 

(Im(qt P2) > “=O, 

(Re(~f~~~))‘Q=N([Im(~f~~2)12)‘Q 

(13) 

=~KN(R,&)R,&, (14) 

(~>'*=~~N(R,Rz)(~,~~+~N,,~F~~+). (15) 

Note that ( 15 ) is a matrix equation. From ( 13) and 
( 14 ) it follows that 

< WX, WY” > 

=d,,aJ2/N) <KN(R~,+~W~,+~), (16) 

i.e. the correlation is ultralocal, and at /3=0 the W 
has infinite mass. The expectation value on the RHS 
may be evaluated in the effective Higgs theory. By 
translation invariance it is a constant independent of 
x and fi. Clearly W,, is odd under charge conjugation 

UX, ++ u:, > px+yo; (i.e. i--i), hence (13). In the 
absence of the plaquette term (/3= 0) there is just no 
way for the C-quantum number to move through the 
lattice. This interpretation suggests how to obtain the 
leading nonvanishing contribution to the W hopping 
parameter (i.e. a finite mass). At this point the fol- 
lowing graphical notation for a number of gauge in- 
variant objects is convenient: 

Re(dUx,vx+fi - J-1 =+ ( 1 + 1 ), (17) 

Im(uliUc+p)= 1 = $ ( 1 - 1 ) . 

Then an on-axis correlation with y=x+nD is given 
to leading order in B by 

< W,, W,, > = (PIN)” 

x<~~o....o~>~ (18) 
X V 



Volume 207, number 2 PHYSICS LETTERS B 16 June 1988 

The two link/vector fields have to be connected by a 
string (ladder) of plaquettes, a mechanism reminis- 
cent of the string tension at strong coupling. The av- 
erage on the RHS of ( 18) can again be taken in the 
p=O theory. The observable still contains UX., and 
we shall now reduce it to an equivalent quantity in 
the R-theory. 

In a first step we integrate over gauge fields on the 
“horizontal” plaquette links in ( 18 ). On each pla- 
quette we get symbolically (N> 2) 

(...g . ..) 

(19) 

The one-link expectation value ( 15 ) has been used 
here. Only the second part in ( 19) contributes, and 
using ( 14) on the remaining links with 1 i we ar- 

rive at 

z=y-0 
x n K~(R,R,+o)K~(R,+pR,+6,,) 

z = 1 

(20) 

which is now a pure R-observable with a string struc- 
ture. Also included in (20) is the result for SU(2) 
where due to the extra term in ( 15 ) involving @ there 
appears an extra factor of two for each plaquette. In 
the saddle point approximation R,=I? to the effec- 
tive Higgs theory the correlation decays exponentially 

IX--Yl 
<w,,Y,,>xhw > (21) 

with a hopping parameter 

h, =exp( -m,) 

= (1+&Q) (P/N2) [2Kx(R2)R]3/R. (22) 

The bracketed factor ist bounded as it follows from 
(14)withv,=yl,that 

O< (v’Uq> ‘P/R=2KN(R2)R< 1. (23) 

The Higgs mass mH is read off from the action for 
quadratic fluctuations of R, around the saddle point 
l? yielding [ 3 ] 

rn$= [KX(R2)+82K;;(R2)]-‘IU;;(R), (24) 

with the effective potential 

U,(R)=jAR2+BR-(l-l/N)logR-DK,(R2) 

(25) 

in D spacetime dimensions. The prefactor in (24) 
stems from the normalization of the lattice deriva- 
tive term. Expanding everything for small and large 
K at fixed A we find the asymptotic behavior deeply 
in the confinement phase (K, R+O) 

m’,=4[i/ic2+(1-l/N)/R’], 

h,II(1+6,,)(plN2)R2/8 > (26) 

with 

x[~l+(I-1/N)16il/(l-2d)2-1]. 

Deeply in the Higgs phase ( KR - co ) we have 

m&-40, 

hw = (1 +&,z) (PIN’)IR , (27) 

with 

RN DK’/A . 

For the general case we solve the saddle point 
equation U; = 0 numerically. In fig. 1 we display mH 
and mH as functions of K at I= 0.08. At this value one 
passes beyond the phase transition line that ends #2 
at 1=0.071836, ~=0.29930. To quote m, we use 
/3= 2.4, a value popular in Monte Carlo calculations 
that may easily be converted to other values. Passing 
right through the endpoint is similar to fig. 1, only 
the Higgs mass dips down to zero. In fig. 2 at A = 0.055 
the transition line is crossed, and the masses change 
discontinuously. The dashed lines show continua- 
tions into metastable regions. 

Our results for Higgs and W masses in the mean 

tt2 The endpoint coordinates differ from those in ref. [ 81. There 

an expansion is performed in p while we use Rocp*. In the first 

case the coefficient in front of the log in (25) is ( 1 - 1/2N). 

This amounts to just another choice of the partial 1 /N correc- 
tions included. The qualitative picture does not change. 
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Fig. 1. Higgs and W-masses as functions of K. The dip in mu oc- 

curs close to the endpoint of the confinement to the Higgs tran- 

sition line which is not crossed however. 
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[7] E. Katznelson, P. Lauwers and M. Marcu, preprint Bonn 

University He-87-28. 

Fig. 2. Same as fig. 1 but crossing the transition line. The dashed [ 8 ] P.H. Damgaard and U.M. Heller, Phys. Lett. B 164 ( 1985) 

lines correspond to metastable phases. 121. 

field or N+oc, approximation to the small-p theory 
look qualitatively similar to Monte Carlo results [ $71 
albeit the mass values are systematically higher. This 
is of course to be expected or even necessary for con- 
sistency at strong coupling. Once again this limit has 
proved its value in elucidating the structure of non- 
perturbative physics. Needless to say it is not possi- 
ble to expose any features of the scaling limit as e.g. 
effects of triviality or “l-independence”. We con- 
clude by noting that the P-dependence of masses de- 
termined in ref. [ 71 on their largest lattices, namely 
mw=0.48, 0.39,0.26 for /?=2.4, 2.7, 3.0, follows the 
strong coupling picture with W hopping parameter 
cc p; they are described within errors by m = 1.37 - 
logj3. Clearly finite j3 has “renormalized” the phase 
diagram, but our strong coupling picture may possi- 
bly hold for the W mass. This however cannot be ex- 
tended to the more realistic value /32: 10 suggested by 
weak interactions [ 6 1. 

The author would like to thank Istvan Montvay for 
a discussion and the DESY theory group for their 
hospitality. 
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