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The canonical quantization of vector and chiral nonabelian gauge theories is performed, using the bosonization procedure. The 
gauge current commutators are computed and a close relation between the vector and chiral interacting gauge theories is shown 
to exist for a particular value of the regularization dependent parameter a. 

After the work of  Jackiw and Rajaraman [ 1 ], where two-dimensional chiral electrodynamics was proved to 
be a consistent, unitary although non gauge invariant theory, there has been renewed interest in anomalous 
gauge theories. Such an interest has grown after the proposal [2] of  Faddeev and Shatashvili of  modifying the 
canonical quantization by adding new fields in the fundamental  representation of  the gauge group. If  a Wess- 
Zumino action is chosen for these fields, the resulting theory becomes both equivalent to the chiral one and 
gauge invariant. Recently it was shown that within the path integral quantization procedure [ 3 ], the anomaly is 
absorbed while the group of  gauge transformations appears as a new dynamical field not present at the classical 
level. The resulting Wess-Zumino action arises naturally and does not need to be introduced in an ad hoc man- 
ner. The original chiral theory may be seen as a particular gauge fixing condition, the so called unitary gauge, in 
this framework [4 ]. 

In this letter we analyse the canonical quantization of  the vector and chiral gauge theories, using the formalism 
developed in ref. [ 5 ]. We consider theories with a field transforming in the fundamental representation o f U  (N) 
and whose actions includes a Wess-Zumino term. For simplicity, let us consider the nonlinear sigma model, 
with action 

 (ff ) S ( g ) = ~  d 2 x T r ( O ~ g - ~ O ~ g )  - Tr dr dZxe~'~g0ug-'O~g - '  , (1) 

where the second term in eq. ( 1 ) is the Wess-Zumino term, that is linear in the time derivatives and can always 
be rewritten as 

S w z =  f d 2 x T r ( A ( g ) O o g )  • (2) 

An important observation made in ref. [5] is that A ( g )  does not need to be specified. Only its variations are 
important  in the canonical quantization of  the theory. More specifically, the tensor 

Fijk/ = aAij/  aglk -- OAk1~ agji , ( 3 ) 

is the only relevant quantity for the canonical procedure. This last expression can be easily calculated from 
variations of  Swz, yielding the result 

F~i~ I = ( a l g y ~ ) g ~  1 - g , 7  ~ ( O~g~ ~ ) . (4) 

Now, the momenta  conjugate to gij may be calculated from eqs. ( 1 ) and (2) 
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xij = Oogj71/4~ +Ajff4rr. (5) 

I f  the hamil tonian is expressed in terms ofgij and x~j, A~j will explicitly appear  in this expression. Alternatively, 
new m o m e n t a  may  be defined 

l~ij = ~ij --Aji/41r ( 6 ) 

and now the hamil tonian will not depend explicitly on the Wess -Zumino  term. It follows f rom the Poisson 
brackets of  g0 that  

{gij(X), ~,~'/(Y)}, =6ikajl6( xl  - -Y ' )  , {~ij(X), ~kl(Y)}t ~- --Fji[k~( xl  --J 21 )/47~ , (7 ,8)  

while the Poisson brackets o f  g~71 (g)  may  be obtained from eq. (7)  using the property ~ ( g -  lg) = 0 [ 5 ]. In 
principle, eqs. (7) ,  (8)  are not restricted to a particular selection of  the phase space, and it seems that  to apply 
the formalism explained above, we have to introduce additional constraints. However,  this is not necessary since 
all quantities of  physical interest depend on the hermit ian operators  (iTrVg)ij and (ig~T)~j that  generate infini- 
tesimal t ransformat ions  of  gij and g~7 ~ tangent to the phase space and then their Poisson brackets with the 
additional constraints vanish ~l. Instead of  continuing the canonical quantizat ion of  the nonlinear model, we 
will apply this procedure to quantize bosonized vector  gauge theories. We will be able to obtain the free case as 
the limit of  vanishing gauge fields of  the interacting theory. 

The general method of  quantizat ion explained above relies on the bosonizat ion procedure [ 7 ]. Starting with 
the fermionic theory, a bosonic theory with the same set of  symmetr ies  at the quantum level [ 8 ], and the same 
effective action for the gauge fields may  be found while gauging a subgroup of  the global U (N) X U (N) classical 
symmetry  of  the fermionic free theory [9].  In particular, if  we gauge the vector U (N)  symmetry  we obtain the 
following bosonized theory [ 9 ] : 

I ¼ 1 I S = S ( g ) -  d 2 x T r ( F  ~F~) + ~  d2xTr (_ i eA+gO_g_~_ ieA_g_ lO+g_e2A+gA_g  ~+e2A+A_ ) ,  

(9) 

where for a general vector  we define x+ =Xo+X~ and S(g)  in the above is given in eq. ( 1 ). The equation of  
mot ion forAu can be easily obtained f rom here. It reads 

~, ,F"~+eJ"=O,  (10) 

where J~, is the gauge current given as 

Jo = ( - igO g-1 - ig-~ O+g-egA_g-1 - e g - ~ A + g +  e2Ao) /4~ ,  

J~ = (igO_g-1 - i g - i O + g + e g A _ g  - ~ - eg-~A+ g+e2Ao) /4~ .  ( 11 ) 

It follows f rom eq. (10) that it is covariantly conserved. The m o m e n t a  conjugate to the fields are easily com- 
puted. We find 

~ j =  [0ogj7 j +ie(g-~A+) j~- ie (A_g-~) j , ] /47 t ,  7r~=~o~'=0, ~z~ = F ~  , (12,13,14) 

and the hamil tonian reads 

H =  d x[~lr~lr~--Ao(~lg~ )~ + A~+ ( iegfrV-- iegOlg- l / 4~r ) ~ 

+A"_ ( --ie?rTg+ieg - '  Olg/4g)~+eZ(A~)2/2~r+ Tr(  - 2g(~Tg2Vg) + O,gO,g-l /8~r)+ 2~O~] . (15) 

~ For a related and more detailed discussion, for the group SU(N), see ref. [6]. 
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Following the general Dirac procedure [ 10 ], eq. ( 13 ) is a set of primary constraints in the theory and their time 
evolution should weakly vanish, for the consistent quantization of the theory, and 2</ are the undetermined 
Lagrange multipliers. Then, the additional condition 

{ng, H } = 0 ,  (16) 

must be satisfied. A secondary constraint appears 

o9~ = (~17t~ )a_ ( iegfcX_ieg~,g-~/@r)a_ (_ i e f rTg+ieg- ,  O~g/4ze)~= 0.  (17) 

However, due to the weak cancelation of its Poisson bracket with the hamiltonian, no additional constraint 
appears. Furthermore, the constraint structure is of first class, that is to say 

{o)~(x), o92 a (y) } = ef,~,coo~ ( x ) g ( x '  - y~  ) ,  ( 18 ) 

while the other Poisson brackets vanish identically. ~o~ is the Gauss law constraint, and it must be imposed over 
physical states in order to obtain a gauge invariant quantum theory. The canonical commutators may then be 
obtained from the Poisson brackets by the usual substitution, [A, B] -,i{A, B}, due to the constraint algebra. 
The gauge current commutators can be obtained easily while expressing ( 11 ) in terms of the conjugate momenta 
to the fields 

J~= (-ig2V+igOlg ~/4~r)~+ ( i~Vg- ig  'O,g/4zc) a , (19) 

J~ = - ( - i g~X  +igO~g-' /4g)~+ (i2Vg--ig-lO~g/4zc)a+eAT/rc. (20) 

The resulting equal time current algebra is 

[Jg, Job], =i£~,<Jg(x)6(x ~ - y ~ ) ,  [Jg(x) ,  J~'(y)], =i£b~J' i (x)8(x '  _ya )  + i ~ , b ( x  ~ _ y ,  ) / n ,  (21,22) 

[J~'(x), J{'(y)],  =i f , , ,< .J~(x)a(x ' -y ' )  , (23) 

or, defining J+ = (Jo -t- Ji ) /2,  

[J~ (x),  J~'+ (y)] ,  =i f ,  be J<2 ( x ) a ( x  ~ - y ' )  + i~?ba(x  ' - y '  )/2re, [J5 (x),  j~2 (y)]  = 0 .  (24,25) 

No Schwinger term appears in eq. (21 ) as is necessary in any consistent theory and the algebra differs from a 
Kac-Moody algebra only in the appearance of covariant derivatives. One can now easily check that the hamil- 
tonian of the theory can be given as 

/ ¢ = j  2 a o . . . . d x[rc~ rr~/2-Aom2 +lr(J+J+ +ja j~_  ) + , ~  +J.~o)~] , (26) 

that reduces to the Sugawara form in the case of vanishing gauge fields and coupling constant e, and is positive 
when acting over physical states. Finally, the transformation laws of the gauge currents are obtained 

[o9~ (x), Job(y) ] =iefabcJ~(x)(~(x I _ y l  ), [(D~(x), J] ' (y) ] =ief,~,<.J~l ' (x)~(x  1 - y ' )  . (27) 

Eqs. (21 ) - (23  ) give us information only while acting over physical states, that is to say those cancelled by the 
first class constraints. However, the Schwinger terms will be preserved in the vacuum expectation value of the 
current commutators since they are c-numbers. The same Schwinger terms appear in the gauge current algebra 
of the fermionic theory [ 11 ] as expected from the bosonization procedure we applied [9]. 

The chiral gauge theory is obtained by gauging only the left-handed global classical symmetry of the fermionic 
free theory. Recently, great effort has been made in understanding its properties [ 12,13 ], and the abelian theory 
has been solved [ 12,13 ]. However, the analysis of the nonabelian case is far from being completed. The boson- 
ization procedure has been applied to quantize the theory in the original approach of ref. [ 1 ], both in the abelian 
and nonabelian case [ 14,15,5]. The canonical quantization of the gauge invariant formulation has been given 
only in the abelian case [4 ], and we intend to generalize it to the nonabelian case. The bosonized action is now 
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explicitly gauge invariant, a fact that must be true, due to the invariance of the Haar measures in the bosonized 
theory. The lagrangian density reads 

5g= Tr [ - F'~"F~,;/ 4 + aeZAuA J'/ 8~ + Oug&g- ' / 8 ~ -  ieg- ~ &g(gu~, + ~,~)A ~/4~ + 5¢wz (g) 

+ O~Oug- '  (a i 1 ) /8g - -  i e c , ~ O ' ~ -  'A "/4~z + 5°wz (~) - ie~Ou~- 'A U(a- 1 ) /4g]  , (28) 

where the first term is the one considered in refs. [ 15,5 ], and the second term is the one that comes from the 
chiral jacobian [ 16,17 ] of the bosonized fermions. The second term may be obtained directly from the partition 
function of the bosonized theory considered in refs. [15,5 ], while applying the Faddeev-Popov gauge fixing 
procedure in the same way as in ref. [ 3 ]. The arbitrariness in the regularization procedure of the chiral jacobian, 
leads to the appearance of the dimensionless parameter a [ 18], and an infinite set of nonequivalent theories is 
achieved for each value of the coupling constant e. 

The canonical momenta of the fields are given by 

g T = F ~ ,  g g = 0 ,  (29,30) 

~u = Oog7 ~ /4~ -  ie(A_ g-  ' )j~/4~, ~jj = ( a -  1 ) O0~j7 ~/4~+ ie~- ~ (aA + + ( a -  2)A_ )j , /8~. (31,32 ) 

If  a = 1, eq. (32) does not depend on the time derivatives and must be considered as a primary constraint in the 
theory. In the following, we will not analyse this case. As in the vector theory, eq. (30) is a set of primary 
constraints. Now, the hamiltonian of the theory can be given as 

H= f d2x{~7~7/2-A~( ~, ~, + eJo)~+Tr{ - 2 ~  ~'rg~r~,/(a- 1 ) + [ ( a -  1 ) /8~]0,~0,~ -~ - 2 ~ ( ~ g ~ T g )  

+O~gO~g-~/8n+eA~(i~'rg--ig-~O,g/4g) +eA~ [ i ~ v / ( a  - 1 ) - i ~ 0 ~  -~ ( a -  1 ) /4~]  

+e2azA~l/8n(a - 1 )} +27~o~}, (33) 

where J~ is the gauge current, that satisfies the same equation of motion, eq. (10), as in the vector theory and is 
then covariantly conserved. J ,  can be written in terms of the canonical momenta as 

Jo = ( i~rg- ig - '  O,g/ 4n) + ( - i ~ v + i ~ 0 , g - l / 4 n ) ,  (34) 

J, = ( i~fg- - ig  -~ 0,g/4n) -- [ - - i ~ f / ( a - -  1 ) + (a--  1 ) i~0 ,~ - ' / 4~ ]  +eaZA,/4g(a - 1 ) .  (35) 

As in the vector case, for the quantization of the theory the additional constraint 

{g~, H} = 0 ,  

or equivalently 

(~ ,g ,  +eJo)~=~o~ = 0 ,  (36) 

should be satisfied. This is a set of secondary constraints and, following the Dirac procedure, no other constraint 
appears. The constraint structure is of first class and the constraints satisfy the same Poisson bracket algebra as 
in the vector theory, eq. ( 18 ), for every value of a different from one. In fact, ~o~ is the Gauss law operator and 
the first class structure of the constraint is a reflection of the gauge invariance of the theory at the quantum level. 
The equal time commutators are then obtained through a multiplication of the Poisson brackets by an imaginary 
constant. In particular, the equal time gauge current algebra is 

[J~(x),J~(y)] =ifat,cJ~(x)~(x'-yl),  (37) 

[J~(x),  J~(y)]=if, bcJ~(x) f i (x ' - -y ' )+i[a2/4g(a--1)]~bf i (x ' - -y ' ) ,  (38) 

[J~(x),J~(y)] =if~t,cJ~(x)~(xl--y ' ) -  [a (a -2 ) i f abc / (a -1 )2] ( - i~x - i~a ,~ -~ /4ny (x )3 (x~ -y ' ) .  (39) 
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This result reduces for the abelian U(  1 ) theory to the same expression found in refs. [ 12,4]. The expression 
(38) allows us to draw a first conclusion. The consistency of  the theory requires a positive Schwinger term [ 19 ]. 
Then ( a -  1 ) should take on positive values. Let us compare this current algebra with the one obtained in the 
vector theory. We see that both coincide for the case a = 2 .  In fact, the similarity is even greater, as may be seen 
by computing the complete effective action in the vector theory, and in the chiral, a =  2, theory. One can easily 
integrate out the scalar fields while using the transformation properties o f S ( g ) ,  eq. ( 1 ), 

S ( g U )  = S ( g )  + S ( U )  + Tr ~ d 2 x ( g - '  O+g) ( UO_ U -~ ) / 4 g .  (40) 
d 

The resulting effective action is 

S~rr(A) = T r  f d 2 x ( - F , , F ~ ' " / 4 )  - S (  V - t U  -1 ) , (41) 

where U and Vobey A_ = ( i /e )  U -  l 0_ U and A + = ( i /e )  VO+ V -  l respectively. This result coincides with the one 
found for the same quantity in the vector theory [ 8 ]. 

One can also calculate, for a =  2, those quantities that give information about the confinement behaviour of  
the theory. For static charged particles, the relevant quantity is the Wilson loop, that only depends on the gauge 
fields and then must coincide with the one of  the vector case. However, if one wants to get information on the 
behaviour of  the dynamical left handed particles the behaviour of  the Wilson loop fails in giving it [20].  More 
involved quantities may be defined [ 20 ] as a function o f  the gauge invariant propagator of  the matter fields and 
the Wilson loop, that effectively characterize the confinement phase. If  one returns to the original fermionic 
theory, the behaviour of  the left handed fermions may be analysed in terms of  these quantities. However, since 
the effective action is the same for both theories, one obtains the same expression for the gauge invariant prop- 
agator of  the left fermions in terms of  the gauge fields and the free left-handed fermion propagator, once the 
fermions are integrated out. Then, the confinement properties of  the left handed fermions should be the same 
as in the nonabelian Schwinger model, a relation that holds, for every value of  a >  1 in the abelian case [21 ]. 

In analogy to what has been done previously for the vector case, the transformation laws of  J~ can now be 
easily obtained. We find 

[o)~(x), J~(y)  ] =iefo~,cJ~;(x)~(x ' -y~ ), [o)~(x), J~'(y) ] =ie£~ ,cJ] (x )6 (x  ~ - y ' ) ,  (42,43) 

which coincides with the relations found in the vector case. 
An alternative procedure to that applied above is to introduce gauge fixing conditions in such a manner that 

the complete set of  constraints becomes of  second class. The advantage is that one gets information directly 
from the operators of  the theory. As we have already elaborated earlier, the original theory analysed in refs. 
[ 15,5 ] can be easily obtained in the path integral formulation by going to the unitary gauge ~ = I .  The equiva- 
lence between the canonical and the path integral formulation requires this to hold in the present formalism. 
This has been first shown to be true in the abelian case, in ref. [ 4 ]. In the nonabelian case the additional constraints 

( i ~ 0 ~  1 ) a =  ( ( o 3 ) a = 0  , [ - i ~ T - e ( a - 1 ) A o / 4 7 r - e A , / 4 1 r ] " = ( ~ o 4 ) " = O ,  (44,45) 

must be imposed in the theory in order to get the unitary gauge. The set of  constraints is now of  second class. 
After computing the nontrivial matrix of  Poisson brackets the same commutat ion relations as in ref. [5 ] appear 
if the Dirac procedure is applied. One should note that the gauge currents are not gauge invariant as in the 
abelian case and the gauge current algebra in this gauge reads 

[Jg(x) ,  J~(y)  ] = --if.bcJCo(X)e~(x I __y l )  , (46) 

.,. J'o(X) ia2 . ~ g ~ ' 6 ( x ' - y  ~) , (47) [ J~ (x ) ,  J~'(y) ] = l J a l , c ~ ( ~ ( X  I _ y t )  -t- 
t a - l )  47r (a -  
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J~(x) a(a-2) ) 
[ Jg(x) ,  J~ (y ) ]  =ifa,,c J ~ ( x ) + 2  ( a - l )  ( a _ l ) 2  { [ ( a -  1)eA~(x)+eA~(x)]/4n} ~(x' _ _ y l ) .  (48) 

The same Schwinger terms as in eq. (38) appear as we expected, but the close relation with the vector theory 
cannot be inferred from here. Let us mention that the unitary gauge is special in a sense. If  we study the theory 
with fermions, one can always define physical gauge invariant operators, in the same way as has been done in 
the standard model [22 ] 

~jphys" = g -- 1 [//L, ~bt~hys" = ~/R . ( 4 9 , 5 0 )  

The unitary gauge provides us then with an appropiate framework to get information about the physical excita- 
tions in the theory [ 13 ]. In the abelian case, there have been claims that physical asymptotic fermion states 
exist in the chiral theory in contradistinction to the vector case [ 14]. This is not in contradiction with the 
confinement properties of  the fundamental  fermions. In fact, since the operators eqs. (49),  (50) are gauge in- 
variant the physical fermions carry no colour quantum number. The quantization in the nonabelian case may 
be followed in the way of  refs. [23,5 ], and the positiveness of  the hamiltonian may be demonstrated, for values 
of  a greater than one [23 ]. 

A final comment  is in order. We have studied a complete set o f U  (N) gauge theories, for general N. Our results 
can be easily generalized to the case of  S U ( N )  if we do not gauge the U(  1 ) invariant subgroup of  the original 
U (N).  Note that now, g is not a field in the fundamental  representation of  U (N), but of  SU (N).  However, we 
can still consider ~ transforming in the fundamental  representation of  U (N),  due to the fact that the additional 
degree of  freedom can always be integrated away and has no consequences in the interacting theory. Then the 
current algebra in both the vector and chiral theory may be obtained from eqs. (21 ), (23) and ( 3 7 ) - ( 3 9 )  re- 
spectively, by choosing the subset of  the Lie algebra that corresponds to the subgroup SU (N).  

In conclusion, we have discussed the canonical quantization ofbosonized  vector and chiral nonabelian gauge 
theories. We have shown that the constraint structure is of  first class and that both theories are gauge invariant 
at the quantum level. The gauge current algebra commutators  have been computed and the existence o f  a con- 
sistent algebra has been shown for values o f  a greater than one. From the current algebra we have also noted a 
close relation between the gauge field sectors of  both quantized theories for a special choice o f  the arbitrary 
parameter a. From this relation, the shielding of  the fundamental  fermions in the theory has been demonstrated, 
by analogy with the vector theory, a behaviour we expect to hold also for values o f  a different f rom 2. Finally, 
the equivalence of  the gauge invariant formulation with the gauge noninvariant  formulation of  refs. [23,5 ] has 
been proved. 

The author would like to thank D. Graudenz, N. Falck, Luis Masperi, Fidel Schaposnik, Roberto Peccei and 
Roberto Trinchero for useful discussions and comments.  

Note added. After completion of  this manuscript,  we saw a preprint of  Ramallo [ 24 ], where he arrived at 
similar results for the chiral theory. However, the gauge current algebra reported in that paper disagrees with 
eqs. ( 3 7 ) - ( 3 9 )  and we believe it to be erroneous. As a result of  this, the relation with the vector theory is not 
noticed by Ramallo. 

References 
[ 1 ] R. Jackiw and R. Rajaraman, Phys. Rev. Lett. 54 ( 1985 ) 1219; 

R. Rajaraman, Phys. Lett. B 154 (1985) 305. 
[2] L.D. Faddeev and S. Shatashvili, Phys. Len. B 167 (1986) 225. 
[ 3 ] O. Babelon, F.A. Schaposnik and C.M. Viallet, Phys. Len. B 177 ( 1986 ) 385; 

K. Harada and I. Tsutsui, Phys. Lett. B 183 ( 1986 ) 311; 

305 



Volume 209, number 2,3 PHYSICS LETTERS B 4 August 1988 

A.V. Kulidov, Serpukhov preprint 86-083 ( t986);  
A.M. Polyakov, Phys. Lett. B 103 ( 1981 ) 207. 

[4] N.K. Falck and G. Kramer, Ann. Phys. (NY) 176 (1987) 330. 
[5] E. Abdalla and K.D. Rothes, Phys. Rev. D 36 (1987) 3190. 
[6] 1. Bars and F. Green, Nucl. Phys. B 148 (1979) 445; 

D. Graudenz, in preparation. 
[7] S. Coleman, Phys. Rev. D 11 (1975) 2088; 

S. Mandelstam, Phys. Rev. D 11 (1975) 3026; 
S. Coleman, R. Jackiw and L. Susskind, Ann. Phys. 93 (1975) 267; 
C.R. Hagen, Phys. Rev. D 32 (1985) 2229. 

[8] E. Witten, Commun. Math. Phys. 92 (1984) 455. 
[9] P. Di Vecchia, B. Durhuus and J.L. Petersen, Phys. Lett. B 144 (1984) 245; 

D. Gonzales and A.N. Redlich, Phys. Lett. B 147 (1984) 150; 
A.M. Polyakov and P.B. Wiegmann, Phys. Lett. B 131 (1984) 150. 

[ 10] P.A.M. Dirac, Lectures on Quantum mechanics (Yeshiva U. P., New York, 1964). 
[ 11 ] R.E. Gamboa Saravi, F.A. Schaposnik and J.E. Solomin, Phys. Rev. D 33 (1986) 3762. 
[ 12 ] M.V. Manias, M.C. von Reichenbach, F.A. Schaposnik and M. Trobo, J. Math. Phys. 28 (1987) 1632; 

M.V. Manias, F.A. Schaposnik and M. Trobo, Phys. Lett. B 195 ( 1987 ) 209; 
N.K. Falck and G. Kramer, Phys. Lett. B 193 ( 1987 ) 257; Z. Phys. C 37 ( 1988 ) 321. 

[ 13] D. Boyanovsky, Nucl. Phys. B 294 (1987) 223. 
[ 14 ] H.D. Girotti, H.J. Rothe and K.D. Rothe, Phys. Rev. D 33 (1986) 514; D 34 (1986) 592. 
[15] R. Rajaraman, Phys. Lett. B 154 (1985) 305; B 162 (1985) 148. 
[ 16] K. Fujikawa, Phys. Rev. Lett. 42 (1979) 1195; Phys. Rev. D 21 (1980) 2848; D 22 (1980) 1499. 
[ 17 ] R. Roskies and F.A. Schaposnik, Phys. Rev. D 23 ( 1981 ) 558. 
[ 18 ] See, e.g., R. Jackiw and R. Rajaraman, Phys. Rev. Lett. 55 ( 1985 ) 2224; 

B. Chanowitz, Phys. Lett. B 171 (1986) 280; 
K. Harada. H. Kubota and I. Tsutsui, Phys. Lett. B 173 (1986) 77; 
F.A. Schaposnik and J. Webb, Z. Phys. C 34 ( 1987 ) 567. 

[ 19] J. Schwinger, Phys. Rev. Lett. 3 (1959) 296. 
[20 ] K. Fredenhagen and M. Marcu, Commun. Math. Phys. 92 ( 1983 ) 81. 
[21 ] T. Berger, N.K. Falck and G. Kramer, DESY preprint 88-009. 
[ 22 ] G.'t Hooft, in: Recent developments in field theory, eds. G.'t Hooft et al. (Plenum, New York, 1980 ); 

S. Dimopoulos, J. Raby and L. Susskind, Nucl. Phys. B 173 (1980) 208; 
L.F. Abbott and E. Farhi, Phys. Lett. B 101 ( 1981 ) 69; Nucl. Phys. B 189 ( 1981 ) 547. 

[23] R. Rajaraman, Phys. Lett. B 162 (1985) 148. 
[24] A. Ramallo, CERN preprint TH 4922-87. 

306  


