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We present a theory of quantum chaos of the Hadamard-Gutzwiller model, a quantum mechanical
system which describes the motion of a particle on a surface of constant negative curvature. The theory
is based on periodic-orbit sum rules that can be rigorously derived from the Selberg trace formula and
which provide an exact substitute, appropriate for our strongly chaotic system, for the Bohr-
Sommerfeld-Einstein quantization rules. Our recent enumeration of the classical periodic orbits enables
us to evaluate the sum rules numerically and to demonstrate thereby that the theory provides also a
practical method to study the quantum chaos of spectra.

PACS numbers: 05.45.+b, 03.65.—w

The term chaos' refers to the study of unpredictable
motion in systems with causal dynamics. Quantum
chaos has been defined' as the study of semiclassical
(h— 0), but nonclassical, behavior characteristic of sys-
tems whose classical motion exhibits chaos (exponential
instability that persists). Heisenberg’s uncertainty prin-
ciple and the atomic structure of matter are incompati-
ble with the predictions of the standard theory of classi-
cal chaos. For example, the discontinuous dependence of
the classical orbits on the initial conditions (e.g., rational
versus irrational numbers) is, in general, unphysical and
should be smoothed out in a reasonable theory. Thus in
quantum chaos the signature of chaos is expected to be
of a more sophisticated nature, showing up, for example,
in smooth but unpredictable functions like the Riemann
¢ function on the critical line.'™

Quantum chaos was initiated by a question first posed

Y (quantal energies) = 2. (classical periodic orbits).

[In general, the periodic-orbit sum rule (POSR), Egq.
(1), is at best conditionally convergent.]

It is the purpose of this Letter to present first results
on a strongly chaotic system, the Hadamard-Gutzwiller
model,>% ! for which we can derive infinitely many exact
POSR’s of type (1). These sum rules are exact since
they can be rigorously derived from Selberg’s trace for-

by Einstein® concerning the relation between classical
y

and quantum mechanics for a strongly chaotic system.
Rephrasing the question in modern terms, one is led to
the following two basic problems of quantum chaos®:
(i) Given a Hamiltonian for a mechanical system with at
least 2, but not necessarily more degrees of freedom, as-
sume that every question about its classical trajectories
can be answered. What can then be said about the ener-
gy levels for the same Hamiltonian in quantum mechan-
ics? (ii) Given a mechanical system whose classical tra-
jectories are chaotic, is there any manifestation in the
corresponding quantal system which betrays its chaotic
character?

In an attempt to answer Einstein’s question, Gutzwill-
er,® Balian and Bloch,’ and Berry8 have introduced and
developed a semiclassical technique, the so-called
periodic-orbit theory, which culminates in an asymptotic
formula (A— 0) which can be written symbolically as

(D

mula, a deep theorem in the mathematics of har-
monic analysis and hyperbolic geometry. We shall show
that the quantal energies can be determined by the clas-
sical periodic orbits with a momentum resolution
Ap~2r/l, where [ is the length of the largest classical
periodic orbit taken into account in the sum rule (1).
Vice versa, we shall demonstrate that the quantal ener-
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gies “know” about the length spectrum of the classical
periodic orbits. Thus we shall present an exact approach
to the quantum chaos of spectra.

The Hadamard-Gutzwiller model is governed by the
following classical Lagrangean and Hamiltonian, respec-
tively:

—m, dx' dx’
2874 Tar
where p; =mg;jdx’/dt and g;=4R*(1—x?—x3) %5,
(i,j=1,2). The dynamical system (2) describes the
classical motion (geodesic flow) of a particle of mass m
sliding freely on a surface /M of constant negative Gauss-
jan curvature, K =—1/R> Here we use the so-called
Poincaré disk endowed with the metric g;; as a model for
hyperbolic geometry, i.e., the pseudosphere, the entire
surface of constant negative curvature, is mapped into
the unit circle on the complex plane: z=x;+ix,,
xf+x%<1. The energy E=H=L is the only constant
of motion. There are no invariant tori in phase space,
and neighboring trajectories diverge with time at the rate
e® i.e., the classical orbits are unstable, a typical prop-
erty of chaos. The Lyapunov exponent w is given by
o=QE/m)"?. (For a recent review, see Balazs and
Voros.'?)

In this Letter we consider the simplest case, where the
particle moves on a compact Riemannian surface M of
genus 2 and are A =4zR2% In the Poincaré disk, M is
represented by a regular hyperbolic octagon, the funda-
mental region of a discrete subgroup G of
SU(1,1)/{ £ 1}. (The latter group represents the three-
dimensional Lorentz group.) The “octagon group” G
leads to a tessellation of the pseudosphere in terms of
regular octagons by identifying the points z and z', where
z'=bz and b € G."* The tessellation can be viewed as
the cutting out of a piece of the whole pseudosphere and
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FIG. 1. The number N(/) of all primitive periodic orbits of
length /(b) less than /. The smooth curve shows Huber’s law
(taken from Ref. 15).
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the gluing together of opposite edges.

Recently, we have enumerated!® more than 5x10°
periodic orbits for the Hadamard-Gutzwiller model cov-
ering the lower part of the length spectrum {I(b)}, where
[(b) denotes the length of the primitive periodic orbit
corresponding to the boost b € G. (Every group element
b € G belongs to a periodic orbit.) Knowledge of the
length spectrum is precisely what is needed as input on
the right-hand side (rhs) of the POSR (1). Figure 1
shows the number N (/) of all primitive periodic orbits of
length /(b) less than /. One observes an exponential
proliferation at the length spectrum in agreement with
the  theoretical  expectation  (Huber’s law'®):
N(I)~exp(l)/l, ]— oo, which is shown as the smooth
curve (if we take into account correction terms for small
D.

The quantum mechanics of the Hadamard-Gutzwiller
model is determined by the Schrédinger equation

h2
2mR?

where A=g /2 ai(g'/zg"fa,) is the Laplacian on M,
g =det(g;;). Equation (3) has to be solved with periodic
boundary conditions, i.e., ¥,(bz) =¥,(z) for all b € G.
There is then only a discrete energy spectrum {E,} with
a nondegenerate zero mode: 0=E(<E|<E;< ---.
A possible degeneracy of the quantal energy E, is denot-
ed by d,eN. For n— > we have E,~An/4nr.
(Weyl’s law), if d, =1 for all n. Since the eigenvalues
scale as E,=(h2%/2mR?)x,, where A, is dimensionless
and independent of A, m, and R, we use from now on the
following units: h =2m=R=1.

At this time there is no analytical solution known for
the Schrédinger equation (3) with periodic boundary
conditions. In contrast to the case of Dirichlet or Neu-
mann boundary conditions, where straightforward nu-

AY,(z)=E,v,(z), 3)
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FIG. 2. The spectral staircase N (E) computed from the first
fifty energy levels as obtained from a numerical solution (Ref.
17) of the Schrédinger equation (3) using the method of finite
elements. The straight line shows Weyl’s law.
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merical methods can be applied, the case of periodic
boundary conditions is much more complicated. Using
the method of finite elements, we have computed the first
200 quantal energies.!” In Fig. 2 we show the spectral
staircase N(E) =#{E, | E, < E} up to E =50 in compar-
ison with Weyl’s law: N(E)~E, E— o. One observes
that Weyl’s law (straight line) extrapolated down to the
lowest energies describes well the mean mode number

J

oo

n=0

€
* 2\/;%/;:1 sinh(kl,/2)

(N(E)). This provides an important check of our finite-
element calculation. For the two lowest excited levels we
obtain £,=3.839 (d,=3) and E,=5.36 (d;=4), where
the last digit is uncertain, i.e., an exact degeneracy is not
implied.

As our first example of an exact POSR let us consider
the following spectral function, which is nothing but the
smeared spectral density using a Gaussian smearing

Y. dalexpl—(p—p,) ¥ el +expl— (p+p,) /el} =2Lmdp'p'tanh(7rp'){exp[— (p'—p)*e’l+expl—(p'+p)?/e’l}

oo

Enln

cos(pkl, exp

el
4(kl,,) J 4)

Here p=(E— § )2> 0 denotes the momentum, and the discrete momenta pn are related to the quantal energies by
E, =p,,2+ +. (We define po=i/2, p,>0forn=1,2,....) {1} denotes a summation over all primitive periodic orbits

with length /, ordered as 0 < /o </ <[, < - -

and associated multiplicities g,, whereas the k summation counts mul-

tiple traversals corresponding to periodic orbits of length kl,, k= 1."® It follows from Selberg’s theorem!'' that all
series and the integral in the POSR (4) converge absolutely for any € > 0.
For small ¢ the left-hand side (lhs) of Eq. (4) represents a series of deltalike functions of width Ap ~+/2¢, having

30 : — S

20 | i i

o [l | _ | 1 A
0 200 400 600 800 E 1000
10 T
(b)
8
6 [
/’
P /‘
v \\
4 / A
RV
\ f /’
2 \ /
\ Vi
A ]
0 ]
0 30 E 40

FIG. 3. The Gaussian level density (4) for €=0.2 as a func-
tion of E. (a) The curve shows the result up to £=1000 ob-
tained from the rhs of Eq. (4) with use of 10000 primitive
periodic orbits. (b) The full curve shows the same result as in
(a) but at low energies, E < 40. The dashed curve is obtained
from the lhs of Eq. (4) with use of the first 100 energy levels.

peaks exactly at the level positions p=p, (n=1) and
e-independent height d,,. If ¢ is made smaller, more and
more terms in the sum over classical orbits on the rhs of
(4) contribute with faster oscillations until eventually
they sum up in a magic conspiracy to give peaks at the
quantal energies. Each periodic orbit & contributes an
oscillation to the smeared spectral density which has a
an oscillation to the smeared spectral density which has a
“wavelength” Ap ~2x/I(b), which implies that a resolu-
tion of order Ap~+/2¢ requires a summation over the
length  spectrum up to lengths of order
1(b) ~2r/e=22.2 for ¢=0.2. In Fig. 3(a) we show
the Gaussian level density (4) for e =0.2 as a function of
the energy E for £ < 1000 taking into account the first
10000 primitive periodic orbits corresponding to
1(b) = 22.5294. Figure 3(b) shows the same result at
low energies in comparison with the result computed
from the first 100 quantal energies as obtained from our
finite-element method (dashed line). The agreement be-
tween the two results is excellent. One sees beautiful
peaks at the quantal energies which can be read off
directly with an energy resolution AE =2pAp from Figs.
3(a) and 3(b) together with their degeneracies. (At
finer scales, the degeneracies may dissolve in near degen-
eracies.)

In order to illustrate the crucial role played by the
multiplicities {g,} of the length spectrum {/,}, we have
evaluated the POSR (4) taking into account the first
10000 primitive periodic orbits with the exact lengths
but replacing g, for n>5000 by the mean value
82" 2/1,,, as derived in Ref. 15. It turns out that the
nice agreement for the Gaussian level density (4) is des-
troyed, since one obtains a graph which shows very large
but regular oscillations, i.e., the chaotic peaks seen in
Fig. 3(a) are completely washed out.

We have thus established in a quantitative fashion
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“the apparently paradoxical result”® that the quantal basic problem (i) of quantum chaos. Now let us turn to
level density can be obtained by summing classical or- the basic problem (ii). For this purpose we consider the
bits. This solves for the Hadamard-Gutzwiller model the following POSR:

cosh% + Y dycos(p,L)e ' =2e _‘/41; dp ptanh(zp)cos(pL)e ~P™

n=1

8_1/4 - gnln _ _ 2 _ 2
+8(m)1/2%k§15mh(k1n/2) fexpl— (L —kl,)¥/4t] +expl— (L +kiI,) /4l (5)

For 1t >0,L € R, Eq. (5) is an exact representation of i
the ‘‘cosine-modulated heat kernel.” [The standard

~8+/2exp(L/2)/L as can be seen from Fig. 5 and Table

heat kernel (partition function) is obtained in the limit I of Ref. 15.

L—0.] If we vary L for fixed but small ¢, the rhs of (5) The POSR (5) solves for the Hadamard-Gutzwiller
generates Gaussian peaks of width AL ~2(2¢)'/? exactly model the basic problem (ii) of quantum chaos since it
at the lengths /, of the classical periodic orbits. In Fig. 4 demonstrates that the quantum mechanical energies col-
we show the modulated heat kernel for t =0.01. The full lectively “know” the length spectrum of the classical
line corresponds to the rhs of (5) evaluated with 10000 periodic orbits together with their chaotically fluctuating
primitive periodic orbits, whereas the dashed line repre- multiplicities.

sents the lhs computed from the first 75 eigenvalues. In summary, we have presented in this Letter first re-
The two curves show for L > 2.5 a very similar structure sults on a rigorous approach to the quantum chaos of
with equal numbers of peaks at nearly the same posi- spectra for an ergodic system, the Hadamard-Gutzwiller
tions. The peaks are less pronounced in the curve com- model. Our approach has been based on a class of exact
puted from the eigenvalues which is not surprising be- POSR’s, two examples of which have been given in Egs.
cause of the relatively small number of eigenvalues used (4) and (5). These sum rules establish a striking and
in the calculation. Nevertheless, one can nicely resolve “apparently paradoxical” duality relation between the
the lengths /, of the four shortest primitive periodic or- quantal energy spectrum {E,} and the length spectrum
bits whose lengths are'’ 3.057, 4.897, 5.828, and 6.672, {1} of classical periodic orbits. Apart from presentation
respectively. Since for ¢t =0.01 the length resolution is of new POSR’s, the main purpose of this Letter has been
only AL~0.3, we cannot expect to resolve the large to demonstrate that periodic-orbit theory provides a
lengths, because the length spectrum becomes denser ac- practical tool for quantum chaos which even allows the
cording to the law'> AL ~8~+/2exp(—L/2). If the resolu- calculation of spectra. As a result of our recent
tion is improved by our making ¢ smaller and smaller, enumeration of the length spectrum and our preliminary
the graph of the modulated heat kernel looks more and results on the low-lying quantal energies obtained by the
more chaotic. Although the lengths themselves obey a method of finite elements, we could show that Einstein’s
simple law,'® their multiplicities show a very chaotic be- question (the two basic problems of quantum chaos) has
havior with large fluctuations around the average value a clear-cut answer for the Hadamard-Gutzwiller model.
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