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Previous computations of the SU (3) topological susceptibility 2, using numerical simulations of lattice gauge theory, are de- 
veloped further. Our simulations now extend to gauge coupling fl=6.0 and lattices up to size 104. 

This letter continues our efforts [ 1 ] to compute the 
topological susceptibility Z~ in SU (3)  lattice gauge 
theory. Demanding that the lattice expression for the 
topological charge be gauge invariant, have the cor- 
rect naive cont inuum limit, and yield an integer re- 
sult leads one to reconstruct the underlying fiber 
bundle [2] ~. For the gauge group SU(2 )  there is a 
fast combinatoric algorithm [4] which has provided 
the basis for very high statistics simulations [5,6]. 
However, for SU (3) this is not the case, and in our 
previous paper [ 1 ] we were only able to compute  Zt 
on small lattices with low statistics. Our method had, 
and has, two essential ingredients. First, we derived 
a section [ 7 ] or Ltischer's bundle; in terms of  the sec- 
tion the topological charge is a sum of  integer wind- 
ing numbers, one for each hypercube. Second, we 
fixed the gauge to Landau gauge, which smoothens 
the section so that the winding numbers can be inte- 
grated more easily. Since then we have improved this 
method, and we are now able to present Monte Carlo 
calculations of  Z, on larger lattices and with higher 
statistics than before. 

The primary physical interest in the topological 
susceptibility is in the resolution of  the axial U(  1 ) 
problem. A nonzero susceptibility quantifies the way 

t Permanent address Mainz. 
~ See ref. [ 3 ] for a recent review. 

in which topologically nontrivial configurations ex- 
plicitly break UA ( 1 ), removing the need for a ninth 
Goldstone boson. Indeed, in a particular large-N 
chiral limit the susceptibility can be related to the q'  
mass [8],  and from this analysis one anticipates 
Zt ~ ( 180 MeV) 4. 

In the realm of  numerical simulations Z~ is also of  
interest. The topological susceptibility is a physical 
observable, yet unlike a mass gap or the string ten- 
sion, its determination requires no curve fitting. Al- 
though the computat ion of  the topological charge is 
rather strenuous, the extraction of  quantities with 
known asymptotic scaling behavior is straightfor- 
ward. Hence Zt is well suited to analyses of  scaling 
behavior and of  volume dependence. With this in 
mind, we have chosen lattices and couplings that 
match those of  recent glueball mass calculations, so 
that a test of  universal scaling is possible. 

The topological charge Q is given by the sum of  lo- 
cal winding numbers Qs: 

Q=~Q,, (1) 
s E A  

where the sum runs over all sites s in the lattice A. Let 
c ( s )  be the unit hypercube with origin s, and let Oc(s) 

denote its boundary. In terms of  the section w s, de- 
fined on Oc(s),  the winding number  Q, is given by 
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1 ~ d3xu~uvp, ~ 
Q~ = 24z~2 

~c(s)  

Xtr[(w')-JO~w'(w~)-lapwS(w')-lO~w'].  (2) 

Since there is no practical combinatoric method of  
evaluating the integral in eq. (2),  one is obliged to 
evaluate it numerially. For this it is important  that 
w ~ be as smooth as possible. 

In the lattice theory the w" are functions o f  the par- 
allel transporters U~, where I~ is a link in A. The sec- 
tion can be smoothened to some extent by fixing to 
Landau gauge. For a lattice gauge field this means 
minimizing 

TA= ~ ( 1 - ~ R e t r U ~ ) ,  (3)  
~6A 

where the U g is the gauge transform of  U~. This pro- 
cedure brings the U~ as close to unity as possible, 
which in turn keeps the section, and hence the inte- 
grand of  eq. (2),  close to constant. In practice, it is 
enough to make T" small, rather than minimal, be- 
cause the gauge fixing is only an aid to a more effi- 
cient computat ion of  the gauge invariant Q. 

On the corners of  c(s) the map w ~ is defined to be 
the gauge transformation which brings the link ma- 
trices in c(s) into a prescribed nonsingular gauge. 
Then w" is extended to all of  Oc(s) by interpolation 
formulae given in refs. [ 1,7 ]. In refs. [ 2,1 ] the gauge 
condition within c(s) (the "local" gauge) was the 
complete axial gauge. In this work we choose the 
Landau gauge instead. As in eq. (3) this is realized 
by choosing w" at the corners o f c ( s )  such that 

T ' =  ~ ( 1 - ~ R e t r U ~ )  (4) 
f~c(s) 

is minimized, where the U[ are the link matrices, 
gauge transformed by w'. In eq. (4)  T s remains in- 
variant under a constant gauge rotation of  w *, which 
we fix by choosing wS(s)= 1. We assume that this 
procedure specifies the gauge uniquely. It is now es- 
sential to fix the gauge completely, unlike with the 
global gauge fixing. Uniqueness holds for SU (2)  and 
U ( 1 ) in two dimensions, up to exceptional cases [ 9 ], 
which have zero measure in the functional integral. 
Assuming uniqueness in the present case, the gauge 
fixed parallel transporters have the gauge transfor- 
mation property 

US~=g(s)U~g ~(s). (5) 

As a consequence of  eq. (5),  the section transforms 
a s  

v~S(x) = g ( s ) w ' ( x ) g - l  (x) , (6)  

where the interpolated gauge transformation g(x)  is 
given in refs. [1,7]. In turn, eq. (6) guarantees the 
gauge invariance of  the topological charge Q. 

Eq. (6) also indicates why the local Landau gauge 
condition works so well with the global Landau gauge 
fixing. Imagine constructing w s without the (global) 
gauge fixing, and compare it to W" after gauge fixing. 
The interpolation formulae for g and w s in terms of  
the values at the corners o f  c(s) are the same [ 1,7 ]. 
Choosing global and local Landau gauges, respec- 
tively, as ans~itze for the corners, yields similar re- 
sults for the gauge fixing function g and the unfixed 
section w s. Hence w~ remains nearly constant, unless 
nontrivial topology insists otherwise. 

Even with the smoothest section imaginable, com- 
puting the integral in eq. (2) by brute force, as we did 
in ref. [ 1 ], is still vey time consuming. We now make 
use of  the fact that Qs can be calculated by a reduc- 
tion o f  the section to SU(2)  [ 10,11 ]. This is done by 
decomposing (for w]~ 4: - 1 ) [ 11 ] 

(1 ° 0) 
w ' = o ) ( w ~ ,  w ~ ,  w'3~) #s  , (7) 

where the reduced section #s is given by 

# s =  o~ 

s s~ ws22 ~"wS3~ W 3 2 - - W 2 3  
~ =  ~ =  (8) 

l + w ] ] '  ' l + w ' ~  

Then Q, is equal to the winding number  o f # ' ,  owing 
to homotopy arguments. Since SU (2) is isomorphic 
to the sphere S 3, this winding number  can be com- 
puted in a relatively simple way. On each Oc(s) we 
choose a simplicial mesh and evaluate #s explicitly 
at the mesh points #2. The image of  each simplex is 
then approximated by a spherical tetrahedron in S 3, 
and the number  of  times the spherical tetrahedron 
covers a given point can be determined combinator-  

#3 N.B. the section must first be interpolated in SU(3) and then 
reduced to SU (2). 
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ically. The approximation is improved by refining the 
mesh until the geodesic distance between the corners 
of  all spherical tetrahedra is less than n/4.  For some 
hypercubes this requirement cannot be fulfilled with 
a moderate number  o f  mesh points. In this case we 
integrate numerically with sufficient precision to 
identify the integer Q, unambiguously. On a Siemens- 
Fujitsu M200, a sequential mainframe computer, our 
program typically needs 30 min to compute  Q on a 
64 lattice. 

We have performed Monte Carlo simulations of  the 
pure SU (3) gauge theory using the standard Wilson 
action. Table 1 summarizes the parameters of  the 
simulations and the results for the topological 
susceptibility 

z , = < O 2 > / v ,  (9) 

where V= (La)  4 is the spacetime volume. The results 
are consistent with our previous calculations, and with 
ref. [12] ,  another geometrical method. The results 
are not consistent with the cooling method of  ref. 
[13],  which obtains consistently lower values. For  
example, at f l=5.85 and L = 8  ref. [13] finds 
a4zt = 1.68 (22) X 10 -4, three times smaller than our 
result. 

Recall that ref. [ 14] constructs a family o f  lattice 
configurations with topological charge Q =  1 and a 
zero mode in the staggered fermion Dirac operator. 
They are "lattice instantons" plus some quantum 
noise, and certainly ought to be assigned charge one 
under any reasonable algorithm, as the fiber bundle 
methods indeed do. In SU(2 )  [3,6] we found that 
the cooling method used by ref. [13] assigns zero 
charge to some of  these configurations, viz. when the 
core of  the instanton is half  the size o f  the lattice. The 
configurations of  ref. [ 14] can be embedded into 
SU (3),  with the conclusion that the cooling method 
can neglect large topological structures appearing in 
lattice gauge fields. 

Table 1 
Parameters of the simulations, with results for a4zt 

fl L NQ a4zt 

5.7 6 66 2.21 (42) X 10 -3 
5.7 8 110 2.13(14)X10 -3 
5.85 8 170 5.00(34) X 10 -4 
6.0 10 201 1.09(10) X 10 -4 
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To disentangle finite-volume and nonzero lattice 
spacing effects, it is convenient to introduce the 
variable 

z t = L a x  1/4 , (10) 

which is a dimensionless, renormalization group in- 
variant measure of  the physical volume. In fig. 1 we 
plot Zlt/4/Alat as a function o f  z,, using the two-loop 
formula 

A l a t = a - l ( 8 r c 2 f l ) s l / 1 2 1 e x p ( - - 4 n 2 f l ) .  (11) 

Our data indicate deviations from asymptotic scaling 
and seem to show marked volume dependence; 
therefore we are reluctant to state a value for Zt in 
MeV. The topological susceptibility is, however, cer- 
tainly large enough to resolve the axial U ( 1 ) prob- 
lem. To test for universal scaling we have compared 
our data with recent glueball mass calculations per- 
formed on lattices with the same spatial volume [ 15 ]. 
The result is shown in fig. 2, and within the errors the 
ratio of  the two quantities shows neither volume de- 
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pendence  nor  a dev ia t ion  f r o m  universa l  scaling ~3. 

N o t e  that  this analysis  also yields the  result  mo + + = 

(3.5 +0.1  )X~/4, for 1.0~<zt~< 1.8; the  v o l u m e  depen-  

dence  in fig. 1 was apparen t ly  an ar t i fact  o f  the  two-  

loop scaling hypothesis .  H o w e v e r ,  the glueball  mass  

increases for zo=Lamo++ > 7  (i.e. z t > 2 ) ,  so one  

should  not  assume f rom fig. 2 that  the l a rge -vo lume  

regime has been  reached.  

This  le t ter  reflects the  cur ren t  possibi l i t ies  in the 

ca lcula t ion  o f  the S U  (3)  topologica l  suscept ibi l i ty  

(based  on a f iber  b u n d l e ) .  Unfo r tuna t e ly ,  the nu- 

mer ica l  t echn iques  are i nadequa t e  for an assault  o f  

genuinely large lattices, or  for a systemat ic  s tudy along 

the l ines o f  ref. [ 6 ]. The  need  for  an S U  (3)  m e t h o d  

as eff ic ient  as the  S U ( 2 )  m e t h o d  o f  refs. [4,5]  re- 

mains  as urgent  as ever.  

M.G.  and  M.L.L.  wou ld  like to thank  R.D.  Peccei  

and the rest o f  the D E S Y  theory  group for hospitali ty.  

,3 It would have been interesting to perform a similar analysis 
using the string tension, but the string tension for our values of 
the parameters is not sufficiently well determined. 
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