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Abstract .  Us ing  the Crystal  Ball detector  opera t ing  
at the D O R I S  II  s torage ring we have measured  the 
leptonic par t ia l  widths Fee of the F(1S) and  F(2S) 
resonances.  We find 

F~e(Y(1 S))= 1.34+0.03 +0 .06  keV 
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and  

Fee (F(2 S)) = 0.56 + 0.04 + 0.02 keV. 

The  effect on F~ e of  apply ing  different prescr ip t ions  
for radiat ive correct ions  is discussed. We  also measure  
R, the rat io  of  non - re sonan t  hadron ic  cross section 
to the Born  cross section o f / t  pa i r  p roduct ion ,  at 
c.m. energy W = 9 . 3 9  G e V  to be 

R = 3 . 4 8 • 1 7 7  
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1 Introduction 

Ever since the discovery [1] of the F resonances in 
1977 measurements of their leptonic partial decay  
widths F~ e have been of great interest. The measured 
values support the interpretation of the F family as 
bound states of charge ]q[=l /3  particles and serve 
as tests for potential models, which describe the F(nS) 
as the n3S1 states of a bbsystem. Moreover, the total 
widths Fto t are usually obtained from the measured 
Fee widths via the relation ~ot=Fee/Bu., where Buu 
is the independently measured F(nS) decay branching 
ratio to # pairs. This assumes lepton universality, 
which will be done throughout  this paper. 

We report here a precision measurement of F~ e 
for the F(1S) and F(2S) resonances performed with 
the Crystal Ball detector operating at the DORIS II 
e + e -  storage ring at DESY. Fee is obtained from the 
measurement of the cross section for e + e -  ~ hadrons 
as a function of the e + e -  center-of-mass (c.m.) energy 
W in the region of the resonance. We use 4 scans 
of the F(1 S) and one of the F(2S).  From continuum 
data taken below the F(1 S) and from the F(1 S) scans 
we also obtain a value of R, the ratio of non-resonant 
hadronic cross section to the Born cross section of 
# pair production, at W= 9.39 GeV. Single beam data 
is used in the background estimates. 

Extracting Eta t from Fe~/Buu requires consistent ap- 
plication of radiative corrections in the separate deter- 
minations of F~ and Buu, which has not been the 
case for previously quoted values of Fro t for the F 
resonances. We use consistent definitions of Fee and 
Buu which correspond to the F decay to all e+e - 
and # + # -  final states: the contributions of higher 
order QED diagrams to the decays are not removed. 
We compare our result to previous Fee measurements 
by re-normalizing these to correspond to the radiative 
corrections as applied here. In obtaining the value 
of R we follow its traditional definition: the ratio of 
the QED lowest order continuum cross sections for 
e + e -  --* hadrons and e + e-  --* #+ # - .  

This paper is organized as follows: Section 2 gives 
a short description of the Crystal Ball detector. The 
hadronic event selection criteria are discussed in 
Sect. 3. The Monte Carlo event generation used in 
determining efficiencies to observe hadronic events is 
described in Sect. 4. Section 5 is devoted to the back- 
grounds in the hadronic data sample. The luminosity 
determination is discussed in Sect. 6. Since Fee and 
in turn Fro t depend strongly on the parametrization 
used for the observed cross section a~ we discuss 
the different theoretical formulations for it in some 
detail in Sect. 7. In Sect. 8 we describe our procedure 
to determine Fee and present our results. The effect 
on Fe~ of different theoretical formulations for a ~ (W) 

is discussed in Sect. 9. The measurement of R is de- 
scribed in Sect. 10, which is followed by our conclu- 
sions. 

2 Detector and trigger 

The Crystal Ball detector [-2] is a non-magnetic calo- 
rimeter designed to measure precisely the energies and 
directions of electromagnetically interacting particles. 
The experimental setup is shown in Fig. 1. The main 
detector is a spherical shell of 672 optically isolated 
NaI(T1) crystals covering 93% of the total solid angle. 
The remaining 7% is left free to allow room for the 
beam pipe. Each crystal, of truncated pyramidal 
shape, is 16 radiation lengths deep (corresponding to 

1 nuclear absorption length), points to the interac- 
tion region and is read out by its own photomultipli- 
er. The 60 crystals immediately surrounding the beam 
pipe are called "tunnel crystals". They cover the an- 
gular region of approximately 0.85<1cos0[<0.93,  
where 0 is the angle with respect to the beam axis. 
NaI(T1) endcaps increase the angular coverage to 
98% of 4n, but are not used in this analysis. 

The measured energy resolution for electromag- 
netically showering particles is GE/E = (2.7 

_+0.2)%/[ /~GeV. Minimum ionizing particles de- 
posit about 210 MeV. Approximately two thirds of 
the hadrons are expected to undergo nuclear interac- 
tions while traversing the NaI(T1). The directions of 
electromagnetically showering particles are measured 
in the NaI(T1) to an accuracy of a0 = 1 ~ to 2 ~ depend- 
ing on their energy. For  minimum ionizing particles 
Go ~ 3 ~ 

The data used in this analysis satisfy our total 
energy trigger, which is fully efficient for events depo- 
siting at least 1.9 GeV in the NaI(T1) crystals which 
lie within [cos 01 <0.85. Our selected hadronic events 
(see Sect. 3) have a minimum total energy of 
~2.1 GeV. 

e-  

CRYSTAL BALL / / /  

t . . . .  ] c r y s ~  

"~ ~ , , . ~  "~ sma l l  ang le  
l uminos i ty  m o n i t o r  

~ 1 m 

/zr m i n i - f l - q u a d r u p o l e  
e* 

Fig, 1, View of the Crystal Ball detector 



3 Hadronic event selection 

The criteria to select hadronic events are designed 
to have a high detection efficiency while reducing 
background contributions to a minimum, thus mini- 
mizing systematic effects. We rely solely on the most 
accurate and efficient part of the detector: the 
672 NaI(T1) crystals of the main ball. We define the 

6v2 
energy seen in the 672 crystals as EaALL= ~ Ei and 

i=1 
an energy cluster as a group of adjacent crystals with 
energies greater than 10 MeV each. Hadronic events 
then have to pass the following selections cuts: 

1.0.2 W< EBALL < 1.1 W, where W is the c.m. energy. 
2. E t . . . .  Is/EBALL < 0.5, where E t . . . .  Is is the sum of the 
energies deposited in the 60 tunnel crystals of the 
main ball. 
3. As a measure of the energy imbalance of an event 

1 6~2 /~i 
we d e f i n e  fl=--IflJ=EBAL L Ei , where 11 i is a unit 

i=1 

vector pointing to the center of the ith crystal. The 
normalized transverse energy of an event is defined 

1 672 
as x t r = ~  i~_,__ Ei sin Oi. Guided by Monte Carlo stu- 

dies of hadronic events we apply the following cuts 
in the (fl, Xtr) plane: events are accepted if they satisfy 
xtr>0.23, f l<0.7 and xt~>0.5fl+0.11. These cuts are 
shown in Fig. 2, where we present in the (fl, Xtr) plane 
the event population for a representative subsample 
of unselected data. 
4. There should be at least 3 energy clusters with an 
energy Ecluste r > 100 MeV each. 
5. Events should not have more than 1 energy cluster 
with Ecluste r > 0.35 W. 

Xtr 
1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

t~t 
Fig. 2. (fl, xtr) plane for unselected data. The accepted events are 
in the upper left corner separated from the rejected events by the 
solid line (see text) 
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6. Events should not have any energy cluster with 
Ecluster > 0.35 W if EBALL > 0.75 W. 
Cuts 1 to 4 are effective in suppressing backgrounds 
coming from beam-gas interactions, cosmics and two- 
photon collisions. The last two cuts efficiently remove 
background from QED processes like Bhabha scat- 
tering. The background remaining in our hadronic 
data sample is discussed in detail in Sect. 5. 

4 Efficiency determination 

The detection efficiencies for hadronic events from 
Y(1S) and F(2S) decays, continuum q~ production 
events and background events are calculated using 
the Monte Carlo technique. Hadronic events from 
Y(1 S) and Y(2S) decays and from continuum qO pro- 
duction are generated with the standard L U N D  str- 
ing fragmentation program version 6.2 [3]. As an al- 
ternative hadronization scheme we use the coherent 
parton shower model offered in the same program. 
This scheme is based on the QCD cascade model 
by Marchesini and Webber [4]. In Sects. 8 and 10 
we estimate our sensitivity to the hadronization 
scheme from the difference in the efficiencies obtained 
with the two models. 

The generated events are passed through a com- 
plete detector simulation. This simulation includes the 
following steps: 

1. Electromagnetically interacting particles are 
handled by the electromagnetic shower development 
program EGS [5]. 
2. The interactions of hadrons are simulated with the 
G H E I S H A  6 program [6]. 
3. Extra energy deposited in the crystals by beam- 
related background is taken into account by adding 
special background events to the Monte Carlo events. 
These background events are obtained by triggering 
on every 107th beam crossing, with no other condi- 
tion. 
4. The events are then reconstructed using our stan- 
dard software and subjected to the same cuts as the 
data. 
The efficiency calculations are described in more de- 
tail in Sects. 5, 8 and 10. 

5 Backgrounds 

Background events originate from 1) QED processes, 
2) two-photon interactions and 3) collisions of beam 
particles with residual gas and the vacuum beam pipe. 
Estimates of the magnitudes of these backgrounds 
are obtained with Monte Carlo techniques and single 
beam data. The specific method used depends on the 
origin of the background events and will be discussed 
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below. The resulting background estimates will be 
used in Sects. 8 and 10 in the determination of Fe e 
and R, respectively, and in the estimate of the system- 
atic errors. 

5.1 QED processes 

To estimate the background from the Q E D  processes 
e + e -  ~ e + e -  (7), 77 (7), /2 +/2- (7), and e + e -  

T + z -  (7), we generate events of these types with the 
programs of Berends et al. [7, 8]. The (7) indicates 
that photon emission and other Q E D  processes to 
(9(~ 3) are included. The generated cross sections o- 
and their products with the corresponding efficieneies 
e to pass our hadronic selection cuts are presented 
in Table 1. The largest source of background stems 
from the e + e -  ~ z + ~- (7) channel with 
e,o-=171_+4 pb compared to e ~ 3 0 0 0  pb for e+e  - 
--,hadrons at W--9.39 GeV. Contributions from the 
other Q E D  reactions are much smaller. 

5.2 Two-photon collisions 

According to a recent compilation [9] of the total 
cross section data of the process 77 --* hadrons a good 
description of this data is obtained by adding the 
predictions of the generalized vector-meson domi- 
nance model (GVDM) and the quark par ton model 
(QPM). Since we expect only small background con- 
tributions from two-photon interactions we follow 
this suggestion. For  the Q P M  part we generate q~ 
pairs with a Monte  Carlo program of Vermaseren 
and Lepage [10] with subsequent hadronization by 
the standard L U N D  program version 6.2 [3]. Two- 
photon events with a G V D M  cross section, parame-  
trized according to [9] a s  O-tot(y 7 ~ hadrons) = [(240 
_+29)+(394+ 110)GeV/W~)] nb, are generated by a 
Monte  Carlo program using the equivalent photon 
approximat ion [11]. The sum of the generated Q P M  
and G V D M  cross sections and the resulting observ- 
able cross section are presented in Table 1. 

5.3 Beam-gas background 

Events from collisions of beam particles with residual 
gas or with the vacuum pipe are refered to as "beam-  

Table  1. S u m m a r y  of  M o n t e  C a r l o  gene ra t ed  c o n t i n u u m  Q E D  a n d  
t w o - p h o t o n  cross  sec t ions  a a n d  o b s e r v e d  cross  sec t ions  ea .  The  
e r ro r s  in e a o r ig ina t e  f rom M o n t e  C a r l o  s tat is t ics  

Process  W [ G e V ]  t7 [ n b ]  e ~ [ p b ]  

e + e -  ~ e + e -  (7) 9.39 103.9 14.6_+4.1 
e § e -  --* yy(y) 9.39 31.3 1.3 _+0.3 
e + e  - -*P+#  (7) 9.39 1.4 < 1  
e + e  ~ z + ~  (7) 9.39 1.1 171 + 4  
77 ~ hadrons 9.39 7.1 19.8 + 5.6 

gas" events. The contaminat ion from beam-gas events 
in our hadronic sample is determined from single e + 
and e -  beam runs taken close in time to our reso- 
nance scans. We assume that all events in the single 
beam data which meet our selection criteria are beam- 
gas events. The number  of residual beam-gas events 
in the hadron selected colliding beam data sample 
is calculated in two independent ways. 

In the first method we normalize the single beam 
data to the colliding beam data by integrating the 
product  of the total beam current and the gas pressure 
over run time. This method is essentially independent 
of any model, but sensitive to any difference in beam 
optics between single beam and colliding beam runs. 

The second method makes use of Monte  Carlo 
simulations. For  a given set of hadronic event selec- 
tion criteria the number  N.~ of events which pass 
these criteria is given by 

Naoo = ~eY,~i  e~ + N .~ ,  (1) 
i 

where NBa is the number  of beam-gas events, ~ the 
integrated luminosity, ai and ei are the cross sections 
and corresponding hadron selection efficiencies for all 
colliding beam e + e -  processes. The al and ei are de- 
termined by Monte Carlo simulations of the relevant 
processes. It turns out that it is possible to vary cuts 
such that we can obtain a substantially larger fraction 
of beam-gas events in our hadronic data sample with- 
out large changes in the efficiencies. For  such modi- 
fied selection criteria we obtain 

N~c = Y ~ ai e; + rNB~, (2) 
i 

where r is the acceptance ratio for beam-gas events 
for the two sets of cuts. This factor r is determined 
using single beam data. Subtracting (1) from (2) we 
get 

AN~c~=N%e--N.r (3) 
i 

Since r is large and the change in the efficiencies A e 
is small, the change in the number  of accepted events 
AN, cc is fairly insensitive to the cross sections used. 
Solving (3) for NBa gives the number  of beam-gas 
events. 

Both methods give consistent results. Taking the 
average we find that beam-gas background contrib- 
utes only a very small fraction to the hadronic data 
sample from the continuum process e + e -  ~ hadrons: 

fBC = NBc/Nacc = (0.30 _+ 0.01 + 0.03)%. 



The first error is the statistical error. It is determined 
from the second method and reflects the statistics of 
the data used. The systematic error is derived from 
the difference in fBa values obtained by both methods. 
For  the Y scans fB~ is higher by a factor of 2 due 
to larger machine background. The distribution of 
this background as a function of c.m. energy is fiat 
within statistical errors. 

6 Luminos i ty  measurement  

The luminosity is measured using the e + e -  --* e + e -  (y) 
and e + e -  ~ YY(7) events observed in the main NaI  (T1) 
detector. Events which have exactly two energy clus- 
ters each with Ecluste r > 0.35 W and with directions in- 
side Icos 0J <0.75, are selected as luminosity events. 
The integrated luminosity ~ is calculated from the 
number  of luminosity events NLuml using 

= NL~mi W2/a. (4) 

The explicit energy factor W 2 removes the leading 
1/W z cross section dependence, allowing use of a con- 
stant conversion factor a within our limited W range. 
The value of a is determined by generating a sample 
of e + e-(y)  and YT(Y) Monte  Marlo events with the 
program of Berends and Kleiss [7] and passing them 
through the full detector simulation as described in 
Sect. 4. The luminosity is corrected for the direct 
]c~ e + e -  decays which contribute to NLumi. 

A 2.5% systematic error on the luminosity is ob- 
tained by adding quadratically contributions from the 
following sources: 1.0% from Monte  Carlo statistics, 
1.0% from 4 th order Q E D  corrections [12], 1.9% 
from a variation of cuts within reasonable limits, 
0.7% from the correction for direct decays Ic-~ e + e - ,  
0.2% from hadronic and beam-gas background,  0.1% 
from the non-leading energy dependence of the con- 
version factor a. 

7 Radiative corrections and definition o f  F~ e 

The measured excitation curve a(W) of the resonance 
in the process e + e - ~  Y~hadrons is used to obtain 
F~ e. Without  Q E D  radiative corrections the cross sec- 
tion for the formation of the Yin e + e -  annihilation 
has a Breit-Wigner form of width Ftot. For  the Y(1S) 
and Y(2S), Ftot is about  two orders of magnitude 
smaller than the r.m.s, spread A in the c.m. energy 
of the storage ring due to synchrotron radiation, 
which for D O R I S  II  is A ~ 8  MeV. Thus the Breit- 
Wigner can be safely approximated by a delta func- 
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Production Decay 

/ \ 
\ / 

/ 

(d) Y (i) 

(e) ~ Y  , ~ - ' ~  (i) 
/ \ 

Fig. 3a - j .  F e y n m a n  d i ag rams  which con t r ibu te  to O(c~ a) to e + e -  --~ Y 
and  Y--* e + e . To this  o rder  the g raphs  b, e, d and  g, h, i con t r ibu te  
only  t h rough  their  interference wi th  the lowest  o rde r  g raphs  a and  f 

tion, aBw=A(~ with A (~ the area of the 
Breit-Wigner and M the mass of the resonance: 

A (~ - 6~2 F~Bh, d (5) 
- m 2 

where Bha d is the resonance branching ratio into had- 
rons. Convoluting this 6 function with the Gaussian 
distribution of the beam energy gives the effective low- 
est-order cross section: 

A(O) e x p ( -  z2/2) W -  M 
o(~ AI/  , (6) 

The (o) in these equations indicate that the quantities 
are to lowest order in QED,  corresponding to the 
Feynman graph of Fig. 3a. The a(~ must  then 
be multiplied by our efficiency for detecting hadronic 
events to get the observed cross section; this factor 
is discussed in Sect. 8.1. Here we are concerned with 
the Q E D  radiative corrections to the production cross 
section a(~ They change both its shape and its 
normalization. The relevant Feynman diagrams to 
C(c~ 3) are shown in Fig. 3 b~e. 

Radiative corrections were initially calculated by 
Yennie et al. [13] and Bonneau and Mart in  [17]. Sev- 
eral other theoretical calculations have appeared since 
[18 20, 22, 30]. Generally, the result is a convolution 
of the lowest order cross section a(~ with a distri- 
bution function which mainly reflects a bremsstrah- 
lung energy spectrum. The result is of the form 

a (W) = A (~ exp (--  z2/4) 
A1/2 N(z) (7) 
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Most previous measurements of Fee have used the 
functional forms for N(z) as obtained by Jackson and 
Scharre [18] or by Greco et al. [19], respectively: 

Njs(Z ) =(~)tF( l+t)D_t( - -z )  

+(de+2II)exp(--zZ/4), (8a) 

NGPs(Z) = ( ) - I - t ) ~  tF(1 D_t(-z) 

�9 (1 + ~e +  2/ / ) .  (8b) 

Here F denotes the gamma function and D_t is 
Weber's parabolic cylinder function [23]. Note that 
in the limit t-*O, D t(--z)-*exp(-z2/4) and the 
Gaussian shape of the machine resolution is recov- 
ered. 

3 2c~ [ n  2 1\ 
In the above formulae 6 e = ~ t  + ~  3 - - 2 )  stems 

from the vertex correction (Fig. 3d), and t 

= 2 ~ (  21n--meW 1 ) i s  the equivalent radiator thick- 

ness. / /  is the vacuum polarization correction from 
the diagram of Fig. 3 b. It includes the effect of all 
the lepton and quark loops in 3 b: H = F/e -[-/ /# -t- F/~ 
+Hq~,k~. The electron loop contributes He 

=_a(21n W ~) ~0.014 at energies W near the Ic 

resonances. Muon and tau loops are calculated with 
their corresponding masses [20]. The quark loop con- 
tributions have been estimated by Berends and Ko- 
men [16] from the measured a(e+e--*hadrons) to 
be Hqu,rks~0.017. Summing all fermion loop contri- 
butions yields H ~ 0.038 at our energy. In their origi- 
nal papers, Jackson and Scharre and Greco et al. ig- 
nored the #, ~, and quark contributions. In (8) we 
have corrected this by replacing He by / /  in their 
formulae�9 

Both forms of N(z) take into account the effect 
of many soft photons emission via "soft photon ex- 
ponentiation", which leads to the (2A/W) t factors in 
(8). Jackson and Scharre apply it only to part of the 
cross section, whereas Greco et al. correct the entire 
(.0(e 3) expression. The difference is of (9(~4), so that 
a definitive decision on which treatment is more accu- 
rate can only be made on the basis of a complete 
calculation to that order. Such a calculation has re- 
cently been done by Berends et al. [30], indicating 
good agreement with the form Naps(Z). 

Thus Naps(Z) is suitable for use with (5) and (7) 
to measure Fe~o)Bhad- However, we are interested in 
the physical Fee, corresponding to a calculation to 
all orders in e. Fee is defined as the partial width of 

the decay F-*e+e -. In QED F-*e+e - is always ac- 
companied by an infinite number of low energy pho- 
tons. To avoid specifying a photon energy cut-off in 
measurements of Bee (or Buu), it is conventional to 
include all decays with extra photons Y-*e + e - + n 7  
in the definition of Fee. In order to relate Fee to Fe (~ 
we assume that the (9(e 3) calculation is a good ap- 
proximation to Fe e . The full set of diagrams contribut- 
ing to the decay to C(e 3) are shown in Fig. 3f-j. Fe(e ~ 
corresponds to the lowest order diagram 3f alone. 
By the Kinoshita-Lee-Nauenberg theorem [14], the 
mass singularities from the vertex correction and the 

/ 

bremsstrahlung graphs (i.e. the terms proportional to 
\ 

I n m  vv) cancel to each order in c~, leaving a finite part 
/ 

which is negligible [20]. Thus the only radiative cor- 
rection which makes a net C(c~ 3) contribution to the 
decay comes from the vacuum polarization graph 3 g 
interfering with the lowest order graph 3 f. This leads 
to an increase of the partial width: 

Fee = (1 + 2 / / )  F~ ~ (9) 

Lepton universality for F~ ~ implies Fee~Fuu~F~ ~ to 
good approximation. Since l + 6 e + 2 H = ( l + b e ) ( 1  
+ 2 / / )  to this order in c~, we can remove the 2 / / f r o m  
N(z) (8b) and introduce N'(z)=N(z)/(I+2FI). This 
yields 

e x p ( -  z2/4) 
a(W) = A N'(z) (10) 

with 

6~2 (11) A = M2 Fee Bhad- 

More recent calculations of the radiative corrections 
use this convention. Tsai [20] and Kuraev and Fadin 
[22] find, respectively: 

N~(z)= F(I + T) D_ T(-  z) 

�9 (1 _ / / ) - + e / n ,  

, /2AX t 
Nb(~) =/~-.~ I r(1 + t) D_ , ( -  z)(1 +a~). 

\vv /  

(12a) 

(lZb) 

The NkF(Z ) is exactly Naps(Z) with the 2 / /  removed. 

In the expression of Tsai T = t ~ l n ( 1  IFI)is the 
\ / 

equivalent radiator thickness corrected for pair pro- 
duction, which at W= Mr~as) differs from t by 0.32%. 
Some of the higher order corrections have also been 
calculated by Kuraev and Fadin, and differ from the 
renormalization group result of Tsai. However, the 



results agree to C(e3). The above formula for Nke(z) 
omits the higher order terms. 

Our results presented in Sect. 8 are based on the 
formalism of Kuraev and Fadin [22], using (10, i l ,  
12b) to obtain ~eeBhad directly. One could equally 
well use (5, 7, 8b) to obtain F~ ~ Bh,a and then apply 
(9) to get F~ Bh, a. However, most  previous measure- 
ments have used the formalism of Jackson and 
Scharre with 11 =Fie, resulting in something which 
is neither Fee nor F~ (~ A comparison with the results 
obtained using the various formalisms is presented 
in Sect. 9 to demonstrate  the differences. 

To obtain Fee from Fe~ Bh~a we need the hadronic 
branching ratio Bh, d. With the assumption that the 
resonance only decays into hadrons and lepton pairs 
we can use the relation Bh, d + 3 Buu = 1. It  is important  
to note that Buu is measured including all extra pho- 
tons in the decay and contains the vacuum polariza- 
tion term from graph g of Fig. 3, otherwise the above 
equality would not hold. Also a determination of 
~ot=I'ee/Buu requires the vacuum polarization term 
to be included in the leptonic width [21]. 

8 F~ Measurements 

The resonance parameters  M and Fee are determined 
by fitting the following function to the observed had- 
ronic cross section: 

a~ = A ~ exp (--  z2/4) C 
A1/2 Nb(z)  w (13) 

The first term accounts for the decays Y~ hadrons. 
A ~ A e~ is the area of the Breit-Wigner multiplied 
by our hadronic detection efficiency for resonance de- 
cays. The resonance mass M enters by the variable 
z - ( W - M ) / A .  Radiative corrections are treated ac- 
cording to the prescription of Kuraev and Fadin [22], 
using N~v(z) from (12b). The second term reflects had- 
ron production from the continuum, which to lowest 
order scales as 1/WL Over the narrow energy region 
used in the fits, the C/W z continuum part  of o-~ 
will include nearly all contributions from the back- 
ground sources discussed in Sect. 5. 

The data samples of hadronic events used for our 
Fee determinations are summarized in Table 2. We 
have performed 4 scans over the r(1 S) resonance and 
one scan over the Y(2 S). Each scan has approximately 
100 nb -1  per point. The value of Fe e determined from 
the scans is insensitive to small overall changes (of 
the order of +_ 10 MeV) in the absolute energy scale. 
I t  is, however, sensitive to the point-to-point  error 
of the energy measurement.  
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Table 2. Data samples for the ~1 S) and Y(2S) scans and continuum 
data: energy range, number of hadronic events, total luminosity 
with statistical error, and number of data points 

Scan W range 
[GeV] ~ hadrons ~ LP [nb- 1] 4t= points 

Y(I S) scans 
1 9.388 9.506 12195 2204_+12 21 
2 9.445-9.477 6032 690+ 7 9 
3 9.436-9A81 4008 567_+ 6 7 
4 9.444-9.479 5139 670_+ 7 8 

Total 27374 4131 _+ 17 45 

)~(2 S) scan 
9,966-10.039 4367 994+ 9 10 

Continuum data 
9.39 25825 7135_+22 

The most  precise beam energy measurement  at 
e + e -  storage rings can be made by using a depolar-  
ization technique [24], if the beams are polarized. 
Due to the emission of synchrotron radiation electron 
and positron beams become polarized via the Soko- 
lov-Ternov effect [25]. D O R I S  II  provides a beam 
polarization of up to 80% in the Y(2S) energy region 
thus allowing a very precise energy determination for 
our F(2S) scan data:  a J E ~ 2 x  10 -~. Details of this 
measurement  can be found in [263. 

In the r(1 S) energy region the beam polarization 
is destroyed completely by storage ring resonances 
specific to the D O R I S  II  machine configuration. Here 
the most  precise measure of the relative beam energy 
comes from the determination of the magnetic field 
B at the beam position of a storage ring bending 
magnet  using the nuclear magnetic resonance effect. 
The accuracy achieved here is ~B/B ~ 5 x 10- 5 

The determination of the beam energy from the 
magnetic field measurement  depends on the machine 
parameters,  which change with time, and on the de- 
gree of saturation of the magnets, which depends on 
the history of energy changes. We observe shifts of 
order 10 MeV between different run periods, and 
smaller shifts between successive scans. To avoid as 
much as possible a shift during a scan we always 
scan with monotonical ly increasing beam energy and 
complete each scan within a period of a few days, 
during which the machine parameters  are held as con- 
stant as possible. The point- to-point  error on the c.m. 
energy is taken from a~/B=5 x 10 .2 to be 0.5 MeV. 
Although Fe~ is nearly unaffected by small uncertain- 
ties in the absolute energy scale (of order _+ 10 MeV), 
we avoid any systematic influence from this effect by 
choosing the normalization factor between energy 
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and magnet ic  field so that  the fitted resonance mass 
is equal to the nominal  mass Mr t lS )=9460 .0  
+ 0.2 MeV [27]. F o r  the limited energy range of  our  
scans the beam energy is a linear function of  the mag-  
netic field B. 

8.1 Fee of the F(1 S) 

We first fit each scan individually to the function (13) 
with four free parameters :  A ~ A, M and C. The 
values of  A ~ and A from these fits are labelled 
" C  free" in Table 3. Only scan number  1 covers a 
wide enough  W range for a good  determinat ion of  
the con t inuum constant  C. Then  we fit scans 2 to 
4 with C fixed to the result obta ined from scan 1. 
This results in the A ~ values labelled " C  fixed" in 
Table 3. They  agree within errors, but  are not  statisti- 
cally independent  and cannot  simply be averaged to 
improve the statistical accuracy. 

Fo r  our  final result we fit the four scans simulta- 
neously, al lowing relative energy shifts between them 
as 3 addit ional  free parameters.  This makes  max imum 
use of  the con t inuum informat ion and gives a statisti- 
cally correct  average of  A ~ The result of this fit, 
with the data  of  each scan corrected for its relative 
energy shift, is shown in Fig. 4. The Z 2 of  45.4 for 
37 degrees of  f reedom corresponds  to a confidence 
level of 16.1%. The parameter  values are: A~ 
_ 6 nb MeV, A = 7.8 _+ 0.2 MeV, and C = 300___ 6 nb 
GeV 2. Scans 2, 3 and 4 are shifted in nominal  c.m. 
energy from scan 1 by - 4 . 0 _  0.4 MeV, 
- 8 . 6 _  0.4 MeV, - 7.8 +_ 0.4 MeV, respectively. The 
machine resolution A is compat ible  with the expected 
value of 7.6 MeV. 

FeeBha d is calculated from (11) and A=A~ R 
where e R is the probabi l i ty  that  a resonance decay 
is accepted in our  hadronic  sample. To obtain  e R 
Monte  Carlo techniques as described in Sect. 4 are 
used. With  the s tandard  L U N D  program version 6.2 
[3] we generate the following F(1 S) decay modes  with 

Table 3. Results of fits to F(1S) scans. Errors are statistical only. 
CL is the confidence level of the particular fit 

Scan A ~ A C CL Comment 
[nb MeV] [MeV] [nb GeV 2] [%] 

1 289___ 8 7.7___0.3 300-t- 6 14.2 Cfree 
2 2 6 9 _ + 3 2  7.2+0.6 327+48 74.3 C free 
3 312+19 8.3+0.5 280+20 4.0 Cfree 
4 221+21 6.8+0.6 374-t-31 32.9 Cfree 

2 288_+ 9 7.5_+0.3 300 81.6 C fixed 
3 298___11 7.9+0.3 300 6.2 Cfixed 
4 271_+ 9 8.0+0.3 300 12.8 Cfixed 

o b s  [nb]  
14.0 

12.0 

10.0 

8.0 

6.0 

4.0 

2.0 

. . . .  i , 

, ~ , , i , , , L i , , , , 

9.37 9.42 9.47 9.52 

w (GeV) 
Fig. 4. Observed  cross sect ion vs. c.m. energy W for the four ]('(IS) 
scans. Circles represent  scan I, squares  scan 2, t r iangles  scan  3, and  
d i a m o n d s  scan  4. The full l ine is the fit resul t ;  the do t ted  l ine shows 
the fitted b a c k g r o u n d  

Table 4. Summary of hadronic detection efficiencies for r(1 S) and 
F(2S) decays and for the continuum process e + e---*hadrons. The 
errors are from Monte Carlo statistics only 

Effi- Process W e 
ciency [GeV]  [ % ]  
symbol 

Comments 

e rus) F(1S)~hadrons 9.46 
ern ms) F(2S)-*hadrons 10.02 
Co.t e + e  ~qc~ 9.39 ,~qQ 

83.14-0.1 unpol, beams 
85.4_+0.2 80% beam pol. 
72.0 _+ 0.5 unpol, beams 

branching ratios according to the Particle Da ta  
G r o u p  values [27]" a) decays into 3 gluons and  y g g ;  
b) direct decays to q~; c) decays into two leptons. 
Typical  detection efficiencies for the r r e s o n a n c e s  are 
a) e3rg=90%, b) eq~r = 80~ c) e~+~_r = 1 5 % ,  whereas 
~e r§ e- and er+ , -  are negligibly small. We get as total  
detection efficiency er~l s) = 8 3.1 _ 0.1 _+ 2.4 % (see Ta- 
ble 4). The first error  results f rom Monte  Carlo statis- 
tics, whereas the second systematic error  originates 
f rom the hadroniza t ion  model  used and the detector 
response. We find a 1.4% difference in the efficiency 
using the s tandard  L U N D  string f ragmentat ion and 
a coherent  pa t ton  shower model.  In addi t ion we esti- 
mate  a 2.5% systematic error  to account  for uncer- 
tainties in modell ing the detector  response. 

Using the measured value of  A ~ and e r(ls) we 
obtain 

F~e Bhad = 1.23 + 0.02 __ 0.05 keV. (14) 

The 4.1% systematic error  is explained in Sect. 8.3. 
Division by Bh,d=l -3Bu ,  using the world average 
of Buu(Y(1 S)) =(2.63 -t-0.12)% from Table 5 yields 

Fee = 1.34 _+ 0.03 _+ 0.06 _+ keV. (15) 



Table  5. C o m p i l a t i o n  o f  B~, va lues  (in %)  for  F(1S) a n d  F(2S)  
a n d  w o r l d  ave rages  

R e a c t i o n  Bun E x p e r i m e n t  

r( 1 s) 
It--. # # 2 .23-2 .0  P L U T O  [41]  

1 A+3.4 D E S Y - H e i d .  [ 31 ]  Y~##  -~-1,4 
Y~##  3 . 2 +  1.3 + 0 . 3  D A S P  II [33]  
I c ~  # # 3.8 + 1.5 + 0.2 L E N A  [32]  
It--. ## 2.7 + 0 . 3  + 0 . 3  C L E O  [46]  

] (~## 2 . 7 + 0 . 3  + 0 . 1  C U S B  [47 ]  
I ~  ee  5.1 + 3.0 P L U T O  [48]  
~'(2 S) ~ ~ + ~ -  }c 2.84 + 0.18 + 0.20 C L E O  [42 ]  
ic 

~ # +  u - , e + e  - 
Y(2S)--* n + z -  F,, 2.39__+0.12_+0.14 A R G U S  [49]  
lc 

~ # + # - , e + e  
1 c---, �9 �9 3.4 + 0.4 + 0.4 C L E O  [43]  

2.63 + 0.12 ave rage  

Ic(2 S) 

Y(2 S)--+ # # 1.8 + 0.8 + 0.5 C L E O  [44]  
}"(2 S) --* # # 1.4 + 0.3 + 0.2 C U S B  [47 ]  
Ic(2S) ~ # #  1 . 0 + 0 . 6 + 0 . 5  ~ A R G U S  [45]  
ic(2 S) ~ ~ 1.7 + 1.5 + 0.6 C L E O  [44]  

1.4 -+ 0.3 ave r age  

a The  A R G U S  ~ 2 S )  va lue  is scaled f rom the a v e r a g e  Ic(1S) va lue  
wi th  Buu(2S ) = 1.57 + 0.59 + 0.53 + 2.1 (Buu(1S)--  2.9) (in %)  [45]  
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c~ obs [nb] 
7.0 , , , , , , , , , , , ~ , , , ~ , , , ~ , , , 

6 .0  
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4 .0  

3 .0  

2.0 
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i i b I , , , I i i ~ I , i L I , , , I , ~ , 
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W (GeV) 

Fig.  5. O b s e r v e d  cross  sec t ion  vs. c.m. ene rgy  W for  the  Ic(2S) scan.  
The  full l ine is the  fit result ,  the  d o t t e d  line s h o w s  the  f i t ted b a c k -  
g r o u n d  

er(2s) = 85.4_ 0 .2_  2.5% with statistical and system- 
atic errors as discussed for the F(1S) in Sect. 8.1. Us- 
ing this value, the measured value of A ~ and Buu 
= (1.4-t-0.3)% from Table 5 we obtain 

Fee Bha d = 0.54 ___+ 0.04 ___+ 0.02 keV 

and 

Fee =0.56-t-0.04_+0.02 keV. 

(16) 

(17) 

8.2 l'ee of the •(2S) 

For  the scan over the Y(2S) we have the aE,-~0.2 MeV 
energy determination for each scan point from depo- 
larization measurements.  Fitting our data as a func- 
tion of energy to the expression of (13) gives the fol- 
lowing results for the parameters:  M=10023 .5  
+0.4  MeV in agreement with our published value 
[26] and that of [27], A ~  MeV, A 
=8 .2+0 .5  MeV which agrees with the expected ma-  
chine resolution of 8.5 MeV at Mr(zs), and C = 2 9 6  
___ 12 nb GeV 2, compatible with the value found at 
the F(1 S). The fit has a Z 2 of 12.5 for 5 degrees of 
freedom corresponding to a 2.8% confidence level. 
The data and the resulting fit curve are shown in 
Fig. 5. 

The Monte  Carlo event sample used to determine 
the hadronic detection efficiency for the ~2S)  in- 
cludes in addition to the decay channels considered 
for the F(1 S) the following decay modes: d) radiative 
decays to the three 3Po,,, z states which in turn either 
decay radiatively to the F(1S) or via 2g luons  
(3P o, 3P2) or 3 gluons (3P0; e) rc + n -  and rc~ ~ transi- 
tions to the Y(1S). The events were generated with 
a beam polarization of 80% as observed in our data. 
We obtain a detection efficiency (see Table 4) of 

8.3 Systematic errors for Fee 

One of the largest contributions to the systematic er- 
ror comes from the 2.5% uncertainty in the lumino- 
sity determination. 

A 2.8% systematic error on the detection efficien- 
cies for the r(1S) and the F(2S) is the quadratic sum 
of the contributions already discussed in Sect. 8.1. 

We allow a 1.5% error for the dependence on 
cuts, found by varying them within acceptable limits, 
and by using an alternate hadron selection method 
described in [29]. 

Next we consider the effect of backgrounds in our 
data sample. Background contributions from the con- 
t inuum Q E D  processes e + e -  ~ e + e - ,  77, # + # - ,  and 
z+ r -  are already suppressed by our event selection. 
Moreover,  the lowest order cross sections for these 
processes all scale like 1/W 2, so that  events of this 
type are mostly included in the C / W  2 term. The deter- 
minat ion of the a r e a  A ~ under the resonance curve 
is not affected by background contributions. In 
Sect. 5.3 we estimate the beam-gas contaminat ion to 
be 0.6%. This background has a flat distribution as 
a function of energy and is almost completely ab- 
sorbed in the cont inuum term C / W  2 of (13). Two- 
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photon reactions have a cross section proport ional  
to In W 2, as do higher-order corrections to the contin- 
uum Q E D  background. To check for any such back- 
ground we also perform fits to the data adding a 
second background term C' In W 2 to (13). These fits 
give C' = 0 _ 3 nb, C = 300_  10 nb GeV 2. The latter 
value is the same as obtained in Sect. 8 without the 
In W 2 term. Also all other fitted parameter  are com- 
pletely unaffected by adding such a term. Over the 
scanned energy range, the value found for C', which 
is highly anticorrelated with C, would result in a 0.3% 
change (at the 1 S.D. level) of the background, if there 
were contributions from processes with energy depen- 
dence proport ional  to In W 2. 

To test for possible c.m. energy shifts within each 
individual one of our scans we make several addition- 
al fits to them. Between any two scan points we split 
each scan in two parts allowing as an additional fit 
parameter  an energy shift of one part  with respect 
to the other. Within errors the fitted single shifts are 
always compatible with zero. The probabili ty that all 
shifts together are zero is as high as 31%. Again with- 
in errors the fitted A ~ do not deviate from the values 
given in Sect. 8 obtained without any shift. 

Combining the errors quadratically we obtain a 
4.1% systematic error on our Fee Bhad values. Dividing 
by 1 3 B , ,  to obtain Fee introduces an additional 
systematic error of 0.4% for the Y(IS) and of 1.3% 
for the Y(2S). 

9 Discuss ion of  F~ e results 

Previous measurements of Fee of the F's used either 
the Jackson-Scharre or the Greco et al. formulation 
of radiative corrections, which differ from the Kuraev-  
Fadin form we used, as discussed in Sect. 7. However, 
all of the forms in (8 and 12) give very similar shapes, 
with differences appearing in the normalization. Thus 
previous measurements can be renormalized to corre- 
spond to the Kuraev-Fadin  formulation by compar-  
ing the values of N ( z = 0 )  in (8, 12). This is done in 
Table 6, and compared to our values. Here we com- 
pare Fee Bhad rather than flee to remove the dependence 
on B , ,  , which was not very well known at the time 
of the earliest Fee measurements. Adding the statistical 
and systematic errors in quadrature shows our result 
to be the most  precise single measurement for the 
Y(I S) as well as for the Y(2 S). The agreement with 
the world averages, calculated without our values, is 
excellent. 

Based on our data we give a comparison of flee 
values for the Y(1 S) obtained applying the four differ- 
ent radiative corrections according to (8 and 12) in 
Fig. 6, the errors shown are statistical only. Although 
Tsai's ansatz [20] has been criticized by Kuraev and 
Fadin, both prescriptions give nearly the s a m e  flee 
result, since they are equal to the order of corrections 
considered here. The point marked as "Berends et al." 
shows the result using their (9(cP) calculation [30]. 

Table 6. Measurements  of Fee Bha d(in keV). The type of radiative correction that was used in each published 
value is listed, and the rescaled value is given. KF:  Kuraev and Fadin, JS: Jackson and Scharre, GPS: 
Greco et al. 

Published F~ e Bha d Rad. corr. Rescaled value Experiment 

r (  1 S) 
1.00 _+ 0.23 JS 1.09 _+ 0.25 DESY-Heidelberg [31 ] 
1.10_+0.07_+0.11 GPS 1.13_+0.13 LENA [32] 
1.12_+ 0.07 _+ 0.04 JS 1.23 _+ 0.09 DASP II [33] 
1.17_+0.05_+0.08 JS, full FI 1.37_+0.11 CLEO [34] 
1.04_+0.05_+0.09 JS 1.17_+0.11 CUSB [35] (unpub.) 

KF  
1.22 _+ 0.05 prev. average 
1.23 + 0.02 • 0.05 this experiment 
1.23 _+ 0.04 new average 

r(2s) 
0.37 + 0.16 JS 0.41 _+ 0.18 DESY-Heidelberg [31 ] 

+ 0 0 9  
0.53__+0.07_0105 GPS 0.54+0.12 LENA [32] 

0.55_+0.11+0.06 JS 0.60_+0.14 DASP II [33] 
0.49 • 0.03 _+_ 0.04 JS, full II 0.58 _+ 0.06 CLEO [34] 
0.53 + 0.03 • 0.05 JS 0.59 • 0.06 CUSB [35] (unpub.) 

K F  
0.57 + 0.04 prev. average 
0.54_+ 0.04 _+ 0.02 this experiment 
0.56 • 0.03 new average 
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Fig. 6. Compilation of Y~ e results for the r(1 S) obtained using diffe- 
rent radiative corrections: Kuraev and Fadin [22], Jackson and 
Scharre [18], Greco et al. [19], Tsai [20], full (9(g 4) calculation 
by Berends et al. [30]. The errors are statistical only 

Table 7. Rescaling factors for Fee. Ratios of N(z=0 )  compared to 
Fee ratios from fits to our Y(1 S) scans using different prescriptions 
for radiative corrections. The smallness of the errors on the measu- 
red ratios arises from the positive correlation of individual F~ values. 
KF:  Kuraev and Fadin, JS" Jackson and Scharre, GPS: Greco et al., 
T: Tsai 

Radiative Ratio from Fee Ratio from 
corrections N (z - O) 

KF/JS 1.08655 ___ 0.00010 1.09340 
KF/GPS 1.02600 __ 0.00002 1.02600 
KF /T  0.99955 ___ 0.00003 0.99911 

Using the expressions of Jackson and Scharre [18], 
(Sa), and of Greco et al. [19], (8b), the ire e values are 
lower due to the inclusion of H e , the electronic vacu- 
um polarization contribution. In Table 7 we compare  
ratios of N ( z = 0 )  to the corresponding ratios of Fee 
values extracted from our Y(1 S) scans using the var- 
ious prescriptions. The agreement to better than 1% 
supports the applicability of the rescaling procedure. 

10 Determination of R 

The determination of R follows its traditional defini- 
tion: R is the ratio of non-resonant  hadronic cross 
section to the Born cross section of # pair product ion 

R = ~176 e -  -* hadrons) (18) 
a(~ + e -  ~ #+ # - )  

In contrast to Fee, which is a physical quantity, R 
is a theorist 's ratio, in which the effect of Q E D  correc- 
tions is removed, as indicated by the symbol a (~ The 
lowest order p pair production cross section at fixed 
c.m. energy W is given by [27] 

4;c~  2 86.9 
a(~ ~#+p-)= W2- W2 n b G e V  2. (19) 
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We have ~7.1 pb -~ of data (see Table 2) taken in 
the continuum below the Y(1S) at c.m. energy 
W=9.39 GeV. The observed hadronic cross section 
a ~ is given by Nh,d .. . . .  the number  of selected had- 
ronic events, and the luminosity 5a: 

Gobs - Shad . . . .  (20)  
5O 

We define the quantity 

c~ = aobs W E (21) 

which is determined run by run. Taking the weighted 
average we obtain c~=300.38-t-2.86 nb GeV 1. Com- 
bining (19) with (21) gives the observed R~ 

~g 
R ~ - (22) 

86.9 nb GeV 2" 

As discussed in detail in refs. [36] and [37], R is 
obtained from R ~ as follows: 

R = R~ (1 - - f B G ) -  ARQED - -  A R ~ 7  (23)  
Cont eq0 (1 +6R) 

6R accounts for the initial state radiative corrections, 
6R=0.291 [37] at W=9.39 GeV. Here a cutt-off at 
1% of the beam energy has been applied for the ener- 
gy of bremsstrahlphotons,  fBc=0 . 3% is the percent- 
age beam-gas contaminat ion (see Sect. 5.3). ARQE o 
=0.187-t-0.005 is the background at W=9.39 GeV 
from the cont inuum Q E D  processes e + e - ~ e + e  - ,  

?, p + # - ,  and z + z -  which pass our hadron selection 
criteria. AR~=0.020_+0.006 is the background from 
two-photon collisions. The AR are calculated from 

Cont i s  ~cr of Table 1 as AR=ec~W2/(86.9 nb GeV2). eq0 
the detection efficiency for continuum hadron produc- 
tion. We use the average of the e + e -  --, q ~ efficiencies 
obtained with the standard L U N D  string fragmenta- 
tion and the coherent par ton shower model (see Ta- 
ble 4). 

The systematic error on R receives contributions 
from the following sources: The 1.4% difference of 
the efficiencies for the L U N D  string and the coherent 
shower model is taken as systematic uncertainty re- 
sulting from the hadronization model used. We esti- 
mate a 2.5% systematic error to account for uncer- 
tainties in modelling the detector response. The error 
on the luminosity determination is 2.5%. The back- 
grounds which have to be subtracted are already 
small due to our selection cuts. The systematic error 
on the beam-gas fraction is AfBG/fBG=IO%. If we 
conservatively allow for a 5% systematic uncertainty 
in ARQE o and if we assume that for two-photon back-  
ground the cross sections of both, the G V D M  and 
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Fig. 7. Compi l a t i on  of R values.  The  smal l  e r ror  bars  represent  
s tat is t ical ,  the large er ror  bars  sys temat ic  errors  separately.  The 
quo ted  values  are m e a s u r e d  at  the fol lowing c.m. energies:  C L E O  
[--34] W = 1 0 . 4  GeV;  C U S B  [38] W = 1 0 . 4  GeV;  L E N A  [28] 
W = 9 . 3 0 G e V ;  DESY-He ide lbe rg  [31] W = 9 . 4 5 G e V ;  D A S P I I  
[-39] W=9.5 GeV; P L U T O  [-40] W = 9 . 4  GeV 

Q P M  contributions are known only within a factor 
of 2, then the background subtraction affects our R 
by less than 0.6%. The dependence on hadron selec- 
tion cuts is determined as described in Sect. 8.3 and 
contributes 2.5%. Finally, according to [37] 6R is 
known to 1%. The factor ( l+6R)  -1 thus gives an- 
other 0.1% systematic uncertainty. Adding the differ- 
ent contributions quadratically we assign a 4.6% sys- 
tematic error to the measured R value. We then ob- 
tain 

R = 3 . 4 9 • 1 7 7  at W = 9 . 3 9 G e V ,  

where the errors are statistical and systematic, respec- 
tively. 

As a cross check of this result we also determine 
R from the continuum contribution in our resonance 
scan data by the same method as discussed above. 
Here cd is the value of the continuum parameter  C 
found in the fit to our F(1S) scans: C = 3 0 0 •  
GeV 2. We find 

R = 3 . 4 7 • 1 7 7  at W = 9 . 4 6 G e V .  

Both R values agree within statistical errors. The sta- 
tistical error on the latter value is larger reflecting 
the smaller data sample. The systematic error is the 
same as discussed above. 

The expected change in R when changing W from 
9.39 GeV to 9.46 GeV is of the order of AR/R,,~ 10 -4  
and thus not observable within our accuracy. So tak- 
ing the weighted average of the two measurements 
we obtain. 

R = 3 . 4 8 • 1 7 7  

A compilation of R values in the energy range W =  9.3 
to 10.4 GeV is given in Fig. 7. In this energy range 
no flavor threshold is crossed and changes in R due 
to the energy dependence of the strong coupling con- 
stant are unobservable within present statistics. Our 

result agrees with most  of the published values within 
statistical errors. Our systematic uncertainty is con- 
siderably smaller than for the other measurements.  

11 Conclusions 

With the Crystal Ball detector operating at the D O R -  
IS II  storage ring we have measured the leptonic par-  
tial widths Fee of the ~1 S) and F(2S) resonances. Us- 
ing the prescription of Kuraev and Fadin [22] to 
correct for initial state radiation, we find 

F~ e (Y(1 S)) = 1.34 ___ 0.03 ___ 0.06 keV 

and 

Fee (F(2 S)) = 0.56 • 0.04 • 0.02 keV. 

The errors are statistical and systematic, respectively. 
These values are the most precise single measure- 
ments, and agree well with the averages of previous 
measurements rescaled to the radiative corrections of 
Kuraev and Fadin. With these corrections the new 
world averages are 

Fee(F(1S))= 1.34+0.05 keV 

and 

F~e (Y(2 S)) = 0.58 + 0.03 keV. 

To compare  with theoretical predictions, the experi- 
mental Fee values should be divided by 1.07 to include 
the effect of vacuum polarization [20, 21]. Using the 
current world averages for Bu, we obtain the total 
widths 

Fto,(~l S))= 51 + 4  keV 

and 

Fttot( Y(2 S)) = 40 + 9 keV. 

Finally, we determine R, the ratio of non-resonant  
hadronic cross section to the Born cross section of 
# pair production, at c.m. energy W =  9.39 GeV and 
find 

R = 3 . 4 8 • 1 7 7  

Our value of R agrees within statistical errors with 
published results, and has the smallest systematic un- 
certainty. 
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