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Using QCD sum rules for a two-point function involving charmed vector currents we determine the Dy; form factor
f+(0)=075+005 Ths result, combined with the D,; decay widths, leads to a prediction for the quark mixing matrix elements
|Vl and | V4| Wefind (V.| =096%012and I'(D-nv,)=(076+024)x 10" [|V4!l/(021+003)]%>s~" Ourestimate 1s
reliable to the extent that employing the same technique for K3 decay we obtain f, (0) |k, =09610 13

An accurate knowledge of the form factor £, (0) 1n
D,; decays 1s quite important as 1t allows for a deter-
mination of the quark mixing, Cabibbo-Kobayashi-
Maskawa, matrix elements | V| and | V4|, once the
corresponding decay rates are known from experi-
ment (for a recent reviewsee e g ref [1]) Accord-
ing to the non-renormalization theorem [2] the
deviation of f, (0) from unity 1s of second order in
flavour symmetry breaking While this feature has al-
lowed for reliable and accurate estimates of £, (0) 1n
K¢ [3] f4(0)=0 978, 1t 1s not of much help for Dy
decays as SU(4) 1s a badly broken symmetry In the
latter case, constituent quark model estimates give
f+(0)~075-082 [4], and f,. (0)~0 58 [5] Most
of the well known caveats of this approach are not
present 1n the formalism of QCD sum rules, which 1s
fully relativistic and field theoretic by construction,
and where the basic QCD features, such as asymp-
totic freedom and non-perturbative spontaneous
symmetry beaking, are incorporated 1n a natural way
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The value of f, (0) 1 Dy; has indeed been estimated
in this framework using three-point function sum
rules, with the result [6] f, (0)=06+01 This esti-
mate, however, depends among other things on the
leptonic decay constant fi, which 1s affected by some
uncertainty [7,8] In addition, 1t 1s well known that
three-point function QCD sum rules suffer from a
systematic, and difficuit to assesss, uncertainty due
to their complicated structure and lack of positivity
of the spectral function As a result, these sum rules
cannot 1n general compete 1n accuracy with their two-
point function counterparts

In this note we discuss a determination of /. (0)
from QCD sum rules for a two-point function involv-
ing the charmed vector currents ¢y,d and ¢y,s Since
I'(D-K2v,) 1s known experimentally [ 1] we are able
to estimate the matrix element | V| A prediction for
| Vea] has to await an experimental measurement of
I'(D-nv,) For the time being, we can use the value
of | V4| as determined from v and ¥ charm produc-
tion [1] and predict I'(D—xgV, )

As a preamble, and to gauge the rehiability of our
main estimate 1n Dy; decays, we discuss a determi-
nation of f, (0) in K—nv, We consider to this end
the following two-point function

499



Volume 207, number 4

11,(q)=1 f dx exp(1gx) <O T (V. (x) V] (0)) 105,
(1)

where V,(x)=Q(x)yq(x), with g=u, d and Q=s
1n the case of K, decays, and

11,(q%)
=—(guwq’—q.9.)1 " (¢*) +4.9.119(q*) (2)

The form factors /. (¢) m P(p) P’ (p’ ) +2v, are de-
fined as

(P (p' )|V, (0)[P(p)>
=(p+p" ). Sfr ()+(p—D") .S (1) (3)

Concentrating on the function 17V (Q%= —g?), 1ts
QCD expression at the three-loop level in perturba-
tion theory (MS-renormalization scheme), and with
power corrections a la Shifman, Vainshtein, Zakharov
[9] up to dimension d=6, reads [10]

4n2T VO (Q?)
— ln_2+§ __3__[m2(v2)+ 2(1/2)
- V2 3_ Q2 u ms ]
_%w%mgﬁ«%w%f
T v? bid
2 2
X (—ﬁﬂ, lnz%—F3 ln%)
Ca04> | Cs<06>
Q* Q°

o) of(2)) ofg).

where #,=—2 and F;=1 756 for three colours and
three flavours The non-perturbative vacuum con-
densates are given by

Ci{O0s4>

=in{a,G*> +4n*[m, (iud +m, (38D ], (5)
C6<06>

= —8ma, [<(Q.ysA°@)?) + 5 ((AA®a)?> ] (6)
The Laplace transform QCD sum rules [9],1¢

+

L(a)=Jdlexp(—ta)%lmﬂ“)(t) (7)
0
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corresponding to eq (4) read

47[20'L(0')=1+ as(l/a) + <as(1/0')>2
T n

X (Fs—%ﬂ1y5+§72ln ln(O'Az))

=3[mi(1/a)y+m:(1/a)]o
+C4<04>02+C6<06>0'3/2', (8)

where ye=0 5772 1sthe Euler constant, ,= — 8, and
mq(1/0) are the running quark masses at a scale
M?’=1/c

On the hadronic sector, the threshold behaviour of
the spectral function can be easily obtained from the
lowest two-meson intermediate state contribution
(P'P| with the result

1 2
hm —Im 170 (0) 285 [fs (62)

it

0-)6-5)]"

where t. = (Mp+ M; )?, and #* 1s a Clebsch—-Gordan
coefficient, e g n>=3 for K, »nev Imposing this be-
haviour on a Breit—-Wigner formula for the K*(890)
resonance, and adding a continuum identified with
the asymptotic freedom expression starting at some
threshold ¢, M. completes the parametrization of
the hadronic spectral function This becomes

aaz Us (1))

<[(-5)(-5)]

(t. — M3 )2+ M2. T2,
(=M )+ MET 2.
1

+W(l+% +O(a§)> O(t—1y) (10)

1
- (D () —
nImH ()=

X

Using eqs (8) and (10) ineq (7) leads to a deter-
muination of £, (¢, ) in terms of the QCD parameters,
the experimental values of the mass and width of the
K*(890), and the asymptotic freedom threshold f,
The latter 1s of course a free parameter, but Laplace
transform sum rules exponentially depress the #,-de-
pendence, we choose the wide range 1 GeV?<if,<1 5
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GeV?  For the QCD parameters we use
m(1 GeV)=199+33 MeV [11], C4<( 04> 1n the
rangg —007 GeV* to +012 GeV* and
Cs{ 0> =—(008-0 16) GeV®, which take into ac-
count the standard values of the gluon and four-quark
condensates [9], as well as higher values obtained 1n
recent analyses [12] An inspection of the behaviour
of £, (¢,) as a function of the short-distance Laplace
vanable o shows a wide region of remarkable stabil-
1ty for 6~ (1/15-1/3) GeV~2 In fact, inside this
sum rule window f, (¢, ) changes by less than 6% for
fixed values of the QCD parameters The value of the
form factor at 1=0 can be obtained from f, (¢, ) by
using the standard K*-pole dominance approxima-
tion We obtain

f+(0)1kn=096%013, (11)

where the error takes into account the uncertainties
1n all the QCD parameters (the driving one being 1, )

Encouraged by this result, we proceed to Dy; de-
cays 1n which case the vector current 1n eq (1) 1s
built from q=d, s and Q=c quark fields Laplace
transform QCD sum rules suffer from many disad-
vantages in the case of heavy flavours [ 7], and hence
we shall work with Hilbert power moments at Q=0
These lead to a well-behaved short-distance expan-
sion 1n terms of inverse powers of the charm quark
mass (neglecting m, , 1n the sequel ) and read

1 d\
6,(0)= ﬁ<_d—Q2> V(0% g2-0

1 [ dt
.—_;lelImH“’(t), (12)

where n>1 The two-point function has been calcu-
lated in QCD up to two loops in perturbation theory
and up to dimension d=6 1n the Wilson coefficients
of the operator product expansion [13] From these
results 1t 1s straightforward to compute the Hilbert
moments (12) For the first two we obtain

3 1
0, (0)= W;g(l*‘l 140¢;)

L(_C4<04>

m?

3C<0sy | 5C:{0s>
ma +2 m? +3 m$ ’

(13)
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(0)—LL(1+15820L)
& ~40n? m} y
+L4<_C4<?4>+§C5<?5> +2Ce<?s>>’
mg mg 2 m me
(14)

where m.=m.(Q*=m?2), a,=a,(m?), and

_ - R P

Ci{04>=m.{Qq + 7 17 G > (15)
C5<05>=<gsqo-;waw/1aq>y (16)
Cs {06 > =T <(fm/1q)2 > C‘m/lq> (17)

The hadronic spectral function may be parame-
trized 1n analogy with eq (10), except that now
K*(890) must be replaced by D*(2009) (notice that
D*-Dmr 1s phase-space allowed), and the hadronic
continuum 1s simulated by the asymptotic freedom
expression [13]

1 1
t (1) _ )2
nIm HM(x)= P (1-x)"(2+x)

X {1+ 4307‘: [$+2/(x)+ InxIn(1—x)

3 x X
+ E (2+X) In (1_-)—(> —ln(l-—x)

< 4—x—x2 ) | (5—x—2x2) :H
T\ (=0 M T e o (-x) [’
(18)

where x=m?2/t, and /(x) 1s the dilogarithm func-
tion The value of the asymptotic freedom threshold
to 1s 1 principle a free parameter, predictions are
meaningful provided they are stable against reason-
able changes 1n 7, This can be explicitly checked by
computing the ratio of the first two Hilbert moments
which may be written as

¢l (0)_¢1 (0) |conl
M3 =
P 62(0)— 65 (0) lcont

where ¢,(1) are given by eqs (13), (14), and
0,(0) | om can be calculated using eq (18) in eq
(12) and integrating 1n the interval te(f, ©) A
comparison with the experimental value of Mp. al-

(19)
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lows one to find the optimal duality region for 7, as
well as to fine tune the less known vacuum conden-
sates For the latter we use C,;{0,;>=—(0008-
0012) GeV?4, and C¢(Oq>=—(00017-00029)
GeV?® The mixed quark—gluon condensate 1s usually
parametrized as Cs<{ Os> =2M${qq), where M3 1s
not well known Baryon sum rules tend to give values
on the low side, eg M3~01-04 GeV? [14], n
agreement with charmonium [15], while a lattice es-
timate suggests M3~1 GeV? [16] In our recent
analysis of the charm pseudoscalar channel [7] we
pointed out that in order to reproduce the observed
D-meson mass, the parameter M3 had to lie on the
lower end of the above range In the present case, there
1s no sensible solution to eq (19) for values M3 >
0 15 GeV 2, independently of ¢, and of the values of
the other condensates Using M3~0 10-0 15 GeV 2,
together with m. =1 3 GeV and ;=0 296, we obtain
after solvingeq (19)

Mp=203%0 10 GeV (20)

1n the safe and wide range f,= (2-3)M%. It should
be clear from this result that the resolution of the
method 1s at the level of SU (3) breaking in the masses
(Mp+=2 01 GeV, Mp,=2 1 GeV), this has already
been stressed inref [7] The form factor £ (¢, ) turns
out to be remarkably stable 1n an even wider region
Extrapolating 1t to =0 through D*-pole dominance
we find

J+(0)=0752005 (21)

for ty=(2-4)M%. The error on the K,; form factor
was somewhat larger mainly because of the large un-
certainty 1n the strange quark mass As expected, the
deviation of f, (0) from unity in this case 1s larger
than 1n K,3 It 1s interesting to notice, however, that
the s1ze of this deviation 1s st1ll moderate, so that the
pattern following from the underlying SU(4) sym-
metry 1s not totally obscured

This result for f, (0) can now be used to predict
the quark mixing matrix elements in terms of the
semileptonic widths

I'(D->Xv,)

Lf+ (0) 12 M-

= 2 vV, 2
GF| ljl 1927[3 MI3) ps?

(22)
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where X =mr, K and the phase space integral I, (ne-
glecting m;) 1s given by

-

d
IpsE J‘(‘t__vl%’;)‘i[(t_t+)(t_t—)]3/2 (23)

0]
In the case of D->KQV, one finds, using the average

masses Mp,=211 GeV, Mp=1867 GeV, and
My =0 495 GeV,

T(DoKev)=153%x10""12 (0) | Vi |?s~', (24)

which when compared with the experimental width
(079+011)x10'" s~ leads to the prediction

1V} =0961£0 12, (25)

which 1s consistent with |V,4|=0974 [1] For
D—nfy, our result may be cast as

F(D—)TCQ\_/Q)

|Vcdl ) S_l, (26)

= + 10
(076£024)%x10 (0211_003

where the value | V4| =0 2110 03 from neutrino re-
actions [ 1] has been used A measurement of this de-
cay width will then be very important for an
independent determination of | V4|

The authors are indebted to Ahmed Al for a
discussion
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