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Rigorous path integral treatments on the Poincare upper half-plane with a magnetic lield 
and for the Morse potential are presented. The calculation starts with the path integral on the 
Poincarb upper half-plane with a magnetic field. By a Fourier expansion and a non-linear 
transformation this problem is reformulated in terms of the path integral for the Morse poten- 
tial. This latter problem can be reduced by an appropriate space-time transformation to the 
path integral for the harmonic oscillator with generalised angular momentum, a technique 
which has been developed in recent years. The well-known solution for the last problem 
enables one to give explicit expressions for the Feynman kernels for the Morse potential and 
for the Poincart upper half-plane with magnetic field, respectively. The wavefunctions and the 
energy spectrum for the bound and scattering states are given, respectively. :i-’ 1988 Academw 

Press. Inc. 

I. INTRODUCTION 

In this paper we want to present rigorous path integral treatments on the 
Poincart upper half-plane with a magnetic field and for the (generalised) Morse 
potential V”(q) = V,(e2Y - 2aeq) (q E R; tl E R, V, > 0, constants). The PoincarC 
upper half-plane U is defined by 

U:= {z=x+iy~.u~R,y>O}, (1) 

endowed with the hyperbolic metric (associated with the line element 
ds2 = gabdqudq6) g,, = 6Jy2, therefore having negative constant Gaussian cur- 
vature K= - 1. A constant magnetic field on U is described by the vector-potential 
A, = -mB/2y, A, = 0 [S]. U as an example of a non-Euclidean geometry has 
recently become important in the theory of strings (see, e.g., [ l&25]), in the theory 
of quantum chaos (see, e.g., [2, 16, 28]), and for non-Euclidean harmonic analysis 
[30]. In the two former theories one considers classical and quantum motion 
in bounded domains with periodic boundary conditions. These domains are 
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PATH INTEGRAL ON THE HYPERBOLIC PLANE 111 

fundamental domains of discrete subgroups of PSL(2, R) [ 171. However, in our 
paper we shall discuss only motion on the entire upper half-plane. 

A thorough discussion in an operator approach to the problem of the Poincare 
upper half-plane with a magnetic field is due to Comtet and Houston [S] and 
Comtet [4]. In formulating the path integral approach we shall start with the 
classical Lagrangian and construct the quantum Hamiltonian with the help of 
hermitian momenta. Because of the non-Euclidean nature we must decide which 
ordering prescription we use in the Hamiltonian. We shall use a product ordering 
ansatz. A detailed discussion of the “product ordering” definition in the quantum 
Hamiltonian in order to derive the “product form” prescription for path integrals 
on curved manifolds was given in [ 121. The approach here is very similar; however, 
we must take into acount the vector potential of the magnetic field, which makes 
things a bit different. 

The path integral problem for the usual Morse potential (i.e., c( = 1) was 
discussed by Duru [7]. Free quantum motion on U (i.e., without any field) was 
discussed in previous publications [13, 151, including its connection to Liouville 
quantum mechanics and further equivalent Riemannian spaces (the Poincare Disc 
D, the hyperbolic strip S, and the pseudosphere n2), respectively. 

Our paper is organised as follows. In Section II we construct the path integral on 
U with a magnetic field in the “product form” definition. Having the path integral 
on U we shall perform a Fourier expansion in order to decouple the x and y path 
integrations. The remaining path integral will yield, after a coordinate transforma- 
tion, the path integral problem of a generalised Morse potential P(q) = 
V,(e2Y - 2creY). This path integral can be solved with a further space-time transfor- 
mation and will turn out to give the path integral for a harmonic oscillator with 
generalised angular momentum which is a well-known problem. The technique of 
the space-time transformations was first developed by Duru and Kleinert [S]. 
Further discussions are due to Inomata [lS], Kleinert [19], Steiner [26], and 
Grosche and Steiner [ 143. Finally we can state the Green’s functions in closed form 
for the Morse potential and for the quantum motion on U with a magnetic field, 
respectively. 

In Section III we discuss in some detail the discrete and continuous spectra of 
both problems. We rewrite the Green’s functions in a spectral expansion with the 
help of the Hille-Hardy formula and a dispersion relation for the discrete and 
continuous spectra, respectively. For the discrete spectrum we shall find a finite 
number of states, depending on the strength of the magnetic field and the trough 
of the Morse potential, respectively. The discrete wavefunctions are proportional to 
Laguerre polynomials, whereas the continuous are proportional to Whittaker 
functions. 

Finally we shall see that in the limit B --) 0 the results are reproduced for the free 
motion on U [13, 15, 16, 301. The same limit yields for the Morse potential 
Liouville quantum mechanics [ 151. 

Section IV summarizes our results. 
In Appendixes A and B we discuss two important integral representations. In 
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112 CHRISTIAN GROSCHE 

Appendix C we prove that from the short time kernel of the path integral on V with 
a magnetic field the Schrodinger equation can be derived. 

II. THE FEYNMAN KERNEL 

On the Poincart upper half-plane the metric is given by g,, = 6,Jy2 (XE R, 
y > 0). The hyperbolic distance in V reads 

cash d(z”, z’) = 1 + 
(f-$(2 

2y’y” . 

We start by considering the classical Lagrangian and Hamiltonian for the motion 
on V with a magnetic field, where the vector potential is given by A = (A,, AY) = 
( - mB/2y, 0), respectively: 

y/~2+b2 emB R ; 
2 Y2 2cy’ 

The classical trajectories in U are circles or arcs of circles perpendicular to the y = 0 
line (see [4]). The qnantum Hamiltonian if given by [4] (we set +i = 1) 

e2mB2 
H= -&y2(3:+d;)+~ya.r+F (3) 

which can be constructed by the Casimir operators on V. Operators 
d, = y*(a; + at) - iky8. are also called Laplacians of weight k [17]. We introduce 
momenta (p, = -i(a, + r,/2), r, = 8, In Jg, g = det(g,,)), 

(4) 

which are hermitian with respect to the scalar product [f, ,f2 E L2( V)]: 

(5) 

We rewrite the quantum Hamiltonian with the help of the momenta (4) in a 
product ordering, yielding 

H=&[y (A-fg)‘Y+YP:Y]. (6) 

Note that in Eq. (6) no additional quantum potential appears. 
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In a previous publication [ 121 we have constructed the path integral starting 
with a Hamiltonian in a product ordering. However, in this case here, things are 
a bit different because we have an additional vector potential which contributes to 
the momenta. In constructing the path integral we proceed similarly to [ 123. We 
consider position eigenstates (z) with the property 

(2” 1 z’ ) = y’y”(q y” - y’) 6(x” - x’). 

We have for the Feynman kernel for an arbitrary NE N 

(7) 

K(x”,x’,y”,y’; T)=K(z”,z’; T)= (Z”(e-i=H(Z’) 

=yc,’ jdxicff’)xjfi, (Z(j)Ie-i(TIN)HIZ(j-l)). (8) 

In the short time approximation of the matrix element (z” ) eeiEH 1 z’ ) N 
(z”]~‘) -iis (~“1 H 1 z’ ) we get for (z” ) H ) z’ ) (b := -emB/2c) 

+2b (~“~~~z’)+<;“lpj/z’) 1 

(9) 

In the last step we have used the action of momentum operators on position 
eigenstates which give, e.g., for (z” I pX I z’ ), 

(~“1 p.r lz’) = iy’y”3,,6(x” -x’) 6(y” -y’) 
I I, 

=f$2 s dpxdpy p,e 
ipr;(.Y” ~ x’) + ip&v” - .v’) (10) 

Using the Trotter-product formula e-‘(A+B) ’ = Aim,, ,(e-i’A’Ne-iTB’N)N and 
Eq. (9) the Hamiltonian path integral is therefore given by 
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(11) 

The momentum integrations can can be carried out and we get the Lugrangian path 
integral on the Poincark upper half-plane with a magnetic field: 

K(x”, x’, y”, y’, T) = lim 

(12) 

In Appendix C we prove that Eq. (12) is indeed the correct path integral on U 
corresponding to the Hamiltonian (3) 

Let us note that our choice of the classical Lagrangian and Hamiltonian in 
Eq. (2) corresponds to a specific gauge of the vector potential. The magnetic field 
is described by the two-form Bz dA = (a,A, - d,A,,,) dx A dy = (b/y*) dx A dy. B is 
unaltered by the change A -+ A = A + grad F, where F= F(x, u) is some arbitrary 
function FE C’(U) H R. Making the ansatz 

we find RFEO=e- iF(rSyJfieiF(J, -“). Therefore the only change by the gauge trans- 
formation A + A” is a (coordinate-dependent) phase factor eir = eiF in the wave- 
functions. Let, e.g., A=(A,, A,.), F(x,y)= -j:b A,(x,y’)dy’+f(x) with some 
arbitrary real valued function f depending only on x. Then we have 
2, = A, - 1 (a, A,) dy’ +f ‘(x), aY = 0. We get the same magnetic field B= dA = 
[(a,A”,) - (aXA”,)] dx A dy = [(a,A,) - (aXA,)] dx A dy but the y-component of 
the vector potential is gauged away which is therefore always possible [S]. By 
repeating the steps from Eqs. (8) to (12) we get the path integral equation 

s 
Wt) Dy(t) 

Y2 

= e iF(r”, y” ) - if+‘, y’) > 1 dt . (14) 
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In order to calculate the path integral (12) we start by performing a Fourier 
expansion: 

K(x”, x’, y”, y’; T) = /r,x Kk( y”, y’; T) e - ik’v” -x’) dk 

K,(y”, y’; T) = $ {I 
(15) 

K(x”, x’, y”, y’; T) eik(-r”-zr” d.x”. 
cc 

Inserting (12) into (15) gives for K,(T) 

K&Y”, Y’; T) = & 

=::qexp[ -$(b’+$)l J?(q”,q’; T), (16) 

where we have performed the non-linear transformation q=ln y, accompanied by 
a carefully Taylor expansion in the kinetic term in the action, i.e., 

(17) 

Here use has been made of the identity d4q(j) 4 3(&/m)’ (e.g., [9]). We use the 
symbol G (following Dewitt [6]) to denote “equivalence as far as use in the path 
integral is concerned.” 

K”“(T) in Eq. (t6) describes the path integral problem for the Morse potential: 

P(q) = ; (e24-2feq) (qER). 

Without loss of generality let us assume that b> 0. For k= 0, KM(T) describes a 
free particle. For k ~0 we have the Morse potential problem with only scattering 
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states, whereas for k > 0 bound and scattering states are allowed. Thus we can state 
that K(T) splits off in two parts with k > 0 and k -C 0 with bound and scattering and 
only scattering states, respectively (b, bound state; c, continuous-state contribu- 
tion): 

K(z”, z’; T)=j= Kk(y”,y’; T)e-‘k’““-.V’)& 
--r 

s 

35 
= K,b(,f, f; T)  ,-i&W-\-‘) & 

0 

In order to make the path integral (16) manageable we perform a 
formation (see [ 141) 

q = F(r) = 2 In r 

HO’ da, s” = s( t”), s( t’) = 0, 

(19) 

space-time trans- 

(20) 

with f(q) = 4eeY such that F’(r) =S(F(r)). We have q” = 2 In r(s”) 5 2 In r” and 
q’ = 2 In r(0) = 2 In r’. Let us assume that the constraint 

4 j;“e-4”‘& T 

has for all admissible paths a unique solution s” > 0. Of course, since T is fixed, the 
“time” s” will be path-dependent. To incorporate the constraint (21) we use the 
identity 

1 =f[F(r”)] jm ds”6 ( jimf[F(r(s))] ds - T) 
0 

=f[F(r”)] s EC’, jr ds” exp (iE ji’fCF(r(s))] ds). (221 

This technique of space-time transformations in path integrals has been introduced 
by Duru and Kleinert [S]. Further discussions are due to Steiner [26], Grosche 
and Steiner [14], Inomata [18], and Kleinert [19]. The important fact is, as 
discussed in [ 14,221, that in this procedure a well-defined quantum correction A V 
arises in the space-time transformed path integral which is due to the non-linearity 
of the transformation and is given by 

dY(r)=&[3($$)2-2$$f]= -&. (23) 
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Thus we arrive at the space-time transformed path integral, 

P’(q”, q’; T) = &, 1; ciTEGM(q”, q’; E) dE, 
cc 

where GM(E) is defined by 

117 

(24) 

(25) 

Finally R”‘(s”) is given by 

where pA- is given by [ 14, 24,271 

We now use the identity 

(28) 

with the functional measure [14] pl[r] = lim,,, pl[rci)]. We set 1= -i,,hmE 
and o = 2k/m. In order to work with well-defined mathematical formulas we shall 
assume that E has a small positive imaginary part i.s and write E+ iE (with real E) 
instead of E whenever necessary. Also, square roots will be positive. We get for the 
radial path integral R”“(Y) with generalised angular momentum A 

K”[rr’, r’; f) = 2k ,,I%’ 4kb 2k 

i sin (( 2k/m) s”) exp ’ 
‘-s”+iJkl(r’2+r”2)cot -s” 

m ( )I m 

xl-iJGE (29) 
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We insert Eq. (29) into (25) and get 

2k 
i[kI(r”+r”‘)cot -.s” ( )I m 

ds” 

(substitution u = (2ik/m) S” and Wick-rotation) 

=2m 
s om & exp [ - 1 kl(r’2 + r”‘) coth u] z-jr 8mE(2;;;;)du 

(substitution sinh v = l/sinh U, r2 = e4) 

= 2m m coth2’ ” 
s 0 

2 exp [ - ( k ( (e”’ + e”“) cash v] I-i5E(2 ) k ( eCq’ + q”“2 sinh u) du. 

(30) 

We have taken in Eq. (29) in the exponential and in the argument of the Bessel 
function the absolute value of k in order that the integral in (30) remain finite and 
the Bessel function single valued. We continue with the integral representation 
([3, p. 86; 10, p. 7291, a, >u2, Re(i+p- v)>O, Re p>O) 

- - t cash x 
0 

coth2’ 5 exp 
2 1 12J t G2 sinh x) dx 

r(1/2 + p - v) 

=rJa,a,r(l+2,u) 
W”, ,(a1 t) M”,JU2 t). (31) 

The W,, ~ and M, ~ are Whittaker functions which are defined by ([ 10, p. 10593) 

W”.,(Z) = $$!,) K,,(z) + $f;- v) M”. -Jzh (32) 

and the M,,, are given by M, Jz) = zP + 1’2e-z’2 IP,(p - v + i; 2~ + 1; z). The W,, ,+ 
have the special property WV, --Ir = WV, ,,. Therefore we get for GM(E) (we assume 
without loss of generality q” > q’) 

G”(q”, q’; E) = 
mT(1/2-i~2mE-b)e-~q.Cq.~,,2 

Ikl r(l-2i@) 

x wb, i,/5d2 1 k 1 e”“) Mb, -iJi;;;E(2 I k I e”‘). (33) 

Equation (33) shows that for i - i m- b = 0, - 1, -2, . . . . poles occur in 
GM(E) and that for E > 0 we have a cut in the complex energy plane (Re p > 0 
violated in (31)). For b -+ 0 we can reproduce with the formulas 
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MO, p(z) = 2*wJ + 1) Jz4M2) and W,,,,(z) = fi K,(z/2) ([ 10, p. 10621) and 
the doubling formula for the Z-function the Green’s function CL(E) for Liouville 
quantum mechanics with the potential VL(q) = (k2/2m) e2q [ 151: 

GL(q”, q’; E) = 2mZZi~E( ( k ( eq’) Ki,/&) k 1 eqm). (34) 

With Eq. (24) and the theory of Fourier transformation we see that the Green’s 
functon G(E) for quantum motion on U with a magnetic field is now given by 
(p :=J2mE-b*- l/4) 

G(z”, z’; E) 

-my 
2n --oo 

& ,-ik(x”-x’) G M eln y” 
,e 

h ,“; E b2 :,‘I4 

mT(1/2-b-ip) a dk =- 
n f(l-2ip I o T cos k(x” -x’) W,, J2ky’) Mb, J2ky”) 

m r(1/2+b-ip)IJ1/2-b-ip) 

=5T f(l-2ip) 

x exp 
[ 

-2ib arctan (s)](cosh$-2b 

*(b-11/2+@) 

*FL 

where the last step is discussed in Appendix A and d is given by Eq. (1). With the 
representation ([21, p. 1611) 

l+v+p, 1+v;2+2& 

where Q,: is a Legendre function of the second kind, we find that for b + 0 the result 
of [15], i.e., free quantum motion on U, is reproduced (Gb’“(E) E GU(E)): 

GU(z”, z’; E) = F Q-j~w- 1,2 (cash d). (37) 

Thus we see that we get by solving the path integral (16) simultaneously the 
Green’s functions (resolvent kernels) for the Morse potential and for the quantum 
motion on U with a magnetic field, satisfying the special cases (34) and (37) for 
b = 0. 
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III. THE SPECTRUM 

1. The Discrete Spectrum 

We first consider Eq. (11.30) for k > 0 and the discrete spectrum. Due to the 
r-function in GM(E) in Eq. (11.34) we see that poles occur for 
E= E, = -(26 -2n - 1)2/8m (and similarly in G(E) in Eq. (35)). In order to 
expand (11.30) into the spectral expansion we use the Hille-Hardy formula ([21, 
p. 2421, Re(l) > 0): 

t-"/2 - -yiL&(?@) 
1 -texp 

[ 

=$, tyyy 
(xy)"'2 L$J(x) Ly'(y). (1) 

Here Ly’ denote Laguerre polynomials which are defined by [21, pp. 240, 241; 10, 
p. 10633 

d” L’“‘(x)=le’x~‘-(e~“x”+“)= T(n+/Z+ 1) 
n n.! dx” n!T(A + 1) 

J,(-42+1,x) 

= (- 1)” X-(‘+ IV2 eX’2 W,+ (A+ I)/*, j./l(X). 

We set 3L = - im, x = 2kr12, y = 2kY2, and t = e-4iks’lm. Equation (1) applied to 
Eq. (11.30) gives for GM(E) 

G’+‘(q”, 4’; E) 

a n!(4k2eY’+ q”)a/2 
=4m C 

n=O T(n+A+ 1) 
Ll;i’(‘&Y’) LI;1’(2keY”) e-k’fl’+d 

s Ix‘ 
x e -u(Zn+ 1 +i.-2h) du 

0 

Xexp[(y’fq”) (b-n-i)-k(.“+eq”j] 

x Lf2’ - 2n - “( 2ke4’) LL2b ~ 241 - ’ )(2keq”) + regular terms, n (3) 

where we have taken at the n th term the residuum at the pole 
E, = - (2b - 2n - 1 )2/8m. The Hille-Hardy equation (1) gives an infinite set of 
wavefunctions !P” corresponding to the levels E,. But we must check whether these 
wavefunctions satisfy the boundary conditions for q -+ + UJ; i.e., we must have 
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YJq)-+O (q-* +oo). For q -+ + 00 we see at once that the dominant contribution 
vanishes like Y,(q) N e-keu. For q -+ -cc we have 

YJq) zexp [ - lq\(b-n-i)] L~2b-2n-1’(0). (4) 

Because the polynomial remains finite we must impose the restriction that only 
wavefunctions Y, with n <N,,, are allowed, where NMax denotes the greatest 
integer n E N with it < b - i. This condition gives a finite number of energy levels 
E, -C E, < . . . < ENMax < 0, i.e., 

E,= -+-J2b-2n-1)2 (n = 0, . . . . Nt.tax.1 (5) 

which are the bound-state energy levels of the Morse potential V”. Thus it is guaran- 
teed that A = -im= ,,/?!i> 0 and therefore that I,(z) in Eq. (11.29) is 
bounded for r’, r” --* 0 [Z,(z) = (2/2)“/r(J. + 1) (z + 0), [l, p. 11911. Physically 
the condition E < 0 for the validity of Eq. (1) means that the potential 
V(r) = - (8mE + $)/2mu* must not become too strong, otherwise the particle would 
fall into the center (see, e.g., [20, pp. 1131). The corresponding bound-state 
,vavefunctions to the energy spectrum (4) read 

Let us express VM as V”“(q) = V,(e2Y - 2cteY) with V,= k2/2m and CI = b/k; the 
energy levels expressed in these parameters read 

E,= -& (2a~o-2n- I)’ n = 0, . . . . NMax -c a &%-g. (7) 

Equation (3) inserted into (11.24) and performing the Fourier transformation 
gives the discrete spectrum contribution to the Feynman kernel for the Morse poten- 
tial: 

K”(q~~,q~;~)~N~(Zh-2n~~~bn~~)2b~2fl-’exp ..$b&l)” 
IIS0 [ 1 
xexp[(q’+q”) (b-n-i)-k(rU’+eV”)] 

x L(2b ~ 2n - 1 ‘(2keY’) t;*b ~ 2n- “(2keY”). 
n (8) 

The terms for n > NMax in the sum are omitted following the discussion after 
Eq. (3). This shows a serious limitation in applying the Hille-Hardy formula. But 
this is not astonishing because expanding Eq. (30) with the help of Eq. (1) does not 
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produce the complete spectrum of our problem: The continuous part is missing. 
What is needed is an expansion which gives simultaneously a sum and an integral. 

Equation (8) inserted into (11.16) gives together with eY=y finally the bound-state 
contribution to the Feynman kernel for the Poincare upper half-plane with a magnetic 
field: 

Kb(x”, x’, y”, y’; T) 

x ,-ik(r”--X’) e-k(.v’+.v”l 4k2 ,’ ” b n 
( JYr 

x L$b-2”-“(2ky’) ,y2n--)(2ky”). (9) 

Wavefunctions and energy spectrum are thus given by 

E,=&[b’+a-(b-n-:)2] 

yn, k(X, y) = /E eCikxe-ky(2ky)b-n LL2b-2n-1)(2ky) (10) 

=~~;(-l)ne-ik.~~b,b-~-1,2(2ky) 

(n = 0, . . . . NMvlax, k > 0). The !PU, k are orthonormal, 

7 yn, ktX, Y) y:, k’b, y) = 6(k - k’) 8,. n’, (11) 

due to the properties of the Laguerre polynomials and the Whittaker functions 

n!A m 
I 

--)’ 
T(n+A+l) 0 e ‘y 

“-‘L;“(y) L$(y) dy 

n!i 
i 

Ori 1 

=T(n+A+l) 0 
- K+(i+1j,2,n,z(~) Wm+(1+,),2.1,2(~)dy=6n.m. (12) y2 

This shows also the orthonormality of the functions (6) (for a proof of Eq. (12) see 
the next subsection). The result coincides, of course, with Refs. [4, 51. For b + 0, 
Yf and !Pnq k vanish identically. 

2. The Continuous Spectrum 

In order to discuss the continuous spectrum we start again with Eq. (11.30). The 
main step is to insert the dispersion relation 

I IJ3 Pz-*iptz) 
-mp2-2mE 

dp = ilrl- i&E(Z) (E>O) 
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which is proved in Appendix B. Inserting this relation into (11.30) gives 

G”( q”, q’; E) = 2m lam (coth ,)” 

=:I; du (coth;)2b 

Xe-Ikl(eq’+e+xh” 

I 
O3 dp 

pZL,,(2 1 k ( ety’+ 4”)‘2 sinh u) 

--13c p2 - 2mE 

1 ‘*I 
=27120 s 4 psinh 27~~ IT(ip-b+ 1/2)12 

p2J2m - E Ikl 

x~-(Y’+Y”‘/~W~,~J~ 1 kl e”‘) W,,,(2 Ik( eq”). (14) 

In the last step we have used the integral representation [3, p. 85; 10, p. 7291 

W, ,,2@) W, ,,,(W = 

2&r 

r((l +P)P-x)Q(l -PP-1) 

s 00 
X 

0 
e-(1’2)(u~b)‘coshvKL(f~sinho) 

The representation (14) shows clearly that GM(E) has a cut on the real positive axis 
in the complex energy plane with a branch point at E = 0. Inserting Eq. (14) into 
(11.24) and performing the Fourier transformation give the continuous-state 
contribution to the Feynman kernel of the Morse potential: 

P(q”, q’; T) =--A-- lrn 
2z2(kl o 

dpexp( -ig T) 

xpsinhlrcpl~(ip--h+f)12 

x e-(q’+4M)‘2wb,ip(2 ) k) eY’) Wb. iP(2 ) k) e”“). 
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Thus the energy spectrum and the normalized wavefunctions read (p > 0) 

Insertion of (16) into (11.15) gives with y=eY the continuous-state contribution to 
the Feynman kernel of the PoincarP upper half-plane with a magnetic field: 

~“(x”, x’, y”, y’; T) = Jm dkJ0mdpexp[-g(b2+p2+a)1 

x7’;;;: iI+-b+;)i’ 

x W,,,(2lkj y’) W,,,(2)k) y”) e-ik(X”-x’). (18) 

The energy spectrum and the normalized wavefunctions read (p > 0) 

This result coincides, of course, with Refs. [4, 51. The Yp,k are orthonormal, 

J:, J dx oo dv 
--T yp. /c(x, Y) y$. &, y) = S(p -p’) 6(k - k’). 

0 Y 
(20) 

In the limit b + 0 we see that the spectrum E,” = ( l/2m)(p2 + l/4) of the free motion 
on the Poincart upper half-plane U is reproduced. With the property of the Whit- 
taker functions W,,,(z) = &K,( ) z we get the corresponding wavefunctions for 
Liouville quantum mechanics Yt( y) = (l/n) ds &,,(I k 1 y) and for the free 

motion on U, Yi,(x, y) = Jpw & e-ikxKip( 1 k I y), respectively [ 151. 
Note that for p +O we have Ep + ( 1/2m)(b2 + l/4). This non-vanishing zero- 

point” energy is a pure quantum phenomenon, which can be explained by the 
Heisenberg uncertainty relation. We consider the classical Hamiltonian (11.2) and 
insert (introducing ti) the Heisenberg uncertainty relations xp, > k/2 and yp, 3 h/2. 
This gives for the energy of quantum motion on U the lower bound 
E 3 (h2/2m)( l/4 + b2 + 4yz/xz + 2by/x) > (h2/2m)(bZ + l/4). The value E,, = inf,E = 
(h2/2m)(b2 + l/4) can never be taken on because {z) y = 0} # U. E, is the largest 
lower bound on U. Equation (19) also offers a picturesque view for the additional 
l/4 in E,” = (1/2m)(p* + l/4) l-291: The energy of a quantum mechanical particle on 
U “behaves” like the classical energy plus an additional magnetic term b = $. 
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Proof of the Orthonormality Relation (20). We consider the left hand side of 
Eq. (20) and insert the functions (19). The x-integration can be easily performed 
giving 

(21) 

where we have changed variables 2 1 kl y -+ u. The remaining integral can be 
evaluated with the help of [ 10, p. 8581 

s 
00 

0 
xp - ’ W,, /Ax) WA, v(x) dx 

r(l+~+v++p)r(l-~+v++p)~(-2v) = 
r(1/2-A-v)r(3/2-rc+v+p) 

l+g+v+p,l--y+v+++v;1+2++v+p;1 
> 

1 +p-,,+,,, 1 -p-V+p,;-i-v; l-24-h.-v+p;1 (22) 

We set p = E - 1, k = A = b, p = ip, v = ip’ and get 

S= lim 
I 

‘x 
du 

e-0 0 
2--E wb, ipt”) wb, tp’(‘) 
u 

I-(22$) r( -24’) 

=r(1/2-b-ip)r(1/2-b+ip’) 

xjiFo {r[c+i(p-p’)l+rCE-ii(p-p’)l} 

= 27l 
r(2ip) 2 

r(1/2-b+ip) d(P-P’). (23) 

In the calculation we have used that in the limit E + 0 the function 3F2 changes into 
,F,, which can be evaluated at z = 1 with the help of [ 10, p. 10421 
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*Fl(a, b; c; 1) = 
T(c)T(c-a-b)+ 1 
r(c - a) T(c - 6) (E--rO) (24) 

for c = 1 + 2ip’, a = E + ip + @‘, and b = E + ip’ - ip. Combining (21) and (23) gives 
Eq. (20) and the orthonormality relation is proven. Of course, the proof of the 
orthonormality of the functions Y p,k gives simultaneously the proof of the 
orthonormality of the functions YF. From the representation (lo), where the 
wavefunctions of the discrete spectrum are expressed by Whittaker functions, the 
orthonormality relations (12) are deduced in a similar manner and we see 
immediately that the Y,,, k (YF) are orthonormal to the Yp, k (YF). 

IV. SUMMARY 

In this paper we have presented complete path integral treatments for the Poin- 
care upper half-plane with a magnetic field and for the Morse potential. We started 
with the path integral on the Poincart upper half-plane with a magnetic field for- 
mulated in the product form definition, a prescription which we have discussed in 
detail in a former publication. By a Fourier expansion and the non-linear transfor- 
mation y = eq ,this path integral problem could be reduced to the path integral for 
the Morse potential. Thus the solution of the path integral for the’Morse potential 
gives simultaneously the path integral on U with a magnetic field. The former path 
integral was then manageable by a space-time transformation yielding the path 
integral of a radial harmonic oscillator with general angular momentum, a well- 
known and solved problem. Therefore we could state in closed form the Green’s 
functions for the Morse potential, 

G”‘(q”, q’; E) = 
mr( l/2 - i J2mE - b) 

Jkl r(l-2iJ2mE) 

x e-(q’+q”)‘2 W,, izE(2 (k( e”“) Mb+ -izE(2) k I .zq’), (1) 

and for the Poincare upper half-plane with a managnetic field 
(p := $zzFK& 

m r(1/2+b-ip)r(l/2-b-ip) 
G(z”, z’; E) = G 

r(l-2ip) 

x exp 

x 2F1 i-b-ip,t-b-ip; 1-2ip; 
2 

> l-cash d ’ (2) 
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For b --t 0 we got the correct results for the Green’s functions for Liouville quantum 
mechanics, CL(E), and for the free motion on U, GU(E), respectively. Further 
analysis yields the discrete and continuous spectra for these two problems. For 
the Morse potential we got the energy spectrum and normalized wavefunctions 
(discrete part, n = 0, 1,2, . . . . Nlvlax, k > 0), 

and (p > 0, k E R, continuous part) 

E& 

(4) 

The Feynman kernel was given by 

~%“, 4’; T) 

= 3; (2b -  2n ; ; ;bn! : )2b -  2n -  ’ exp [  2 (26 _ zn _ ,  )‘] 

nexp[(q’+q”) (b-rrf)-k(e”+e”‘)] 

x L’Zb- 2n- l’(2key’) LC+2b- 2n- 1’(&4”) 
n 

x e-(” + Y”)‘2Wb, ip(2 1 k 1 e”‘) wb, ip(2 ) k) e”“). (5) 

The energy spectrum and the normalized wavefunctions for the quantum motion on 
the Poincart upper half-plane with a magnetic field were given by (discrete part 
n = 0, . . . . NMax, k > 0) 

595/187/l-9 
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and (continuous part, p > 0, k E R) 

The Feynman kernel was given by 

Ik 

xe- ik(.r” - x’) e-k(.~‘+.~“)(4k2y’~“)b-” 

x ~;2h- 2n- “(2ky’) ,$2-n- “(2ky”) 

+jImdkjomdpexp[-E(b2+p2+i)] 

x p sinh 2np 

491~ Ikl 
Ir(ip--h+i)i’ Wb,ip(2 lkl Y’) 

x W,,,(2 (kly”)e-ik(x”-x’). (8) 

For b -+O the wavefunctions and Feynman kernels for Liouville quantum 
mechanics and for the free motion on U were reproduced, respectively. 

We have also shown the orthonormality of the wavefunctions Yp, k and YF of the 
continuous spectrum. The orthonormahty of the wavefunctions of the discrete 
spectrum is due to the orthonormality of the Laguerre polynomials, whereas the 
orthonormality between the wavefunctions of the continuous and discrete parts of 
the spectrum follows from the property of the Laguerre polyomials that they can 
be rewritten in terms of Whittaker functions. 

As in our paper [13], the connection with a potential problem in flat space and 
quantum motion in a Riemannian space is quite reasonable and is due to the 
symmetry properties of the space U (endowed with the hyperbolic metric). This 
symmetry is “hidden” in the potential problem. 

We saw that the “zero-point” energy E, = (1/2m)(b2 + l/4) is a pure quantum 
phenomenon which can be explained by the Heisenberg uncertainty relation. 

For the supersymmetric extension of the Poincare upper half-plane, the “Super”- 
Poincare upper half-plane, the Feynman kernel can also be calculated [31, 321. 

We thus have added two further examples to the short list of exactly solvable 
path integrals. The examples demonstrate once more the consistency as well the 
universal utility and feasibility of the Feynman path integral. 
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APPENDIX A: DISCUSSION OF THE INTEGRAL (11.35) 

129 

We want to study the integral (p := J2mE- b2 - a) 

R(z”, z’; E) = J;L $ cos k(x” - x’) w,, ,(2ky”) Mb, -,(2k.Y’), (Al) 

which is part of the Green’s function (resolvent-kernel) 

mf(1/2-b-ip) 
G(z”, z’, E) = - 

71 f(l-24) 
R(z”, z’; E). 642) 

At first sight R(E) is a rather complicated integral, which can be expressed by a 
cumbersome combination [lo, p. 8621 of the functions Fz(cl, /I, /I’, y, y’; x, v) 
[ 10, p. 10531 and where further simplification is not obvious. But this problem can 
be circumvented by the work of Patterson [23 J and Comtet [4]. Let us write down 
the Green’s function G(E) in the spectral display. According to Section III we have 

G(z”, z’; E) = Gb(z”, z’; E) + GC(z”, z’; E), tA3) 

where Gb(E) and G”(E) denote the bound and continuous parts of G(E), respec- 
tively. In particular 

Gb(z”, z’; E) = Jbo* dk *f. +E u/,. Jx”, y”) !P:, ,Jx’, y’) 
” 

G%“, z’; E) = [_“, dk lam dp hE YP, Jx”, y”) Iv,, ,Jx’, y’) 
P- 

(A4) 

with E,, Y,,k, E,, and Yp,k g iven in (111.10) and (111.19), respectively. The 
k-integrations can be performed giving (for details see [4]) 

(-1)” Gb(ZIt, z’; E) = y r e-W - (2b-2n- l)f(2b-n) 

n-0 7w! r(26-2n)[(b-n)(l-b+n)-(p*+ l/4)] 

x(cosh~)21b-~‘iFI(2h-n, -n;26-2n;coshp2;), (A5) 

GC(z”,z’;~)=~~-ibr~“2+ir ds (2s - 1) sin 27~s 
l/2 - ice sin z(s - b) sin n(s + b) s( 1 -s) - (p* + l/4) 

n(cosh;)2ir-1i2FI (l-s+& l-s-b; l;coth*;),’ (A6) 
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where 4 = 2 arctan (x’ - x”)/(y’ +v”) and d is given by (II. 1). According to [4, 231, 
Eqs. (A5) and (A6) can be added yielding 

G(z”, z’; E) = z e-ib@ f(1/2+b-ip)r(1/2-b-ip) 
f( 1 - 2ip) 

x(cosh;)-11-2ip’ (2 ZF, !+b-i&i-b-@; l-2ip;cmh-2t 

(A7) 

Comparing Eqs. (A2) and (A7) together with the transformation properties of the 
hypergeometric function ([21, p. 471, *F,(a, b; c; z) = (z - l)-b zF,(c - a, b; c; 
z/z - 1)) gives finally 

R(z”, z’; E) = e 2 ~~(f+b_lp)(cosh~)-2b(sinh~~‘b~“2tip’ 

x 2F1 f-b-ip,k-b-ip; 1 -2ip; 
2 

1 -cash d > 
(As) 

and Eq. (11.35) is established. 

APPENDIX B: PROOF OF THE DISPERSION RELATION (111.13) 

We consider the complex contour integral (let E, A > 0) 

if 
ZZ-2iz(A) 

c z2 _ 2mE dz = 2ni Res (Bl) 

where its value is given by the residuum theorem. For the poles in the complex 
plane we choose the convention E + E+ ic, 0 <E < 1, such that the poles of the 
integrant of the integral (Bl) are located at z, = @+ i6, z2 = -@-- i6 
(0 < 6 = b(e) G 1). We take for C the closed contour 

c: 
z=p, PEC-RR1 
z = Re’@, 4E (0, n) 

W) 

and consider the limit R + 00. If we can show that the integral over the semi-circle 
vanishes, we get 

m Pz-*iptn) s- rp2- 2mE 4 = k- i+ztA) (B3) 
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which is the integral we need. For the integral over the semi-circle we get for R 
finite 

With the asymptotic expansion of the modified Bessel functions [l, 
large order 

z,(vz) N (1 +z2)-1’4 

[ 

z 

Js;;; 
exp v JG-7 + v In 1 l+JiS ’ 

we see that the main contribution comes from the factor e”‘” ‘. Inserting 
terms, we get 

r- 

p. 1221 for 

WI 

the relevant 

I zsemi-circle I G Ja e - 
2Rsin((lnZR~Ini)+?OR_)O Cd E (0, n), R + ~0 1. 036) 

Thus we see that the integral (B4) vanishes in the limit R + cc and therefore 
Eq. (B3) is proved. 

APPENDIX C: DERIVATION OF THE SCHR~DINGER 

EQUATION FROM EQ. (11.12) 

We want to prove that with the short time kernel of Eq. (II.12), 

K((.z:E)=(&)exp[$(C-X)2y~(4-).)2-~~~], (cl) 

and the time evolution equation, 

!Z’(x’,y’; t’)=j_:, d,im 2 KW, x, y’, y; t’ - t) w, ,v; t), 
0 Y 

((3) 

the Schrodinger equation can be deduced: 

1 _ 2ivb aul(i, 0 
T+b2Wi, t). (C3) 

(We have used the abbreviations z = z, jj, I; = z,~ + 1j, with z = x + iy, [ = 5 + iv, 
x=x(j)9 tEx(j+l), Y=Y(j)Y and q = y ( j + 1 ). ) One must perform a Taylor expansion 
in (C2). We get ([, = 4, i2 = q) 
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with 

Here 

(C5) 

((3) 

denotes the Lagrangian on the lattice and terms of O(E’) have been neglected. We 
shall only calculate the integrals B, and B, . The remaining integrals are similar. We 
get 

(CT) 
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In the last step we have used the integral [lo, p.3401 

VI-2 
X v-1 e -P/.x ~ Y-r dx = 2 

and the expression K, 1,2(z) = a e-‘. I n order to calculate B, we consider 
B, = (B, - BB,. We get 

cb 
= -mve 

~I.Ch2i2~(~)1f2~o~y-1exp( -&y-~~)dy 

emlic- i~b’/2~Ko(m/i,c) N _ z $ q. 

Here we have used in the u-integration the integral [ 10, p. 337, n > 0] 

m  1 
x”e ~ Px2 t- 2Y.x dx = __ 

7~ d”-’ 

J 
- - 

29 pdq”-’ (qe 
2iP 

11 
-cc 

(ClO) 

and in the last step Eq. (C8) and the asymptotic expansion for the modified Bessel 
functions K, [lo, p.9631: K,(z)-@exp[-z+(v’-1/4)/2z] ((z]-+co, 
larg(z)( <3x/2). Inserting the expressions (CS) in (C4) yields the SchrGdinger 
equation (C3). 
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