SEMILEPTONIC CHARM MESON DECAYS AND THE MATRIX ELEMENTS $\left|V_{c s}\right|$ AND $\left|V_{\text {cd }}\right|$

C A DOMINGUEZ ${ }^{12}$
Deutsches Elehtronen-Synchrotron DESY, D-2000 Hamburg 52, Fed Rep Germany

and

N PAVER ${ }^{3}$
Dipartimento di Fistca Teorica, Universita dı Trieste Scuola Internazionale Superiore dı Studı Avanzatl, and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34100 Trieste Italy

Received 11 Aprıl 1988

Abstract

Using QCD sum rules for a two-point function involving charmed vector currents we determine the D_{13} form factor $f_{+}(0)=075 \pm 005$ This result, combined with the $\mathrm{D}_{\ell 3}$ decay widths, leads to a prediction for the quark mixing matrix elements $\left|V_{\mathrm{cs}}\right|$ and $\left|V_{\mathrm{cd}}\right|$ We find $\left|V_{\mathrm{cs}}\right|=096 \pm 012$ and $\Gamma\left(\mathrm{D} \rightarrow \pi \ell \bar{v}_{\ell}\right)=(076 \pm 024) \times 10^{11}\left[\left|V_{\mathrm{cd}}\right| /(021 \pm 003)\right]^{2} \mathrm{~s}^{-1}$ Our estımate is reliable to the extent that employing the same technique for K_{83} decay we obtain $\left.f_{+}(0)\right|_{\mathrm{K}_{83}}=096 \pm 013$

An accurate knowledge of the form factor $f_{+}(0)$ in $\mathrm{D}_{\ell 3}$ decays is quite important as it allows for a determınation of the quark mıxıng, Cabibbo-KobayashıMaskawa, matrix elements $\left|V_{\mathrm{cs}}\right|$ and $\left|V_{\mathrm{cd}}\right|$, once the corresponding decay rates are known from experiment (for a recent review see eg ref [1]) According to the non-renormalization theorem [2] the deviation of $f_{+}(0)$ from unity is of second order in flavour symmetry breaking While this feature has allowed for reliable and accurate estumates of $f_{+}(0)$ in $\mathrm{K}_{\ell 3}$ [3] $f_{+}(0)=0978$, it is not of much help for $\mathrm{D}_{\ell 3}$ decays as $\operatorname{SU}(4)$ is a badly broken symmetry In the latter case, constituent quark model estımates give $f_{+}(0) \simeq 075-082$ [4], and $f_{+}(0) \simeq 058$ [5] Most of the well known caveats of this approach are not present in the formalism of QCD sum rules, which is fully relativistic and field theoretic by construction, and where the basic QCD features, such as asymptotic freedom and non-perturbative spontaneous symmetry beaking, are incorporated in a natural way

[^0]The value of $f_{+}(0)$ in $\mathrm{D}_{\mathrm{Q} 3}$ has indeed been estimated in this framework using three-point function sum rules, with the result $[6] f_{+}(0)=06 \pm 01$ This estimate, however, depends among other things on the leptonic decay constant f_{D} which is affected by some uncertainty [7,8] In addition, it is well known that three-point function QCD sum rules suffer from a systematic, and difficult to assesss, uncertainty due to their complicated structure and lack of positivity of the spectral function As a result, these sum rules cannot in general compete in accuracy with therr twopoint function counterparts

In this note we discuss a determination of $f_{+}(0)$ from QCD sum rules for a two-point function involving the charmed vector currents $\overline{\mathrm{c}} \gamma_{\mu} \mathrm{d}$ and $\overline{\mathrm{c}} \gamma_{\mu} \mathrm{s}$ Since $\Gamma\left(\mathrm{D} \rightarrow \mathrm{K} \ell \bar{v}_{\ell}\right)$ is known experimentally [1] we are able to estimate the matrix element $\left|V_{c s}\right|$ A prediction for $\left|V_{\mathrm{cd}}\right|$ has to awatt an experımental measurement of $\Gamma\left(\mathrm{D} \rightarrow \pi l \bar{v}_{\ell}\right)$ For the time being, we can use the value of $\left|V_{\mathrm{cd}}\right|$ as determined from v and \bar{v} charm production [1] and predict $\Gamma\left(\mathrm{D} \rightarrow \pi \ell \bar{v}_{\ell}\right)$

As a preamble, and to gauge the reliabillty of our main estımate in D_{83} decays, we discuss a determination of $f_{1}(0)$ in $\mathrm{K} \rightarrow \pi \ell \bar{v}_{\ell}$ We consider to this end the following two-point function
$\Pi_{\mu \nu}(q)=1 \int \mathrm{~d}^{4} x \exp (1 q x)\langle 0| \mathrm{T}\left(V_{\mu}(x) V_{\nu}^{\dagger}(0)\right)|0\rangle$,
where $V_{\mu}(x)=\overline{\mathrm{Q}}(x) \gamma_{\mu} \mathrm{q}(x)$, with $\mathrm{q}=\mathrm{u}, \mathrm{d}$ and $\mathrm{Q}=\mathrm{s}$ in the case of $\mathrm{K}_{\ell 3}$ decays, and

$$
\begin{align*}
& \Pi_{\mu \nu}\left(q^{2}\right) \\
& \quad=-\left(g_{\mu \nu} q^{2}-q_{\mu} q_{\nu}\right) \Pi^{(1)}\left(q^{2}\right)+q_{\mu} q_{\nu} \Pi^{(0)}\left(q^{2}\right) \tag{2}
\end{align*}
$$

The form factors $f_{ \pm}(t)$ in $\mathrm{P}(p) \rightarrow \mathbf{P}^{\prime}\left(p^{\prime}\right)+\ell \bar{v}_{\ell}$ are defined as

$$
\begin{align*}
& \left\langle\mathrm{P}^{\prime}\left(p^{\prime}\right)\right| V_{\mu}(0)|\mathrm{P}(p)\rangle \\
& \quad=\left(p+p^{\prime}\right)_{\mu} f_{+}(t)+\left(p-p^{\prime}\right)_{\mu} f_{-}(t) \tag{3}
\end{align*}
$$

Concentrating on the function $\Pi^{(1)}\left(Q^{2} \equiv-q^{2}\right)$, its QCD expression at the three-loop level in perturbation theory ($\overline{\mathrm{MS}}$-renormalization scheme), and with power correctıons à la Shıfman, Vaınshteın, Zakharov [9] up to dimension $d=6$, reads [10]

$$
\begin{align*}
& 4 \pi^{2} \Pi^{(1)}\left(Q^{2}\right) \\
& \quad=-\ln \frac{Q^{2}}{\nu^{2}}+\frac{5}{3}-\frac{3}{Q^{2}}\left[m_{\mathrm{u}}^{2}\left(\nu^{2}\right)+m_{\mathrm{s}}^{2}\left(\nu^{2}\right)\right] \\
& \\
& -\frac{\alpha_{\mathrm{s}}\left(\nu^{2}\right)}{\pi} \ln \frac{Q^{2}}{\nu^{2}}+\left(\frac{\alpha_{\mathrm{s}}\left(\nu^{2}\right)}{\pi}\right)^{2} \\
& \quad \times\left(-\frac{1}{4} \beta_{1} \ln ^{2} \frac{Q^{2}}{\nu^{2}}-F_{3} \ln \frac{Q^{2}}{\nu^{2}}\right) \\
& \quad+\frac{C_{4}\left\langle O_{4}\right\rangle}{Q^{4}}+\frac{C_{6}\left\langle O_{6}\right\rangle}{Q^{6}} \tag{4}\\
& \quad+\mathrm{O}\left(\frac{m_{\mathrm{q}}^{4}}{Q^{4}}\right)+\mathrm{O}\left(\left(\frac{\alpha_{\mathrm{s}}}{\pi}\right)^{3}\right)+\mathrm{O}\left(\frac{1}{Q^{8}}\right)
\end{align*}
$$

where $\beta_{1}=-\frac{9}{2}$ and $F_{3}=1756$ for three colours and three flavours The non-perturbative vacuum condensates are given by

$$
\begin{align*}
& C_{4}\left\langle O_{4}\right\rangle \\
& \quad=\frac{1}{3} \pi\left\langle\alpha_{\mathrm{s}} G^{2}\right\rangle+4 \pi^{2}\left[m_{\mathrm{u}}\langle\overline{\mathrm{u}} \mathrm{u}\rangle+m_{\mathrm{s}}\langle\overline{\mathrm{~s}} s\rangle\right], \tag{5}
\end{align*}
$$

$$
\begin{align*}
& C_{6}\left\langle O_{6}\right\rangle \\
& \quad=-8 \pi^{3} \alpha_{\mathrm{s}}\left[\left\langle\left(\overline{\mathrm{q}} \gamma_{\mu} \gamma_{5} \lambda^{a} \mathrm{q}\right)^{2}\right\rangle+\frac{2}{9}\left\langle\left(\overline{\mathrm{q}} \gamma_{\mu} \lambda^{a} \mathrm{q}\right)^{2}\right\rangle\right] \tag{6}
\end{align*}
$$

The Laplace transform QCD sum rules [9], e
$L(\sigma)=\int_{0}^{\infty} \mathrm{d} t \exp (-t \sigma) \frac{1}{\pi} \operatorname{Im} \Pi^{(1)}(t)$
corresponding to eq (4) read

$$
\begin{align*}
& 4 \pi^{2} \sigma L(\sigma)=1+\frac{\alpha_{\mathrm{s}}(1 / \sigma)}{\pi}+\left(\frac{\alpha_{\mathrm{s}}(1 / \sigma)}{\pi}\right)^{2} \\
& \quad \times\left(F_{3}-\frac{1}{2} \beta_{1} \gamma_{\mathrm{E}}+\frac{\beta_{2}}{\beta_{1}} \ln \ln \left(\sigma A^{2}\right)\right) \\
& \quad-3\left[m_{\mathrm{u}}^{2}(1 / \sigma)+m_{\mathrm{s}}^{2}(1 / \sigma)\right] \sigma \\
& \quad+C_{4}\left\langle O_{4}\right\rangle \sigma^{2}+C_{6}\left\langle O_{0}\right\rangle \sigma^{3} / 2^{\prime} \tag{8}
\end{align*}
$$

where $\gamma_{\mathrm{E}}=05772$ is the Euler constant, $\beta_{2}=-8$, and $m_{\mathrm{q}}(1 / \sigma)$ are the running quark masses at a scale $M^{2} \equiv 1 / \sigma$

On the hadronic sector, the threshold behaviour of the spectral function can be easily obtained from the lowest two-meson intermediate state contribution $\left\langle\mathrm{P}^{\prime} \overline{\mathrm{P}}\right|$ with the result

$$
\begin{align*}
& \lim _{t \rightarrow t+} \frac{1}{\pi} \operatorname{Im} \Pi^{(1)}(t) \rightarrow \frac{\eta^{2}}{48 \pi^{2}}\left[f_{+}\left(t_{+}\right)\right]^{2} \\
& \quad \times\left[\left(1-\frac{t_{+}}{t}\right)\left(1-\frac{t_{-}}{t}\right)\right]^{3 / 2} \tag{9}
\end{align*}
$$

where $t_{ \pm}=\left(M_{\mathrm{P}} \pm M_{\mathrm{P}}\right)^{2}$, and η^{2} is a Clebsch-Gordan coefficient, e g $\eta^{2}=\frac{3}{2}$ for $\mathrm{K}_{\mathrm{L}} \rightarrow \pi \mathrm{ev}$ Imposing this behaviour on a Breit-Wigner formula for the $\mathrm{K}^{*}(890)$ resonance, and adding a continuum identified with the asymptotic freedom expression starting at some threshold $t_{0} \geqslant M_{\mathrm{K}^{*}}^{2}$ completes the parametrization of the hadronic spectral function This becomes

$$
\begin{align*}
& \frac{1}{\pi} \operatorname{Im} \Pi^{(1)}(t)=\frac{\eta^{2}}{48 \pi^{2}}\left[f_{+}\left(t_{+}\right)\right]^{2} \\
& \quad \times\left[\left(1-\frac{t_{+}}{t}\right)\left(1-\frac{t_{-}}{t}\right)\right]^{3 / 2} \\
& \quad \times \frac{\left(t_{+}-M_{\mathrm{K}^{*}}^{2}\right)^{2}+M_{\mathrm{K}^{*}}^{2} \Gamma_{\mathrm{K}^{*}}^{2}}{\left(t-M_{\mathrm{K}^{*}}^{2}\right)^{2}+M_{\mathrm{K}^{*}}^{2} \Gamma_{\mathrm{K}^{*}}} \\
& \quad+\frac{1}{4 \pi^{2}}\left(1+\frac{\alpha_{\mathrm{s}}}{\pi}+\mathrm{O}\left(\alpha_{\mathrm{s}}^{2}\right)\right) \Theta\left(t-t_{0}\right) \tag{10}
\end{align*}
$$

Using eqs (8) and (10) in eq (7) leads to a determination of $f_{+}\left(t_{+}\right)$in terms of the QCD parameters, the experimental values of the mass and width of the $\mathrm{K}^{*}(890)$, and the asymptotic freedom threshold t_{0} The latter is of course a free parameter, but Laplace transform sum rules exponentially depress the t_{0}-dependence, we choose the wide range $1 \mathrm{GeV}^{2} \leqslant t_{0} \leqslant 15$
GeV^{2} For the QCD parameters we use $\bar{m}_{\mathrm{s}}(1 \mathrm{GeV})=199 \pm 33 \mathrm{MeV}[11], C_{4}\left\langle O_{4}\right\rangle$ in the range $-007 \mathrm{GeV}^{4}$ to $+012 \mathrm{GeV}^{4}$, and $C_{6}\left\langle O_{6}\right\rangle=-(008-016) \mathrm{GeV}^{6}$, which take into account the standard values of the gluon and four-quark condensates [9], as well as hıgher values obtained in recent analyses [12] An inspection of the behaviour of $f_{+}\left(t_{+}\right)$as a function of the short-distance Laplace variable σ shows a wide region of remarkable stability for $\sigma \simeq(1 / 15-1 / 3) \mathrm{GeV}^{-2}$ In fact, inside this sum rule window $f_{+}\left(t_{+}\right)$changes by less than 6% for fixed values of the QCD parameters The value of the form factor at $t=0$ can be obtained from $f_{+}\left(t_{+}\right)$by using the standard K^{*}-pole dominance approximation We obtain
$\left.f_{+}(0)\right|_{K_{23}}=096 \pm 013$,
where the error takes into account the uncertainties in all the QCD parameters (the driving one being m_{s})

Encouraged by this result, we proceed to $D_{\ell 3}$ decays in which case the vector current in eq (1) is built from $\mathrm{q}=\mathrm{d}$, s and $\mathrm{Q}=\mathrm{c}$ quark fields Laplace transform QCD sum rules suffer from many disadvantages in the case of heavy flavours [7], and hence we shall work with Hilbert power moments at $Q^{2}=0$ These lead to a well-behaved short-distance expansion in terms of inverse powers of the charm quark mass (neglecting $m_{\mathrm{d} s}$ in the sequel) and read

$$
\begin{align*}
& \left.\phi_{n}(0) \equiv \frac{1}{n^{\prime}}\left(-\frac{\mathrm{d}}{\mathrm{~d} Q^{2}}\right)^{n} \Pi^{(1)}\left(Q^{2}\right)\right|_{Q^{2}=0} \\
& \quad=\frac{1}{\pi} \int \frac{\mathrm{~d} t}{t^{n+1}} \operatorname{Im} \Pi^{(1)}(t) \tag{12}
\end{align*}
$$

where $n \geqslant 1$ The two-point function has been calculated in QCD up to two loops in perturbation theory and up to dimension $d=6$ in the Wilson coefficients of the operator product expansion [13] From these results it is straightforward to compute the Hilbert moments (12) For the first two we obtain

$$
\begin{align*}
& \phi_{1}(0)=\frac{3}{32 \pi^{2}} \frac{1}{m_{\mathrm{c}}^{2}}\left(1+1140 \alpha_{\mathrm{s}}\right) \\
& \quad+\frac{1}{m_{\mathrm{c}}^{2}}\left(-\frac{C_{4}\left\langle O_{4}\right\rangle}{m_{\mathrm{c}}^{4}}+\frac{3}{2} \frac{C_{5}\left\langle O_{5}\right\rangle}{m_{\mathrm{c}}^{5}}+\frac{5}{3} \frac{C_{6}\left\langle O_{6}\right\rangle}{m_{\mathrm{c}}^{6}}\right), \tag{13}
\end{align*}
$$

$$
\begin{align*}
& \phi_{2}(0)=\frac{1}{40 \pi^{2}} \frac{1}{m_{\mathrm{c}}^{4}}\left(1+1582 \alpha_{\mathrm{s}}\right) \\
& \quad+\frac{1}{m_{\mathrm{c}}^{4}}\left(-\frac{C_{4}\left\langle O_{4}\right\rangle}{m_{\mathrm{c}}^{4}}+\frac{5}{2} \frac{C_{5}\left\langle O_{5}\right\rangle}{m_{\mathrm{c}}^{5}}+2 \frac{C_{6}\left\langle O_{6}\right\rangle}{m_{\mathrm{c}}^{6}}\right), \tag{14}
\end{align*}
$$

where $m_{\mathrm{c}} \equiv m_{\mathrm{c}}\left(Q^{2}=m_{\mathrm{c}}^{2}\right), \alpha_{\mathrm{s}} \equiv \alpha_{\mathrm{s}}\left(m_{\mathrm{c}}^{2}\right)$, and

$$
\begin{equation*}
C_{4}\left\langle O_{4}\right\rangle=m_{\mathrm{c}}\langle\overline{\mathrm{q} q}\rangle+\frac{1}{12}\left|\frac{\alpha_{\mathrm{s}}}{\pi} G^{2}\right\rangle, \tag{15}
\end{equation*}
$$

$C_{5}\left\langle O_{5}\right\rangle=\left\langle g_{5} \overline{\mathrm{q}} \sigma_{\mu \nu} G_{\mu \nu}^{a} \lambda^{a} \mathrm{q}\right\rangle$,
$C_{6}\left\langle O_{6}\right\rangle=\pi \alpha_{\mathrm{s}}\left\langle\left(\overline{\mathrm{q}} \gamma_{\mu} \lambda \mathrm{q}\right)^{2} \sum_{\mathrm{q}} \overline{\mathrm{q}} \gamma_{\mu} \lambda \mathrm{q}\right\rangle$
The hadronic spectral function may be parametrized in analogy with eq (10), except that now $K^{*}(890)$ must be replaced by $D^{*}(2009)$ (notice that $\mathrm{D}^{*} \rightarrow \mathrm{D} \pi$ is phase-space allowed), and the hadronic continuum is simulated by the asymptotic freedom expression [13]

$$
\begin{align*}
& \frac{1}{\pi} \operatorname{Im} \Pi^{(1)}(x)=\frac{1}{8 \pi^{2}}(1-x)^{2}(2+x) \\
& \quad \times\left\{1+\frac{4 \alpha_{5}}{3 \pi}\left[\frac{13}{4}+2 \ell(x)+\ln x \ln (1-x)\right.\right. \\
& \quad+\frac{3}{2} \frac{x}{(2+x)} \ln \left(\frac{x}{1-x}\right)-\ln (1-x) \\
& \left.\left.\quad-\left(\frac{4-x-x^{2}}{(2+x)(1-x)^{2}}\right) x \ln x-\frac{\left(5-x-2 x^{2}\right)}{(2+x)(1-x)}\right]\right\} \tag{18}
\end{align*}
$$

where $x \equiv m_{\mathrm{c}}^{2} / t$, and $t(x)$ is the dilogarithm function The value of the asymptotic freedom threshold t_{0} is in principle a free parameter, predictions are meaningful provided they are stable against reasonable changes in t_{0} This can be explicitly checked by computing the ratio of the first two Hilbert moments which may be written as
$M_{\mathrm{D}^{*}}^{2}=\frac{\phi_{1}(0)-\left.\phi_{1}(0)\right|_{\mathrm{cont}}}{\phi_{2}(0)-\left.\phi_{2}(0)\right|_{\mathrm{cont}}}$,
where $\phi_{n}(1)$ are given by eqs (13), (14), and $\left.\phi_{n}(0)\right|_{\text {cont }}$ can be calculated using eq (18) in eq (12) and integrating in the interval $t \in\left(t_{0}, \infty\right)$ A comparison with the experımental value of $M_{\mathrm{D}^{*}}$ al-
lows one to find the optımal duality region for t_{0}, as well as to fine tune the less known vacuum condensates For the latter we use $C_{4}\left\langle O_{4}\right\rangle=-(0008-$ $0012) \mathrm{GeV}^{4}$, and $C_{6}\left\langle O_{6}\right\rangle=-(00017-00029)$ GeV^{6} The mixed quark-gluon condensate is usually parametrized as $C_{5}\left\langle O_{5}\right\rangle \equiv 2 M_{0}^{2}\langle\overline{\mathrm{q} q}\rangle$, where M_{0}^{2} is not well known Baryon sum rules tend to give values on the low side, eg $M_{0}^{2} \simeq 01-04 \mathrm{GeV}^{2}$ [14], in agreement with charmonium [15], while a lattice estimate suggests $M_{0}^{2} \simeq 1 \mathrm{GeV}^{2}$ [16] In our recent analysis of the charm pseudoscalar channel [7] we pointed out that in order to reproduce the observed D-meson mass, the parameter M_{0}^{2} had to lie on the lower end of the above range In the present case, there is no sensible solution to eq (19) for values $M_{0}^{2} \geqslant$ $015 \mathrm{GeV}^{2}$, independently of t_{0} and of the values of the other condensates Using $M_{0}^{2} \simeq 010-015 \mathrm{GeV}^{3}$, together with $m_{\mathrm{c}}=13 \mathrm{GeV}$ and $\alpha_{\mathrm{s}}=0296$, we obtain after solving eq (19)
$M_{D^{*}}=203 \pm 010 \mathrm{GeV}$
in the safe and wide range $t_{0}=(2-3) M_{\mathrm{D}^{*}}^{2}$ It should be clear from this result that the resolution of the method is at the level of $\operatorname{SU}(3)$ breaking in the masses ($M_{\mathrm{D}^{*}}=201 \mathrm{GeV}, M_{\mathrm{D}^{3}}=21 \mathrm{GeV}$), this has already been stressed in ref [7] The form factor $f_{+}\left(t_{+}\right)$turns out to be remarkably stable in an even wider region Extrapolatıng it to $t=0$ through D^{*}-pole domınance we find
$f_{+}(0)=075 \pm 005$
for $t_{0}=(2-4) M_{\mathrm{D}^{*}}^{2}$ The error on the $\mathrm{K}_{\ell 3}$ form factor was somewhat larger mainly because of the large uncertainty in the strange quark mass As expected, the deviation of $f_{+}(0)$ from unity in this case is larger than in $\mathrm{K}_{\ell 3}$ It is interesting to notice, however, that the size of this deviation is still moderate, so that the pattern following from the underlying $\operatorname{SU}(4)$ symmetry is not totally obscured
This result for $f_{+}(0)$ can now be used to predict the quark mixing matrix elements in terms of the semileptonic widths

$$
\begin{align*}
& \Gamma\left(\mathrm{D} \rightarrow \mathrm{X} \ell \bar{v}_{\ell}\right) \\
& \quad=G_{\mathrm{F}}^{2}\left|V_{l}\right|^{2} \frac{\left[f_{+}(0)\right]^{2}}{192 \pi^{3}} \frac{M_{\mathrm{D}^{*}}^{4}}{M_{\mathrm{D}}^{3}} I_{\mathrm{ps}}, \tag{22}
\end{align*}
$$

where $\mathrm{X}=\pi$, K and the phase space integral I_{ps} (neglecting m_{ℓ}) is given by

$$
\begin{equation*}
I_{\mathrm{ps}} \equiv \int_{0}^{t} \frac{\mathrm{~d} t}{\left(t-M_{\mathrm{D}^{*}}^{2}\right)^{2}}\left[\left(t-t_{+}\right)\left(t-t_{-}\right)\right]^{3 / 2} \tag{23}
\end{equation*}
$$

In the case of $\mathrm{D} \rightarrow \mathrm{K} \bar{v}_{\ell}$ one finds, using the average masses $M_{\mathrm{Dg}^{g}}=211 \mathrm{GeV}, M_{\mathrm{D}}=1867 \mathrm{GeV}$, and $M_{\mathrm{K}}=0495 \mathrm{GeV}$,

$$
\begin{equation*}
\Gamma\left(\mathrm{D} \rightarrow \mathrm{~K} \ell \bar{v}_{\ell}\right)=153 \times 10^{11} f_{+}^{2}(0)\left|V_{\mathrm{cs}}\right|^{2} \mathrm{~s}^{-1}, \tag{24}
\end{equation*}
$$

which when compared with the experimental width $(079 \pm 011) \times 10^{11} \mathrm{~s}^{-1}$ leads to the prediction

$$
\begin{equation*}
\left|V_{\mathrm{cs}}\right|=096 \pm 012, \tag{25}
\end{equation*}
$$

which is consistent with $\left|V_{u d}\right|=0974$ [1] For $\mathrm{D} \rightarrow \pi \ell \overline{\mathrm{V}}_{\ell}$ our result may be cast as

$$
\begin{align*}
& \Gamma\left(\mathrm{D} \rightarrow \pi \ell \bar{v}_{\ell}\right) \\
& \quad=(076 \pm 024) \times 10^{10}\left(\frac{\left|V_{\mathrm{cd}}\right|}{021 \pm 003}\right)^{2} \mathrm{~s}^{-1} \tag{26}
\end{align*}
$$

where the value $\left|V_{c \mathrm{~cd}}\right|=021 \pm 003$ from neutrino reactions [1] has been used A measurement of this decay width will then be very important for an independent determination of $\left|V_{\mathrm{cd}}\right|$

The authors are indebted to Ahmed Alı for a discussion

References

[1] A All, in Proc LEP-Physics Jamboree, CERN Yellow Report No CERN-86-02, Vol 2 (CERN, Geneva, 1986), K Klenknnecht and B Renk, Z Phys C 34 (1987) 209, S Stone, in CP violation, ed C Jarlskog (World Scientific, Singapore), to be published
[2] M Ademollo and R Gatto, Phys Rev Lett 13 (1964) 264, R E Behrends and A Sirlın, Phys Rev Lett 4 (1960) 186
[3] H Pageis, Phys Rep 16 C (1975) 219, N Paver and M D Scadron, Phys Rev D 30 (1984) 1988, J Gasser and H Leutwyler, Nucl Phys B 250 (1985) 517
[4] M Wirbel, B Stech and M Bauer, Z Phys C 29 (1985) 637
[5] B Grinstem, N Isgur and M Wise, Caltech Report No CALT-68-1311 (1985), unpublished
[6] T M Allev, V L Eletskı and Ya I Kogan, Sov J Nucl Phys 40 (1984) 527
[7] C A Domınguez and N Paver, Phys Lett B 197 (1987) 423
[8] S Narison, Phys Lett B 198 (1987) 104,
L J Reınders, Bonn Report No BONN-HE-88-04 (1988)
[9]MA Shifman, AI Vainshtein and VI Zakharov Nucl Phys B 147 (1978) 385, 448,
L J Reınders, H Rubınsteın and S Yazakı, Phys Rep 127 (1985) 1
[10] R A Bertlmann, G Launer and E de Rafael, Nucl Phys B 250 (1985) 61
[11] C A Dominguez and F de Rafael, Ann Phys (NY) 174 (1987) 372
[12] R A Bertlmann, C A Dominguez, M Loewe, M Perrottet and E de Rafacl, CERN Report No CERN-TH-4898 (1987), Z Phys C, to be published,

C A Dommguez and J Sola, DESY Report No DESY-87119 (1987), Z Phys C, to be publıshed
[13] S C Generalis, Ph D Thesis, Open Unıversity Report No OUT-4102-13 (1984)
[14] Y Chung, H G Dosch, M Kremer and D Schall, Z Phys C 25 (1984) 151
[15] S N Nıkolaev and A V Radyushkın, Sov J Nucl Phys 39 (1984) 91
[16] M Kremer and G Scherholz, Phys Lett B 194 (1987) 283

[^0]: - Alexander von Humboldt Research Fellow
 ${ }^{2}$ On leave of absence from Facultad de Fisica, Pontificia Universidad Catolica de Chile, Santıago, Chile
 ${ }^{3}$ Supported by MPI (Minıstero della Pubblica Istruzione, Italy)

