
Nuclear Physics B314 (1989) 40-62 
North-Holland,  Amsterdam 

GENERAL STATISTICS 

C. WETTERICH 

Deutsches Elektronen-Synchrotron DESY, Hamburg, FRG 

Received 11 April 1988 

We discuss statistical systems with infinitely many degrees of freedom. In distinction to 
conventional statistical theories we do not make any a priori identification between operators of 
the system and given observables. In particular, these systems are not formulated in a preexisting 
spacetime. Space and time should arise as dynamical structures of the system. It is shown that all 
such systems are equivalent and the theory is therefore unique. The action loses its fundamental 
meaning. The choice of an action corresponds to a "coordinate choice" on how the system is 
parametrized. The symmetry of the action consists of infinite-dimensional volume-conserving 
general coordinate transformations. The expectation values of operators are finite by definition. 
The emphasis of the work to be done lies in the identification of structures between operators 
which are reflected by our observation of space, time, particles etc. String theories are contained in 
these structures. 

1. Introduction 

We are used to describing physics as motion or evolution of matter in space and 
time. Although general relativity and quantum mechanics have weakened the 
concept of absolute properties of space and time we still formulate our theories in a 
preexisting spacetime manifold. This is unsatisfactory in two respects. First, space- 
time manifests itself only through the motion of matter. (Here matter includes 
gravitational fields like the graviton.) Spacetime without matter is unobservable and 
seems not to make sense. Spacetime should be understood as a property of matter 
rather than a preexisting category. Second, for a preexisting spacetime manifold we 
have to specify its dimension. This introduces an unexplained number. Higher 
dimensional  unification [1] and string theories [2] have prepared the view that it may 
be possible to formulate the same theory in different dimensions. We adopt the 
attitude that a fundamental unified theory should explain the dimension as a 
dynamical  property. The same holds for the topology of the spacetime manifold. In 
particular, the dynamics should allow the transition between different topologies so 
that topology loses its absolute role. 
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String theories are an important step in this direction. It seems, however, that 
several distinct string theories are consistent. As in quantum field theory the basic 
concepts which characterize a string theory are the degrees of freedom, the action 
and the associated symmetries. This points to another problem of fundamental 
unification: which action, which symmetry to choose? In our opinion, in a funda- 
mental  unified theory the action should lose its basic importance. It should be 
possible to describe the same physics by different actions. The choice of an action 
should correspond to a parametrization of the theory, like the choice of coordinates 
for a manifold. On the other hand, no free choice should be left for the selection of 
symmetries. They should appear as a necessary consequence of the formulation of 
the theory, with a uniquely determined group structure. 

If  space, time, action and symmetries lose their basic role, what remains? What 
concepts are left to formulate the fundamental unified theory? If there is no a priori 
meaning of space and time, observables like energy, mass and spin of a particle etc. 
can also have no a priori meaning. More generally, we do not want to assume a 
priori the existence of observables with given properties. The theory should tell us 
which structures exist so that we can attempt a posteriori to identify them with 
observables. We will use, as the only assumptions, that the fundamental unified 
theory is statistical in nature and that the number of degrees of freedom describing 
our world is infinite. 

The aim of this paper is to describe the general setting of such a theory. In sect. 2 
we introduce a probabilistic system for N continuous degrees of freedom s with 
statistical weight p(s). We emphasize that general statistics deals not with the 
expectation value of particular operators v(s) for a given p(s), but rather with the 
possible general abstract structures between operators. In appendix A we establish 
that these structures are independent of the topology of the N-dimensional manifold 
parametrized by s. In sect. 3 we consider variable transformations s ~ s'. We show 
(in appendix B) that operator structures do not depend on the choice of the 
statistical weight p(s). All systems with given N are equivalent. We find the 
symmetry group leaving p invariant, namely the N-dimensional volume-element- 
conserving general coordinate transformations sgen u. This symmetry group does 
not depend on the choice of p. In sect. 4 we introduce the action S = - l n  p and 
briefly discuss the question of transformations with anomalies. In sect. 5 we define 
general statistics for infinitely many degrees of freedom by the use of sequences of 
finite systems with N ~ ~ .  The structures among operators do not depend on the 
choice of the sequence and general statistics is therefore unique. Among the many 
possible orderings of infinitely many degrees of freedom we choose one correspond- 
ing to a free p-dimensional field theory. The functional measure is shown to include 
a sum over different topologies of the p-dimensional manifold. For p = 2 this 
ordering corresponds to a bosonic string theory. As a byproduct of the uniqueness 
of general statistics all bosonic field theories in arbitrary dimensions, which are 
regularized by sequences with N ~ ~ ,  can be mapped into each other. 
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2. General statistics for a finite number of degrees of freedom 

Let us begin with one degree of freedom parametrized by a real variable s ~ R. A 
probabili ty density p(s) is a positive nonvanishing function defined for all s. We 
also require p to be continuous and infinitely often differentiable everywhere with 
finite integral 

Z = dsp(s) .  (2.1) 
OC 

A function v(s) specifies an operator if the mean value, 

= z - l  f d s p ( s ) o ( s )  , (2.2) 

is defined and finite. (For the moment we take continuous functions v(s) and we 
also request (Iv[)p to be finite. We generalize this to a wider class of operators at 
the end of this section.) We postulate that all one can measure or observe can be 
described in terms of expectation values (v)p of operators. 

The probabili ty density contains all the information on the expectation values of 
any arbitrary given set of operators v~. Inversely, it can be reconstructed from the 
expectation values of (infinitely many) operators. One could think that any defini- 
tion of the system requires a specification of the probability density p(s). This is 
true, however, only if a given operator v(s) corresponds to some preidentified 
observable (like magnetization, for example, in usual statistics). As long as we do 
not know if an observable quantity corresponds to the mean value of v(s) or some 
other operator 6(s), our system contains less information. In particular we are free 

to reparametrize the system 

s t(s), 

p(s)  --*p'(t) = ( d s / d t ) p ( s ( t ) ) ,  

v'(t)= (2.3) 

with t(s) some monotonically increasing infinitely often differentiable one-to-one 
map R --* R. The new probability density p '  can be used equally well as p for a 
search of structures among operators. We will show in sect. 3 that a// probability 
densities are equivalent. We are therefore free to choose any p(s) we like. This 
implies that no information is contained in the particular form of the probability 

density. 
We are interested in general structures among operators. They are independent of 

a particular choice of p. For a very simple example we consider operators with the 
property 

lim vi(s ) = 0. (2.4) 
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For such operators the products v, vj . . .  v k are again operators and we can study 
correlations. We define positive operators with finite support 13~ by taking ~ ( s )  to 
vanish outside a given (open) finite interval I s and 13(s) > 0 within I~. They have the 

proper ty  

(~,~j)p=O ~ I i ~ I j =  ~ .  (2.5) 

This can be used to implement the topological and ordering structure of R among 
these operators. Similarly, we may represent the topological structure of the circle S t 
by choosing, among the operators with 

lim v , ( s ) =  lim v i ( s ) = c ,  (2.6) 
S ~ + O C  S - - +  - - O O  

those which are positive in a not necessarily finite interval and which vanish 
elsewhere. If  a certain structure among operators is identified one can make 
predictions of the type: " i f  the expectation values of a certain set of operators 
v 1, v2,. . ,  are known, then the expectation value of some other operator v 0 is 
predicted in a certain range". In our example (U1U2)p = 0 a n d  (u1U3)p = 0 imply 
(131~32t33) p = 0. Such predictions reflect the general properties of a structure. 

More generally, we may pick an arbitrary p and search for abstract structures 
among the operators. We hope that a generalization to infinitely many degrees of 
freedom leads to complex structures like space, time, fields, gauge interactions and 
spinors which will allow an identification of operators with observables. (For the 
time being we cannot be sure if such an identification will be unique or if several or 
many  candidate structures emerge.) Mathematically, a given p defines a linear map 

Vp ° P R ,  v ( s )  ~ (v)p,  (2.7) 

on the vector space of p-integrable functions, V ° = { v(s):  R ~ N, continuous and 
(]v[)p defined}. General statistics deals with the general structures of the map (2.7). 
They are, as we will see, independent of p. Several generalizations are straightfor- 
ward: 

(i) For a finite number of degrees of freedom N the probability density is a map 
1]~ N + []~ + "  Similarly the space Vp ° consists of operators v(s):  N N + R for which 
(v)p is defined in analogy to eq. (2.2). 

(ii) If  a sequence of operators v n has a well-defined limit 

lim (v , , )p = ( V ) p ,  (2.8) 
t / - - +  ~ 

we formally define v(s) = lim, ~ ~v,,(s) as an operator. The space of operators Vp is 
extended to include all such limiting operators. Therefore Vp contains functions with 
discontinuities or poles and distributions. Also the integral f ,~dsp ( s )v ( s )  may not 
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exist anymore for all finite c 0. If a function v(s) is approached by different 
sequences on, and (v)p depends on the choice of the sequence, the operator v(s) 
needs a regularization. This means that the sequence v~ must be specified for its 
definition. In summary we only require that the function v(s) is defined and is 
continuous in R except for a set of points with measure zero and that the integral 
(v)p  is finite. Generalization for distributions and for N degrees of freedom is 
understood. 

(iii) We may weaken our assumptions on p and require it only to be a finite-times 
differentiable or piecewise continuous, etc. All definitions should be adapted so that 
p appears as a limiting case for a sequence of infinitely often differentiable p,.  This 
procedure should also be used to extend our discussion to probability densities 
which may have zeroes or poles. 

(iv) Consider a sequence of probability densities p,  with 

lim fdsp.(s)= lim z n ~ oc, (2.9) 

where Zn is finite for every finite n. The limit defines a system with Z infinite. 
Operators o, are properly defined for every finite n. The operators of the system 
with infinite Z correspond to those sequences o n which have a finite limit 

(v),= lira (2.10) 

This limit will be understood if we use eq. (2.2) for infinite Z. In general a system 
with infinite Z needs a specification of the sequence Pn by which it obtains as a 
limiting case. This sequence defines the regularization of the system. 

(v) We may use a different topology for the manifold parametrized by the 
variable s, for instance S 1 or a finite interval I instead of R. We show in Appendix 
A that this can be mapped into an equivalent system with topology R. This 
generalizes for N degrees of freedom. A system defined on an N-dimensional 
manifold with arbitrary topology is equivalent to a system defined on R U. Our 
original definition for N degrees of freedom s ~ R N can therefore be used without 
any loss of generality. 

3. Transformations and symmetries 

Consider a system with N continuous degrees of freedom, (s 1, s 2 . . . . .  s N) ~ A N, 
characterized by a strictly positive and infinitely often differentiable probability 
density p(sU). As before, the expectation values of operators v(s ~) are defined in 
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dependence  on p(s)  

= z-lfdNsp(sU)o(s"), (3.1) (v), 

Z= f d'sp(sU). (3.2) 

Let us now make  a change of coordinates  

s u = f u ( t ~ ' ) ,  (3.3) 

with f an infinitely often differentiable and invertible one- to-one map  R N___, ~ N 

with posi t ive j acob ian  

f =  Det  ~ f t  o~ > 0. (3.4) 

The  par t i t ion  funct ion Z remains invariant  provided we also use a new probabi l i ty  

dens i ty  

Z= f dUtp'(t), 

p'( t ~') = f p ( f " ( t ~ ' ) )  =- f (  p ). (3.5) 

The  expecta t ion  values of  t ransformed operators  

v'(t ~) = v(fU(t~))  - f ( v ) ,  (3.6) 

evaluated in the new system, are the same as before 

= Z l fdNtp ' ( t~ )v ' ( to )  = (v}p. (3.7) 

There  is no difference between coordinates  s and t and instead of t we can also use 
the coordina tes  s. We will stick f rom now on to a version where variable transforma- 
tions act on p and v with coordinates  s kept fixed 

p( s )  ~ p ' (s)  = f p ( f ( s ) ) ,  (3.8) 

v(s)  ~ v ' ( s )  = v ( f ( s ) ) ,  

(v'}p, = (v}e .  (3.9) 
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The variable transformations form a group, the group of N-dimensional general 
coordinate transformations (diffeomorphisms) gen u. An operator v(s) transforms 
as a scalar field, p(s) is a scalar density of w e i g h t - 1  (c.f. eq. (3.8)) and O,v 
transforms as a covariant vector, (0~v)(s) ~ (O~,v)(f(s))( Of~'/Os % 

Under  infinitesimal transformations, f " ( s )  = s" - ~"(s), these quantities change 
(for v differentiable) as 

v ~ v + 6 v ,  6v= -~"O,v,  

p ~ p + 6 p ,  6p= - ~ O ~ p -  O ,~p  = -O,(~"p) .  (3.10) 

One should note that not every infinitely often differentiable infinitesimal function 
~(s)  = ( ( s ) d t  leads to an acceptable finite transformation f ( s ) :  R N----) RN. Some 
functions g(s)  correspond to finite maps defined only in a finite interval within R N 
and others map R N into such a finite interval (c.f. appendix A). Such transforma- 
tions are not invertible group elements of gen u. The functions ( ( s )  generating gen u 
are therefore constrained. For an arbitrary variable transformation f ( s )  we can find 
a continuous sequence of variable transformations f '(t ,  s), 0 ~< t ~< 1, with 

f'(0, s)  = f ( s ) ,  f '(1, s)  = s ,  (3.11) 

Ot (t, s) = (u ( f ( t ,  s)) .  (3.12) 

The choice of the sequence is not unique and a finite transformation f ( s )  can be 
generated by different ((s) .  On the other hand every ( ( s )  defines a unique f ( t ,  s) as 
a solution of the initial-value problem for the differential equation (3.12), provided 
we restrict ( ( s )  such that, for a finite interval around t = 1, f ( t ,  s) remains finite for 
arbitrary initial values s =f '(1,  s). This condition specifies the generators of gen u. 

A symmetry is a transformation leaving the probability density invariant, p'(s) = 
p(s). Symmetries relate expectation values of operators for a given p 

@)p = @')p .  (3.13) 

All operators that can be obtained from a given operator v by symmetry transfor- 
mations must have the same expectation value. The symmetries contained in the 
variable transformations (3.8) form a subgroup sgen N of genN, namely the group of 
all variable transformations leaving the volume element p invariant 

O,(~"p) = 0. (3.14} 
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In contrast, we call the variable transformations with p ' ( s )~p ( s )  the proper 
variable transformations. After identification of the symmetries they belong to 
genu/sgen u. Arbitrary probability densities p(s) and p'(s) with the same finite 
Z =  f d s N p  = fdsUp ' can be transformed into each other by a suitable proper 
variable transformation. (A proof of this statement is given in appendix B.) This 
establishes a one-to-one correspondence between the operators of both systems. For 
a finite ratio Z ( p ) / Z ( p ' ) =  a we can trivially rescale p '  by multiplication with a 
without changing the expectation values of operators. For finite N all systems with 
finite Z are therefore equivalent! The symmetry groups sgenN(p)  and sgenx (p ' )  
are isomorphic (cf. appendix C). A choice of p can be understood as a parametriza- 
tion or a "choice of coordinates" for the system. This equivalence can be extended 
to infinite Z. The system with infinite Z is defined by a sequence of p,, with finite 
Z, .  Since for two sequences p,, and p" there is a one-to-one correspondence 
between operators for every n, the two systems with p = lim . . . .  p,, and p ' =  
l i m , ~ p "  are equivalent. This holds for Z(p')  finite or infinite. In particular the 
systems with infinite Z are equivalent to systems with finite Z. A similar argument 
holds for sequences p,  leading to a limiting p which may not be defined, strictly 
positive, continuous or infinitely often differentiable in the whole N U. Without loss 
of generality we will therefore use the requirements on p stated at the beginning of 
this section. In conclusion the systems with arbitrary p are all equivalent. They are 
uniquely characterized by the number of degrees of freedom N!*. 

The concept of variable transformations should be generalized to functions f 
which are only defined on ~N except for a set of points (hypersurfaces) with 
measure zero. Also, the image of f is allowed to cover R N except for a zero-measure 
set. We still require f >  0 and f infinitely often differentiable within the whole 
range of its definition. According to eq. (3.8) the probability density p'(s) and the 
operators v'(s) are only defined in the range of definition of f .  This does not affect 
the definition of expectation values and the equality (3.9). The symmetries sgen u 
are extended correspondingly. If p ' (s )=p(s)  for all s where f is defined, we can 
extend the definition of p'(s) to the whole ~U in an obvious manner. We actually 
need this extended version of sgen u if we first formulate our system on S N (or some 
other topology different from R N) and then study the symmetries of this system in 
the equivalent version formulated on R N. The allowed generators ( ( s )  
of sgen u should be extended correspondingly. It is possible to represent a general- 

* It also seems possible to formulate a system on a discrete basis with s = _+ 1. A continuous degree of 
freedom is represented by infinitely many discrete degrees of freedom. On the other hand, infinitely 
many discrete degrees of freedom can be ordered in different ways so as to represent N continuous 
degrees of freedom with arbitrary N. By this generalization the system even becomes independent of 
N. One may choose a constant probability density p = 1 so that all values of the discrete variables are 
equally weighted. General statistics concerns the structures appearing in the possible orderings of 
information with infinitely many bits. The structure of continuous degrees of freedom implements 
notions like neighborhood, continuity etc. 
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ized ( as the limit of a sequence ( =  l i m n ~ (  n with ~, defined as before for every 
finite n. 

I t  is instructive to study the symmet ry  group sgen u for a few examples.  For  
N = 1 one obta ins  f rom eq. (3.14) 

d a 

d-~(~p)  = 0,  ( ( s ) -  p(s)" (3.15) 

The  symmet ry  t ransformat ion 

f(s)  = z - l ( a  ~- z ( s ) ) ,  

f ldsp z(s) = ( s ) ,  (3.16) 

is easily c o m p u t e d  for a few examples 

(i) p = 1, f =  s + a ,  

(ii) p = s 2 + l  f= {s+a for I s l , l a [  <<1 ,  
' s ,  for Isl >> 1 , l a l ,  

[ s+a,  for Isl , lal << 1, 
(iii) p = (s  2 +  1 ) -1 /2 ,  f = ~s  exp a ,  for s >> 1 , e - " ,  

s e x p ( - a ) ,  for s << - l , -  e~, 

s] 
- - -  + arctang . (3.17) (iv) Pn ~ n2 + s2 , f= n tang n 

For  the first example,  sgen I is the s tandard translat ion group. For  the second, f acts 
as a modi f ied  local translation for which the s -dependent  translat ion pa ramete r  
vanishes at large Is I. In example  three the symmet ry  acts similarly for small ]s I, but  
for  large ]s] it becomes a scaling of s by a constant  factor. In all three cases Z is 
infinite and sgen x has the structure of the abelian noncompac t  translation group T 1. 
The  si tuat ion is somewhat  different for the last example  with finite Z. The funct ion 
f(s) is not  def ined for all s ~ R (except for a = 0 where f(s) = s). It  diverges for 

s--* s c =  n tang{½~r(2m + 1 - 2a/n)}. (3.18) 

The  open interval  ( -  oe, so) is mapped  on the interval (n tang{l~r(1 + 2a/n)}, ~) 
whereas  the image of (s c, ~ )  is ( -  oc, n tang{ ½7r(1 + 2a/n)}). This is an example  of 
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the generalized symmetry transformations defined on R except a point which we 
have discussed before. We also note that f is periodic in a with period 2n. The 
symmetry sgen I corresponds now to the compact translation group on a circle. This 
is not surprising since p , ( s )  can be obtained from an equivalent system defined on a 
circle with radius n/Tr (Is[ ~< n) and p = ½. (The equivalence map corresponding to 
eq. (A.1) is f ( s ) =  (2n/~r)arc tang(s /n) . )  The p, in example (iv) form a sequence 
which approaches p = 1/or (example (i)) in the limit n ---, oo ( Z ,  = n). Correspond- 
ingly, the symmetry transformations approach constant translations for I sl,la[ << n. 
For  n --* oo the period of a diverges and the translation group becomes noncom- 
pact. This illustrates the equivalence of systems defined on S 1 or R, with Z finite or 
infinite. 

For  N >/2 the symmetry group sgen, is infinite dimensional. We may illustrate 
this by considering, for N =  2 and Z finite, a particular infinite-dimensional 
subgroup of sgen 2. We take 

p = p ( r 2 ) ,  r 2 = ( s 1 ) 2 q - ( s 2 ) 2 ,  Z= fdslds2p=l. (3.19) 

This probability density is invariant under r-dependent rotations 

f l = c o s T ( r 2 ) s  l + S i n f p ( r 2 ) s  2, 

f 2 = c o s q 0 ( r 2 ) s  2_Sinq~(r2)S 1. (3.20) 

We can take for q0(r 2) any arbitrary infinitely often differentiable function of r 2. 
(The value q0(0) and the limit ep(rZ--* o:) should be finite.) One always has the 
jacobian f =  1. For constant q0 one recovers the rotation group SO(2). The infinite- 
dimensional symmetry of r-dependent rotations is easily generalized for arbitrary N. 
We denote this subgroup of sgen u by so N. 

The N-dimensional translations T u are easily represented if p is a product of 
functions each depending only on one coordinate. We may therefore choose a 
standard probability density where both T u and so N are realized in a simple way 

N 

p x = e x p ( - X r 2 )  = l-I e x p ( - ) t ( x " ) 2 )  - (3.21) 
u = l  

As for any finite Z, the translations are compact and defined o n  R N except for 
hypersurfaces of measure zero 

f U ( s )  = w ; l ( a  u q- W;~(sU))  , 

wx(s ) = £ d s  e x p ( - ~ $ 2 ) .  (3.22) 
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(Here we take w~-1 periodic with period (7r/)~)1/2.) Additional symmetries in sgen u 
can be generated by a combination of translations with r-dependent rotations. In 
the limit ?~ ~ 0 one approaches pa  ~ 1 with Z infinite. In this limit sgen u consists 
of all functions f (s)  with unit jacobian f =  1. In particular, it contains the special 
linear transformations 

f = A s ,  det A = 1. (3.23) 

The group SL(N,R)  contains the Lorentz-type subgroup SO(1, N - 1 )  as well as 
SO(N).  Since the orbits of SO(l, N - 1 )  in R N a r e  not compact, this group is 
realized in a different (compact) way for finite Z ()~ > 0). 

To conclude this section we mention that there are symmetries of p beyond 
sgen N- The reflexion R ~ 

p ( ~ l  . . . . .  s ~ . . . . .  s N )  --, p ( s '  . . . . .  - s  i . . . . .  s N ) ,  

v ( s l  . . . . .  s i . . . . .  s N )  ~ v ( ~ ,  . . . . .  _ s  i . . . . .  s N ) ,  (3.24) 

becomes a symmetry for all p which are symmetric in s~. Since nonsymmetric p are 
equivalent to symmetric p a generalized reflexion symmetry is present for arbitrary 
p. We may also define symmetries where the transformation properties of operators 
v(s) depend on p. They are discussed in appendix C. We can use them to enlarge 

the symmetry from sgen u to genu. 

4. Action 

Let us now choose a description with a given probability density p. Since p is 
positive and finite in R U we introduce the action S 

e x p ( - S ( s ) )  = p ( s ) .  (4.1) 

As we have seen in sect. 3 the choice of S is arbitrary. We will choose S such that it 
reflects most easily the symmetries we are interested in. Let us concentrate on those 
symmetry transformations which can be defined by their action on the variables s 
without explicit reference to the probability density p. These symmetries of the 
action are the transformations s genu (p )  plus discrete reflexions of the type (3.24). 
We repeat that the symmetry group sgen u does not depend on the choice of S. 

Let us distinguish two types of symmetries of the action. Scalar symmetries have 
unit jacobian f =  1. They form the subgroup sgen°u(S). Under these transforma- 
tions S transforms as a scalar and therefore in the same way as any operator v 

S , ( s )  = s ( f ( s ) ) ,  

30 S = _ (u OuS. (4.2) 
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If S is expressed in terms of some operators v(s)  we can immediately conclude the 
sgen°u transformation properties of S from the transformation properties of v (in 
particular for v = s"). The nonscalar symmetries have f :g  1. The transformation law 
for S has an additional part related to the jacobian 

S ' ( s ) = S ( f ( s ) ) - l n f ( s ) ,  gS=goS+gAS, gAg=Ou~ u (4.3) 

The splitting into scalar and nonscalar symmetries depends on the choice of S since 
sgen ° corresponds to the transformations with unit jacobian leaving a given S 
invariant. Since all S are equivalent the distinction between scalar and nonscalar 
symmetries has no consequences for the structures of operators; both are genuine 
symmetries of the action. For practical purposes, however, it is often convenient to 
choose S so that the symmetries of interest are represented as scalar symmetries. A 

transformation f(s) with g0 S = 0 (S(f(s) = S(s)) may be called a classical symme- 
try for historical reasons. A classical symmetry is a true symmetry ("quantum 
symmetry")  only if it is a scalar symmetry. If gA S :g 0 the classical symmetry has an 

anomaly [3]. The anomaly gA S depends only on f (4.3) and the expectation value 
~ f ( v ) ) p  d i f f e r s  from (v)p in a well-defined way*. (This leads to anomalous Ward 
identities in quantum field theory.) 

If  we choose the standard action corresponding to eq. (3.21) 

S=~kY'~(sU)2=~kr 2, ~k>0,  (4.4) 
t t  

the subgroup so N of r 2 dependent rotations is a scalar symmetry. The translations 
are represented as nonscalar symmetries with 

g~S = - 2a U~x" exp( ~ ( x " )  2) (4.5) 

The classical symmetries of arbitrary sU dependent rotations are in general anoma- 
lous. This generalizes by trivial rescaling to 

u 2 
S =  ~ u ( s  ) . (4.6) 

U 

5. Infinitely many degrees of freedom 

So far we have treated probabilistic systems with a finite number of degrees of 
freedom N. The general properties of these systems are related to the properties of 
multidimensional integrals. For a description of the real world one expects an 
enormous number  of degrees of freedom to be relevant. We are therefore interested 

* We note that the anomaly could be absorbed by using the generalized S-dependent transformation 
law for operators (C.7). In this formulation anomalous classical symmetries become true symmetries, 
but  operators transform as densities instead as scalars. This is inconvenient for a study of 
correlations since the symmetry transformation does not commute  with the operation of forming 
products of operators. 
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in the limit N ~ oo. Consider a sequence of finite systems with increasing N. 
Denote  the probability densities of these systems by p(N). For every finite system 

the notion of an operator v (u) is well defined by the requirement t h a t  (u(U)>p(~) 
should exist. Operators of the infinite system obtain if the limit lim u ~ oo<U ( u )  >p~N) 
exists for a suitable sequence of finite-system operators v (u). For the infinite system 
an operator  v and its expectation value <v>p is always defined by such a sequence 

<V>p= l i m  ( v ( U ) > p < U } .  (5.1) 
N--* oc 

Consider, first, sequences where Z (N) is finite for every p<N) as long as N is finite. 
(For the infinite system the limit Z = l imN++Z(N) does not necessarily exist.) All 
such infinite systems are equivalent. Indeed, if we have two sequences for probabil- 
ity densities p<N) and b (N) we know that for every given finite N there is a 
one-to-one mapping between the two systems. Every sequence of operators v <N) for 
the first system is mapped into a sequence t7 <N) corresponding to the second system 
and vice versa. There is therefore also a one-to-one correspondence between 
operators v and ~7 for the infinite systems. The restriction to finite Z <N) is not 
important.  We have seen in sect. 3 that for a finite number of degrees of freedom N 
the systems with Z finite or infinite are also equivalent. We may therefore equally 
well use an equivalent sequence with infinite Z <N) for a definition of the infinite 
system. This completes the argument that general statistics for an infinite number of 
degrees of freedom is unique. We can parametrize the system as the limit N ~ oo 
for any arbitrary sequence of systems with N degrees of freedom. For the finite 
system the variable s can parametrize any arbitrary N-dimensional manifold K N 
with arbitrary topology. The choice of the probability density p<N) is also arbitrary 
with Z (N) finite or infinite. All such parametrizations are equivalent. General 
statistics has no free parameter ("coupling constant") on which physics could 
depend! 

There are many possibilities to order an infinite number  of degrees of freedom. 
As an example let us order the s u as complex variables (s, t real) 

i i + itil, 
g C t l , n 2 , . . .  , •p = S n l , n 2 , . . .  , tip n 2 , . . .  , t / p ,  

i = 1  . . . . .  a T, n j =  - M  . . . . .  M,  

N = 2aT(2M + 1 )  p . (5.2) 

We consider a gaussian action in the standard form (4.6) 

S = S + S O , (5.3) 

S =  ~ ~ (n~ + n~ + . . .  +n2p)z:l,,2 . . . . . .  ~(z~ . . . . . . . . . .  ~)*,  (5.4) 
i { n }  

2 i Z i * So=aMY~zo,o ..... o( o,o ..... o) • (5.5) 
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Then Z is finite for every finite M 
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z = f ~ exp ( - S )  = 2~Z 0 , (5.6) 

i 
~ =  H H dsj, ,,. ...... dr,,, o. ....... . 

i {,) 
(5.7) 

qT" 

~-- lq0 ( , , + , ~ +  ... +,~) 
(,,} 

d 

, ( 5 . 8 )  

Z o = (5.9) 

(The produc t  Fl 0 in eq. (5.8) does not include ( n )  = (0, 0 . . . .  ,0).)  Choosing 

1 

{,,} 
(5.10) 

one obtains  Z = 1 independent  of  M. 
We could interpret the (n  } as lattice sites and eq. (5.3) would describe an unusual 

p-d imensional  lattice theory for d" complex fields defined on lattice sites and 
wi thout  kinetic terms. As an alternative interpretation we may choose a functional 

representat ion 

xi( {~1'[Z)'2 ..... O'P) = (2~T) -p/2 EZtiTl,,,2 ...... exp(i(nlo1+ ... +npoP)). (5.11) 
{,,) 

The coordinates  o"  parametrize a p-dimensional  torus T P ( - ~ r  ~< o ~ <  ~r) and X i 

are complex functions on T p with appropriate  periodicity properties. The action 
(5.4) now reads 

Sd'° + -0") 
/ = 1  a = l  a°a  aoa 

p i = f d  oa~x (o~x~) * (5.12) 

In  the limit M - ~  o o ( N - ~  oo) every function on the toms  can be obtained for 

suitable z l ,  ). This includes functions not defined everywhere on T p. The Xi (o)  can 
have poles and discontinuities or not be differentiable on a set of hypersurfaces with 

d imension  ~< p - 1. Distributions are also generated. Of course, all such "irregular"  
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functions necessarily need an infinite number of terms in the expansion (5.11). We 
define the functional measure by eq. (5.7) 

z= f x(o)exp- + &}. (5.13) 

This specifies a free-field theory for ~f complex massless scalar fields on a p-dimen- 
sional toms.  

The regularization for all operators is defined by the limit of a suitable sequence 
with increasing M. For M ~ ~ the action becomes independent of z0,0, . i  , 0 ( S 0  --* 0) 
and the factor Z 0 (5.9) diverges to the infinite volume of R 2d All volume-conserving 
coordinate transformations of the i . . , 0 ( f=  1) become symmetries of the action. Z0,0 , .  

These include the 2d-dimensional Poincar6 transformations Pzg" As discussed in 
sect. 3 the Pzd transformations are also present for finite M, but in a modified 
(compact) form. The action S o can be considered as a regulator for a probability 
density independent of z0,0,. , 0 . g  We also can choose a formulation in terms of real 
periodic functions Xi(o). For this we can either consider the d" complex functions 

as 2a~ real functions or we impose the identification X~(o) = (X~(o)) *, 
z ~ )* in order to obtain J real functions. For an even 
number  of real functions both procedures are equivalent. These orderings of 
variables are a possible way to implement the structure of bosonic fields. 

The concept of a p-dimensional manifold parametrized by o ~ (the torus T p in 
our case) reflects a particular ordering of variables. A priori it has no dynamical 
role. From our previous discussion we know that systems with arbitrary numbers of 
components  d- in arbitrary dimensions p are equivalent. To make the transition 
from one system to another we first rescale all variables such that the action has the 
form 

= q7 i i * S 2 2 z{,}(z{,,)) (5.14) 
i { n }  

(In this form the symmetry so~ is most manifest.) We then reorder the variables in 
groups corresponding to different d and p and scale them again to obtain eqs. (5.4) 
and (5.5) for the new ordering. In the same way we may order the variables so that 
they correspond to an expansion in spherical harmonics on the sphere S p or some 
expansion on RP. By suitable transformations we can also obtain massive and 
interacting field theories. As a consequence of the uniqueness of general statistics all 
bosonic field theories which can be regularized by a sequence with increasing N are 
equivalent and can be transformed into each other. 

There is another way to visualize the independence on the topology of the 
p-dimensional manifold. Let us concentrate on the infinite system ordered on the 
two-dimensional torus ( p = 2 )  according to eq, (5.11). The functional measure 
contains functions which become independent of o2 for a given value @ For these 
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funct ions  we can identify the circle (0 l =  0o ~, 02) with a point  and cut the torus 
there. The  topology becomes a sphere S 2. When  " regu la r"  functions on S 2, like 

spherical  harmonics ,  are represented in this way on the torus they will, in general, 
not  be  cont inuous  and infinitely often differentiable for 01 = o 1. An infinite number  
of  terms in the expansion (5.11) is needed. This generalizes to oriented, compact ,  
closed connected two-dimensional  manifolds  K v with arbi t rary genus 7. We 
paramet r i ze  K v by coordinates 0 ~ such that the whole manifold  except some set of  
lines and points  is represented by a corresponding open region of ~2: (01, v~2) E 

c R 2. Let  us also choose an arbi t rary metric g~13 on K v. (The de terminant  g of g~/3 
m a y  vanish or diverge on the boundar ies  of ~ but  not inside ~ . )  Consider  now the 
normal ized  eigenfunctions Yn(O") of  the laplacian. (The Y,, can be used for a 
general ized harmonic  expansion on Kv.) 

D ~ D ~ , y  = _ 2 m,Y, , ,  (5.15) 

fo d2v a gt/2g~'BOa Y,,,OBY,,* = m 2 8,,,,,. (5.16) 

To  be proper ly  defined on K Y the Y,, must  fulfill certain condit ions (periodicity etc.) 
on the boundar ies  of  ~ .  By a suitable change of coordinates  v ~ ---, 0 ' ( 0 )  the metric  
can always be made  proport ional  to the unit matrix in the whole image ~ '  of  

g '~  ( 0 ' )  = exp qo ( 0 ' )  6,~/~. (5.17) 

The  new funct ions Y, ' (O')= Y,(O(O')) obey 

=mZS,,n,. (5.18) 

We next  define a complex coordinate  z '  = Or, + ira2, and note that  the form (5.17) 
of  the metr ic  is preserved by analytic t ransformations.  We use them to map  ~ "  into 
the interval  I 2 parametr ized  by o ~ ( z '  --+ z = ol + io2,_ rr < o ~ < vr), where we allow 
that  certain lines or points are cut out f rom 12. The functions 

L ( o )  = y, , [0(0,(o))] ,  (5.19) 

can now be interpreted as functions on the torus. Similar to the Fourier  harmonics  
they obey 

fT2 d 2o 8 ~/~ 0 ~ L  0¢ L *  = m,] 8n,,. (5.20) 
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On the boundary of I 2, however, the functions ITn inherit the boundary conditions 
implied by the topology of K v rather than the standard periodicity conditions on the 
torus. Similarly, if ~ '  is mapped on to  I 2, except some points or lines in the interior 
of the interval, the ITn may be discontinuous, not differentiable or subject to 
boundary conditions on these points and lines. Nevertheless, the ITn are contained in 
the functional measure ~ X ( o )  for M--* oc. Again their Fourier expansion will 
involve infinitely many z~,}. For the infinite system the functional measure effec- 
tively includes a sum over topologies with arbitrary genus! This partly generalizes to 
p > 2 where the functional measure also effectively includes a sum over different 
topologies. Unlike in two dimensions, we are not guaranteed, however, that by a 
suitable choice of coordinates o (~)  we can transform an arbitrary metric into the 
form gl/2g~B= 6~B on I p. The functions contained in eq. (5.11) can only be 
properly represented on metric spaces for which this is the case. 

For p = 2 the action (5.12) describes an euclidean version of the bosonic string 
theory [2]. For the critical dimension, string theories are believed to lead to an 
interesting consistent quantum theory for matter propagating in space and time. 
Since, for the infinite system, the functional measure (5.7) already contains a sum 
over topologies with arbitrary genus, one may speculate that the appropriate weight 
factors for integrals over Teichmiiller parameters [4] are generated automatically. 
One is tempted to propose the sequence M ~ oe defined by eqs. (5.3) and (5.7) as a 
nonperturbative definition of the bosonic string theory. Of course this has to be 
supplemented by a specification of suitably regularized operators (vertex operators 
etc.). Based on the two-dimensional f e r m i o n -  boson equivalence there are good 
prospects for a generalization which includes fermions. We observe that we have 
identified a huge symmetry sgeno~ which is much larger than the symmetries of 
string theories discussed so far. The implications of this symmetry need to be 
explored. One may hope that they lead to an understanding of spacetime symme- 
tries in string theories. Nevertheless, our setting is more general than string theories. 
A systematic classification of structures between operators which could represent 
space, time, spinors etc. would be of great value. Within general statistics the next 
step has to be done in this direction. 

In conclusion we propose a theory, general statistics, whose only ingredients are 
its statistical character and the infinite number of degrees of freedom. In this paper 
our main emphasis concerns the conceptual layout, the uniqueness and the symme- 
tries of the theory. All quantities are well defined and the expectation values of 
operators are finite by definition. So far, fundamental unification searched for the 
"r ight  theory." In our approach the theory is unique and the task is rather to find 
the "right operators," namely to find those structures which permit a correct 
identification of operators with observables. This task is very complex and it is 
a priori not guaranteed that concepts like time or spinors are contained in our 
formulation. The fact that our approach contains the bosonic string theory gives us 
hope that physics can indeed be described by the extremely simple basic concepts of 
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general statistics. We are fully aware, however, that there is still a long way to go 
before making direct contact with experiment and observation. 

Appendix A 

In this appendix we argue that the topology of the manifold parametrized by the 
variable s is irrelevant. For an N-dimensional manifold K u with arbitrary topology 
and arbitrary probability density p(s) we can always find a mapping on an 
equivalent system with new variables t parametrizing R U. The new system is 

characterized by a probability density p ' ( t ) .  Every operator of the original system is 
mapped  into an operator of the new system with equal expectation value. Structures 
between operators are therefore preserved. 

First we note that we can remove a finite set of points from R without changing 
the expectation values of operators. As discussed in sect. 2 the operators v(s) need 
not be continuous functions. We also admit functions defined everywhere on R 
except a finite set of points (for example with poles) provided the integral (V)p 
exists. There are therefore no additional constraints on v(s)  for the resulting open 
intervals. We can arbitrarily "cut" R into pieces or "glue" pieces together. Similarly 
we can remove from R N any arbitrary hypersurface with dimension smaller or equal 
N - 1. (For the limit where v(s) becomes a distribution one should first perform the 
cuts and then perform the limit in function space.) Consider now a system defined 

on a finite interval, for example Is r ~< 1. Again, we can cut out a finite number of 
points, in particular the boundary points. The interval becomes then open and has 
the same topology as R. To map the open interval onto N we can use any surjective 
map I ~ R, for example 

t= tang(½~rs) = f - l ( s ) .  ( a .1 )  

The probabil i ty density of the new system is 

ds 
p'(t)  = ~ p ( f ( t ) ) .  (A.2) 

(We require ds /d t  > 0.) In our example a constant density on I induces on 

2 
p ( s ) = l - - * p ' ( t ) = - - ( l + t  2) 1 (A.3) 

q7 

We now can map every operator v(s) on an operator v'(t) 

v ' ( t )  = v ( f ( t ) ) ,  (A.4) 

with {v')p, = {v)p. Since the inverse map R ~ I is also defined the two systems are 
equivalent. 
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This generalizes easily. For the topology of the circle S 1 we first cut out a point so 
that it becomes an open interval I. Since the operators v(s) are not necessarily 
continuous there are no additional constraints on the v(s) allowed I. (Only for 
continuous periodic functions on S 1 should the functions on I have the same value 
on both endpoints.) The interval I is then mapped onto A. Every N-dimensional 
manifold K N with arbitrary topology is reduced to an N-dimensional open interval 
I N (with topology A N) by cutting or gluing appropriate lower dimensional mani- 
folds. There are always suitable functions mapping I N onto A N. (For spheres we can 

cut out the poles and use standard projective maps.) We finally should mention that 
there is no need to restrict this procedure to manifolds. We may also consider 
"manifolds  with edges," like the cube, which are often called orbifolds [5]. By 
cutting out the edges the orbifolds are completely equivalent to the "noncompac t  
manifolds" considered in ref. [6]. Like any other manifold they are equivalent to 

A N • 

It may sometimes be useful to apply the inverse procedure and map RN on a 
compact  space (e.g. sN). Depending on the map and the behavior of p(s) at the 
boundary of A N the new density p'(t) may have zeroes or poles at certain isolated 
points (or hypersurfaces with dimension ~< N - 1) even for p (s)  strictly positive and 
finite for all s ~ A N. This is not problematic in view of the regularization by 
sequences p~ discussed in sect. 2. It also demonstrates that a general restriction to 
continuous nonzero p(s) is not justified. 

Appendix B 

In this appendix we show that an arbitrary probability distribution p'(s) can be 
obtained from a given arbitrary p(s) through a proper variable transformation f 

p'(s) = f p ( f ( s ) ) ,  (B.1) 

provided Z = fdsNp(s)  = fdsNp'(s) < oo. Both p and p' are nonvanishing, finite, 
positive functions A N ~  A+ which are continuous and k - 1  times differentiable 
(k >~ 1) in the whole A N. The function f must be a continuous, k times differen- 
tiable, invertible one to one map A N _~ A N with positive Jacobian f >  0. Let us first 

demonstrate  this for N = 1. According to eq. (B.1) we have to find a function f (s)  
with positive derivative df /ds  > 0, so that 

df  p'(s) 
d--s-= p ( f ( s ) )  " (B.2) 

Eq. (B.2) defines a differential equation for f which is solved by introducing the 
integrals z( s ), z'( s ) fulfilling 

dz dz '  
=p'. (B.3) 

~ s  = P '  ds 
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Then the function f is found in terms of the inverse of z 
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f ( s ) = z  l ( z ' ( s ) ) .  (B.4) 

Eq. (B.3) defines z and z '  only up to a constant which is fixed* by the requirement 

that f is a one-to-one map ~ ~ R 

lim f ( s )  ~ oc ~ lim z (s )  = lim z ' ( s ) ,  

lira f ( s ) - - - , - o c  ~ lim z ( s ) =  lira z ' ( s ) .  (B.5) 

Note  that the inverse of eq. (B.5), as well as the existence of z 1, follows from the 
fact that z and z '  are monotonically increasing (p ,  p ' >  0). Eq. (B.5) gives two 
conditions for the difference of the two integration constants in eq. (B.3). They are 
compatible  only if the partition function Z is the same for both densities ( Z  = z ( ~ )  
- z ( - ~ c )  = z ' ( o c ) - z ' ( - o e ) ) .  Indeed, Z may be viewed as the total volume 
corresponding to the density p which is of course invariant with respect to gen 1. The 
positivity and finiteness of the "determinant" d f / d s  follow from the positivity of p 
and p ' .  (For arbitrary functions p and p '  the difference in the number of zeroes 
would be a gen 1 invariant.) Differentiability of f ( s )  follows from differentiability of 
p, p '  and p > 0. As an example, the two densities 

1 
p ( s )  ~- 1 c o s h - 2 s ,  p t ( s )  = - ( 1  + s 2 )  -1, (B.6) 

77 

are related by the transformation 

1 + (2/7r) arctang s 
f ( s )  = ½ In 1 - (2/7r) arctang s " (B.7) 

For a generalization to arbitrary N we first note that an arbitrary probability 
density of the form 

p ( s ) = b i ( s X ,  s 2, s i ' ,s iVa {s'+l~a tsi+2~ aN(S N) (B.8) 
• ' ' ,  l i + 1 \  l i + 2 \  ] " ' "  

can be transformed by gen N into 

/ 5 ( s ) - - b  i l(S1, S 2 , . . . , s  i l )a i ( s i )a i+l (S i+l ) . . .aN(SN ) . (B.9) 

* A c o m m o n  addi t ive constant  for z and z '  is irrelevant.  
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Here b i_ 1 is obtained from h i by 

f d s ib , ( s l ,  s Z , . . . ,  s i ) = b i _ l ( s l ,  s 2 . . . . .  s i -1)  f ds '  a , ( s i ) .  (B.10) 

This follows from the case N = 1 by treating all s u except s '  as fixed parameters. 
We use a transformation i f = i f ( s  t . . . . .  s ' ) , f  u= x u for u 4:i to bring the func- 
tional dependence of p on dsx i into an arbitrary form - a~(s ~) for all values of the 
"parameters . "  The s ~ dependence can then be factored out. We can therefore pick 

two specific transformations fl, f2 

I t ( p )  - - p t ,  / 2 ( p ' )  =P2 ,  (B.11) 

with Pt and P2 probability distributions in the direct product form 

N 

Pt,2 = I-[ a~'2(sJ) • (B.12) 
j = l  

These can be treated in complete analogy with the N = 1 case and there exists 
always a proper variable transformation f3 establishing a one-to-one correspon- 
dence between arbitrary Pt and P2 with Z ( p t ) = Z ( p 2 ) .  The transformation 
f~-1f3f1 maps p onto p' .  (Of course this transformation and the choice of fl, f2, f3 
are not unique. A symmetry transformation can be applied at every step without 

changing the result p ~ p' .  Also the choice of Pl and P2 is arbitrary.) 

Appendix C 

In this appendix we show that the symmetries sgen~ for two probability densities 
p ( s )  and p ' (s )  are isomorphic. We also extend the symmetry s g e n u ( p )  to a 
symmetry genu(P) .  According to eq. (3.15) the embedding of sgen u into gen u 
depends on p since it consists of transformations leaving a given probability density 
p invariant. The proper variable transformations induce an isomorphism between 
s g e n u ( p )  and s genu (p '  ) if Z ( p ) =  Z ( p ' )  with finite Z. Indeed, if we pick a 
suitable proper variable transformation f ( p ) = p '  it establishes a one-to-one corre- 

spondence between g ~ sgenN(p)  and g '  ~ sgenu(P '  ) by g ( p )  = p, g' = 
f g f - l , g , ( p , ) = p , .  (For Z ( p ' ) = a Z ( p )  we first multiply p '  with a in order to 
establish the isomorphism.) 

In addition to the proper-variable transformations contained in gen N there are 
other transformations whose action on the density p and the operators v can be 
defined such that (V'>p, = (V)p. These transformations can also be used to relate 
different probabili ty densities (with different Z). The simplest example is a constant 
rescaling of p 

p --> p' = ap ,  v --> v' = v,  

z --, z '  = ,~z .  ( c . 1 )  
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This is a special case of a more general transformation which is linked to the fact 
that the splitting of the product vp into v and p is not unique. Consider an 
infinitely often differentiable operator w(x)> 0, i.e. (w)p~ •+. We can then 
define the transformation 

p'  = p w  - w ( p ) ,  

o'=v =w(o), 
W 

Z'= (w)pZ. (C.2) 

The inverse transformation 

pt  

w - a ( p 0  = - -  = p ,  
W 

W - I ( u  ' )  = UtW = U, ( C . 3 )  
p, 

is always defined for the density p '  = pw but not necessarily for p. We can use the 
scalings w to construct a one-to-one map between operators in the system with 
probabil i ty density p and operators in a system with p '  provided the ratio 

Z(p)  P p, (C.4) 

is finite and does not vanish (w =p'/p). The scalings induce another isomorphism 
between the symmetries of p and p ' .  For an arbitrary symmetry g, g(p)= 
p,(g(V))p= (V)p, the transformation g'=wgw 1 is a symmetry of p '=w(p)  
(g'(p') =p', (g ' (v ' ) )p , - - (V' )p , ) .  For (p' /p)e ~ R+ the scalings w establish again 
the equivalence of p and p' .  

How are the isomorphisms of symmetries generated by scalings w related to those 
f rom proper-variable transformations? Let g '  be an element of s g e n u ( p '  ). For 
arbitrary p(s) and p'(s) with w(s) =p'(s)/p(s)(Z(p') /Z(p) ~ R +) the transfor- 
mation gw = w-lg 'w is a symmetry of p but it is in general not contained in gen N. 
An operator v(s) transforms as 

g (o) 

gw(p) =p, (c.5) 
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or, using the fact  that  g '  is an element  of sgenN(p ' ) ,  

p(g'(s)) 
gw(v) v(f(s)). (c.6) e(s) 

Indeed ,  we can  use a combina t ion  of var iable  t ransformat ions  and scalings to 

ex tend  the symmet ry  of a p robab i l i ty  densi ty  p from s g e n N ( p )  to g e n u ( p ) .  The 

t r a n s f o r m a t i o n  group gen N(P)  is i somorphic  to gen N bu t  the t rans format ion  law of 

p and  v co r re spond ing  to a given funct ion f ( s )  differs from gen N 

f,(p) =p' =p, 

fp(f(s)) 
fp(v) =v'= v(f(s)). (C.7) 

P(,) 

The  groups  gen u and g e n N ( p )  have a c o m m o n  subgroup  s g e n N ( p ) .  The symme-  

tries in g e n u ( p ) / s g e n u ( p )  are associated via eqs. (C.5) and (C.6) to symmetr ies  

sgen N ( P ' )  for sui table  p ' .  

The  t r ans fo rmat ions  in g e n N ( p )  are not  the only possible  symmetr ies .  A n y  

t r a n s f o r m a t i o n  p ~ p ,  v ~ v' with 

f dsN pv = f dsN pv ', (c.s) 

m a y  be  cal led  a symmet ry  and g e n N ( P )  is only  a subset  of all symmet ry  t ransfor-  

m a t i ons  S y m U ( p )  def ined by  eq. (C.8). 
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