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We analyse, using the adiabatic method, the fermion charge induced by scalar and gauge fields. We study the zero-energy 
fermion modes in different backgrounds and we show how to extend the adiabatic method, even in the presence of scalar fields 
where the adiabatic current is ill-defined. We use our results to compute in an alternative way the charge induced by the sphaleron 
configuration. 

The effects of  a scalar field soliton on the Dirac sea 
of  a fermion field have already been studied well in 
the literature [ 1-4] .  It is known that nonzero and 
even nonintegral quantum numbers may be induced 
in such a context. The adiabatic method [5 -7]  was 
developed as a way to evaluate diagrammatically the 
fermion number. Basically, it consists in building up 
the final configuration starting from the normal vac- 
uum and performing slow changes o f  the fields in 
space and time. The induced fermion current expec- 
tation value can be calculated as an expansion in 
powers of  derivatives of  the background fields and 
from the lowest order nonvanishing term in this ex- 
pansion the charge o f  the final state can be obtained. 
Although this method has the virtue of  computa- 
tional simplicity, usually the results obtained with this 
technique are reliable only for the fractional part of  
the ground state fermion number  of  the final config- 
uration. In fact, there are two separate issues in- 
volved when one tries to compute the charges induced 
by a background field via the adiabatic method. One 
issue, to which we will return shortly, concerns the 
spectral flow contributions [ 7 ] and is the one which 
is relevant when considering the fermion number  of  
the low energy state of  the system. The other impor- 
tant point has to do with the overall validity of  the 
adiabatic method, or, better said, o f  the formula for 
the induced current. The expression for the induced 
current becomes ill-defined when one studies scalar 
field configurations, as those associated with the 
' t  Hooft  instanton [ 8 ] or, more specifically, the static 

sphaleron configuration [ 9-12 ], which go through 
zero at some point. D 'Hoker  and Goldstone [ 13 ] in- 
vestigated the fermion number  current to leading or- 
der in the derivative expansion including also gauge 
fields as background fields. They proved that, when- 
ever no current flow at spatial infinity is allowed, only 
the gauge fields contribute to the induced fermion 
charge. This general result, at first sight, seems at var- 
iance with that obtained explicitly with the adiabatic 
method [ 6 ] as fermion charge appears to be induced 
there in the case of  pure background scalar fields, even 
when there is no flux at spatial infinity. The purpose 
of  this paper is to reconcile this apparent discrepancy 
and to gain thereby a better understanding of  the adi- 
abatic method and its limitations. 

The plan of  this note is as follows: we are going to 
analyse first the adiabatic induced charge by a scalar 
field, which interpolates between the ordinary vac- 
uum and a final soliton, but which is somewhere van- 
sihing. Then, we will evaluate the adiabatic fermion 
charge induced by the scalar field associated with the 
' t  Hooft  instanton. After making a careful study of  
the energy level crossings and observing the existence 
of  a symmetry in the energy states, we will be able to 
obtain the correct fermion charge induced by such a 
field and to confront this result with the one obtained 
employing naively the adiabatic method. The same 
technique will then be used in the case in which also 
gauge fields are present. We will show that, proceed- 
ing in this way, the result o f  the induced fermion 
charge is in agreement with the general statement in 
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ref. [ 13 ]. Finally, we particularize our analysis to the 
sphaleron solution due to its relevance in connecting 
the topologically distinct vacuum states near the weak 
phase transition temperatures. We restrict our work 
to the limit where 0w vanishes and the U(1 ) field 
decouples and we show, within this limit, that the 
sphaleron fermionic charge is 1. 

Let us first consider the scalar sector o fa  a model: 

5go = ½0,,0, ~'~, - ~2( 02-v2)  2 , (1) 

with 0a a quartet of scalar fields (0o, 0) .  This model 
possesses solitons (skyrmions) ~ t which are topolog- 
ically stable in the nonlinear model (2~oo)  and top- 
ologically metastable in the linear one (finite 2). 
Treating the scalar fields as background fields for the 
SU (2) doublet fermion e 

5~ = i ~ , -  (g,,/ x/2 ) ~( ~o +ivsC~'a)V, (2) 

and using the adiabatic method, one finds the follow- 
ing expression for the current which is induced by the 
background fields [ 5 ]: 

( j" (x)  ) =  12z¢21~14 

The lagrangian, eq. (2),  is S U ( 2 ) ® S U ( 2 )  invar- 
iant. However, it was already shown [7] that an 
identical result for the current is obtained while con- 
sidering different but nonzero values for the masses 
of both doublet fermion components. 

The current, eq. (3), is conserved, but it is singular 
at I¢'1=0, so obviously, the adiabatic requirement 
[ 0~[ -~< g~ l¢} cannot be satisfied at the singularity. 
With I ~ [ never vanishing and (~o, ~) = (v, 0) at spa- 
tial infinity, the charge formally constructed from this 
current measures the degree of a mapping from S 3 to 
S 3, that is to say, from r-~ (¢°( r ) ,  O(r) ) / I ¢ ( r )  I, and 
takes of course integer values. If  [ O[ vanishes at some 
value of x, as may happen in the linear model, then 
the current is ill-defined at that point and the scalar 
field configuration may change its topological charge 
there. 

A good way to compute the charge induced by a 
soliton configuration is to evaluate the flow of cur- 
rent as the scalar fields slowly evolve from the vaucum 

~ The addition to this lagrangian of a stabilizing term is neces- 
sary. Skyrme solitons are obtained when a convenient choice 
of such a term is made. 

to the final soliton [ 6 ]. This final configuration may 
be, for example, the skyrmion ansatz with winding 
number one 

(~o, @)sk = v(J~l (r),f2(r) r/r), (4) 

where f~ goes monotonically from - 1 at r = 0  to the 
normal vacuum value 1 at r ~  and f2 ~< 0 vanishes 
at r~0 ,  or, but is otherwise negative. 

Considering the fields given by 

(~o, 0 ) = v ( { 1  - h ( t )  [ 1 -f~ (r)]},  h(t)f2(r) r/r), 
(5) 

where h(t) is a function which varies slowly and 
monotonically from 0 to 1. The change in the charge 
may then be written as 

(6) 

In evaluating this expression one must, of course, be 
careful at the point where I~1 = 0, because Jo is ill- 
defined there. This calculation has been already done 
by MacKenzie and Wilczek [ 6 ]. In order to apply the 
adiabatic method they have excluded from the con- 
figuration space a sphere surrounding the origin. A 
flux appears through this outward surface giving the 
charge changing from zero to one. Explicitly, invok- 
ing current conservation, they write eq. (6) in terms 
of a surface integral where the relevant surface is a 
small sphere at the origin 

Qsk: f d4x(O,j~-V'J) = ~f dt f d S . j = l .  
--o¢~ SO 

(7) 

Thus, they obtain the value one for the adiabatic 
charge induced while reaching the final soliton 
configuration. 

It is interesting to ask what happens if one extrap- 
olates naively the adiabatic method to evaluate the 
charge everywhere including the origin. In such case, 
one can readily show that the ill definition of the cur- 
rent leads to 

0M'~(r, t )=6 ( r )O( t ) .  (8) 

Considering this "anomaly" one obtains the same re- 
sult for eq. (7),  since by dealing now with the corn- 
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plete configuration space there is no contribution 
from So but there is one from eq. (8). That is, when 
no flux is allowed at the origin, the nontrivial diver- 
gence replaces the above surface contribution. How- 
ever, this "anomalous" divergence has no physical 
significance since it appears while extrapolating the 
adiabatic method beyond its validity. These consid- 
erations suggests that, in this example, the adiabatic 
method gives only the correct induced charge in a 
configuration space without the origin. We will show 
below that, to obtain the real induced charge in the 
system considering the complete configuration space, 
in reality one must drop the anomaly contribution of 
eq. (8). 

To proceed with our analysis let us consider a sca- 
lar field configuration which vanishes at the origin, 
but which gives a nontrivial flux at spatial infinity 
and is slightly more specific than eq. (5). We take 

X v J~v r v 
~o= ~ -  ~ ~  ~Oo, (9) 

with 4 =  ( 1, itr,) and ~0o a constant SU(2)  spinor 

+=(0) 
Observe that if we consider r as the four-dimensional 
euclidean space radial vector, then this configuration 
is the scalar field associated to the 't Hooft instanton 
(p is the instanton size). In what follows, we consider 
the temporal coordinate as the parameter t which 
connects the initial and final configurations while 
building adiabatically the final scalar field. As the field 
in eq. (9) vanishes at x = 0, the same considerations 
about the ill definition of the adiabatic current apply 
here also. 

If  we want to evaluate the fermion number using 
the adiabatic expression, eq. (3), we can always write 
the complex doublet q~ in terms of the quartet scalar 
fields of the tr model as 

(o= 
(02 ~ \ 0 o - - i ¢ 3 ]  

and we can construct the SU (2) matrix • in terms 
of the 9 doublet: 

91 qO= ~ ( 0 o  + i O ' t r )  = , ( 1 1 ) 
x/Z - g T  92 

defining 

4,=q~/191. 
Then ~ + ~ =  1 and we rewrite eq. (3) as #2 

j~(x) = 2 4 ~  ~ ' ~ T r [ ~ +  0 ~ 3 ~ ) + 0 ~ +  O~)]" 

(12) 

As ~01,=o~= -~o1,=_~= (v/x/2)~ao, it is clear from 
the adiabatic current that the initial and final config- 
urations have a zero charge value. 

AQ,d=QI,=~-QI,=_~=O. (13) 

Invoking current conservation we can rewrite the 
change of the adiabatic charge in terms of a surface 
integral 

AQad = -- ;dt~dSi.ji, (14) 

where the i index denotes a sum over all the outward 
surfaces of the space under consideration. As we have 
excluded the origin in order to apply the adiabatic 
method, then the surface given by a small sphere So 
surrounding this point must be also considered. Eqs. 
( 13 ), (14) imply that the net flux through the out- 
ward surfaces vanishes, this means 

oo I+-,):o 
If  we now want to evaluate the induced charge, in- 

cluding the origin in the configuration space, and we 
insist on current conservation (so that the spurious 
anomalous contribution is omitted) we can still use 
eq. (14). As now the only outward surface is the one 
at infinity, this leads to 

Qind = -  i at f d S . j = l ,  (16) 
- - o o  Soo 

where the value unity follows since the above integral 
is, except for the minus sign, the same as the one that 
gives, in the euclidean space, the winding number of  
the scalar field ofeq. (9). 

In the above analysis we have not paid attention to 

#z See ref. [ 14] for a different approach. 
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possible spectral flow contributions. We will now 
study the zero-energy fermion modes to check that 
indeed the different charge values we have obtained 
are perfectly consistent. That  is to say, the zero in- 
duced charge calculated via the adiabatic technique, 
while performing a hole in the configuration space, 
eq. (13),  and the value one for the induced charge, 
after we included the origin in our space, eq. (16),  
refer to different physical spaces and can be different. 

We recall that [ 15 ] after the transition o f  n+ ( n _ )  
levels from E < 0 (E  > 0 ) to E > 0 (E  < 0 ) the system 
is left in a state which is no longer the ground state 
and then the charge expectation value in this state, 
Q~nd, is related to the ground state charge as 

Qi,d=QGs +n+ --n_. (17) 

The final scalar configuration o f  eq. (9)  at t = o e  is 
the trivial one, so the final ground state charge is zero 
and this fact is independent o f  the way one arrives at 
the final scalar field. From the above, we conclude 
that, if the value one for the induced charge is cor- 
rect, then an energy level crossing must  occur at some 
point and an occupied zero energy fermion state must 
be found there. 

Following ref. [16] ,  but neglecting for now the 
vector fields, we write the zero energy Dirac equation 
in the background field ~0 (x, t = 0) and look for a nor- 
malizable solution to the following system of  time- 
independent equations: 

iai0i~L - - g v ( O ~  l) _ g y ~ 2 )  = 0 ,  

--  i o ' i 0 i ~  1) --gv~O + ~/,gL = 0 ,  

- iai O ~  2) -gv0? + ~'L =0 ,  (18) 

where ~'e, ~'~t t'2) are Lorentz doublets and ~=ia2cp*. 
Analogously to ref. [ 17 ] we choose the ansatz 

~/L,c~ = i a 2 , J ( r ) ,  

~h~] = - i a 2 j ~ , g ( r ) ,  ~h2~ =~o~g(r) ,  (19)  

where a = I, 2 and i =  1, 2 are Lorentz and weak iso- 
spin indices, respectively. This reduces eqs. ( 18 ) to 

r 
5,.g(r) + mr ~ f ( r )  = O, 

Y 
Orf(r) + mr ~ g(r) =0 ,  (20) 

where mf=gvv/x/2 is the fermion mass. It is easy to 
check that a normalizable solution to these equations 
exists and is 

g = f =  exp ( - r n f ~ p  2 ). (21 ) 

The scalar field of  eq. (9)  obeys the relation 

~(x, t)= -q,(-x, - t) .  (22) 

Thus, considering the hamiltonian equations, one 
finds that for each solution: q/L(X, t), ~'~"2)(X, t) o f  
energy E at time t, there is a solution: ~'L(--X, - - t ) ,  
q/~L2)(--X, - - t )  of  energy - E  at time - t .  At t = 0  
there exists a symmetry in the hamiltonian in the 
background field, which gives a one-to-one corre- 
spondence between states o f  positive and negative 
energy. Then the spectral asymmetry vanishes and, 
provided no energy level crossing occurs before, the 
charge is given by one-half the difference between the 
occupied and empty zero-energy fermion states [ 3 ]. 
This is due to the fact hat, if no zero-energy state ex- 
ists in the background of  the static configuration un- 
der consideration, then ~3 [ 19 ] 

QGs = -- l r / [ n ] ,  (23) 

where 1/[H] is the spectral asymmetry o f  the hamil- 
tonian. Otherwise, 

QGS=_½rl[H].a_ | t ttrocc ATemp ~ (24) - -  ~ I~v E=0 - - iv  E=OJ" 

These considerations and the existence of  the zero- 
energy mode, eq. (21 ), imply that at t = 0 the charge 
must  be + ½ or - ½. On the other hand, evaluating the 
induced charge at t = 0 ,  with the prescription of  ig- 
noring the anomaly contribution for the adiabatic 
current, one has a i n d  = 1. This result emerges clearly 
from eq. (16) after using the relation j(x,  t ) =  
j(x,  - t) which implies that Qi.dlt=o = ½ a i n d  [ t = ~ -  

The above discussion is gratifying since it recon- 
firms the value for the induced charge to be the right 
one and it connects it with the zero-energy mode 
found. Next we must understand the zero adiabatic 
result. We already said the difference is due to the 
fact o f  making a hole in the configuration space, but 
what does this really mean? Since the ground state 
charge depends only on the static configuration and 
as the zero-energy mode of  eq. (21 ) is always pres- 
ent, then if the adiabatic result gives the induced 

~3 See ref. [ 18 ] for a review. 
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charge in a slightly different space, it must be that an 
extra empty zero-energy mode must appear in such a 
space. In order to find another solution to eqs. ( 18 ) 
we consider the following ansatz for the fermion 
fields: 

q/,, =x'Y-p(r) ( i 0 " 2 i . )  , 

q/~,) =x .S  q(r) ( -  a2,~0oj), ~ t  2) =x'Sq(r)~Oo,. 
(25) 

Here Y-=S=ia~, but they apply to different spaces, 
weak isospin and Dirac space, respectively. Using eqs. 
(25) we obtain the following equations: 

/.2 
rO~q(r) + 3 q ( r ) -  mr ~ p(r) = O, 

r 2 

rOrP(r) + 3p(r) - m r ~  q(r) =0.  (26) 

It is easy to check that 

p ( r ) = - q ( r ) = ( 1 / r  3) e x p ( - m r ~ p  2 ) (27) 

is a solution to these equations. As expected, the above 
time-independent solution becomes nonnormaliza- 
ble as soon as the origin is included in the configura- 
tion space. But, in the frame of the space with the 
origin removed, assuming this zero-energy fermion 
state is empty, from the above arguments one de- 
duces a zero fermion charge at t = 0. This value is the 
same we can derive from eq. (14) after using, once 
more, the relationj(x, t) =j  ( x, - t ) . 

The present calculations show how the modifica- 
tion of the configuration space used in refs. [6,7] 
leads to nontrivial modification of the fermion en- 
ergy states and to a different induced charge value 
from the one derived without the insertion of the hole 
in the configuration space. One can use the adiabatic 
method to evaluate the real induced charge, even in 
the presence of scalars fields vanishing somewhere, 
but then to get the correct answer one must ignore the 
spurious anomaly or, which is the same, the spurious 
flux at the singularity. 

Let us now include also gauge fields as background 
fields. The current defined previously must now be 
invariantized and it takes the form [5,20 ] 

1 
jU(x) = 2-~n 2 Eu~'~P Tr [ ~+D~ ~ + D ~  + D p ~  

+ {ig~ +F~LDp~] ,  (28) 

where D,,=O~,-igA~,L with Au~ the SU(2)L gauge po- 
tential and Fu,~ its field strength. The second term in 
eq. (28) is necessary if one wants to obtain the usual 
fermionic anomaly contribution from the gauge fields. 
This invariant current may be divided in three terms, 
as follows: 

f ' ( x )  = j ~ ( x )  + j ~ ( x )  +j~(x).  (29) 

The first term is the current due to the Higgs field, 
whose expression is already given in eq. (12). The 
second term is also a conserved current and it reads 

jgA(X)= ~n2 e " " a  Tr [i0~ ( ~ 0 ,  (q5 +Aa) ) 1. (30) 

Finally, the third term is the gauge nonconserved 
current, whose divergence is the fermionic anomaly, 

g2 
j~m(x) = ~ E~"PTr[F~,A~ + ~igA~A,A~], 

(31) 

with 

g2 g2 
OujUA = 3-~nz OuKU= 167C2 Tr[Fj,~ffu~], 

where 

KU=eup.a(Fa Aap__ a b c ]gEahcA ,A ,Aa) .  (32) 

The gauge invariant generalization of the adiabatic 
current, eq. (28), shows clearly that the charge value 
is now independent of  the gauge in which we evaluate 
it. For simplicity let us work in the gauge A0=0 and 
with both background fields giving no contribution 
to the current flow at spatial infinity. Starting at 
t=  - o o  with Ai= 0, ~0= (v/x~)~Oo, the Higgs field de- 
velops a twist while vanishing at some point as the 
gauge field goes to the final pure gauge configuration. 
At t = ~  we have Ai= - (i/g)OiU U +, ~o= 
(v/x/~) × U~oo, with U + = 1 at spatial infinity and 
of winding number one. 

Applying naively eq. (28) one derives a zero in- 
duced charge for the final configuration, as the cur- 
rent density trivially vanishes at t=  oo and at t=  - oo. 
However, this result is trustworthy only if one works 
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in the space where this current is well-defined. 
The correct induced charge is again obtained after 

dropping the spurious scalar contribution to the 
anomaly. In the present gauge it is easy to see that the 
total flux at spatial infinity vanishes, as each current 
term, eqs. ( 12 ), (30), (31 ), gives no flux contribu- 
tion there. Then the total charge is only due to the 
gauge current contribution in agreement with the 
general result of D'Hoker and Goldstone. 

kQi.d I,=,f = AQA I,=,, 
If 

tf 

= f d, fd3x0   
tf 

g2 f d S . K )  (33) _32=2(f d3xKo+ f dt . 
l = I f  - -oo  

In the gauge we are considering the last term in the 
above equation vanishes and the total charge is given 
by the gauge current density contribution. Evaluating 
eq. (33) at t r = ~  we have Qlind= 1. 

In the same way as was done in the scalar field case, 
we can now look at the zero-energy fermion modes in 
the background of both gauge and scalar fields. In this 
context the existence of one zero-energy mode was 
already demonstrated in ref. [I 6]. There, with the 
scalar field as in eq. (9) and the gauge field given by 

1 r e (.ijkXjal,- + a d  
A, = , (34) g (r2+p 2) r 2 

a normalizable solution to the zero-energy Dirac 
equation at t = 0 was found. The above field configu- 
ration, eqs. (9), (34), and the one we have previ- 
ously considered are related by a static continuous 
gauge transformation at t = 0, then both energy spec- 
tra are the same. 

Observing that the symmetry between positive and 
negative energy states still holds at t = 0, as the added 
gauge field obeys the condition A,(x,  t ) =  
- A , ( - x ,  - t), and assuming that the zero-energy 
mode is occupied, we have that the ferrnionic charge 
induced by the t=  0 background field configuration 
is ½. This assumption is consistent as the same gauge 
invariant result may be obtained by evaluating eq. 

(33 ) at t = 0. Furthermore, one can prove, using the 
ansatz of eqs. (25) for the fermion fields, that be- 
sides the zero-energy mode of ref. [ 16 ] there exists 
an extra mode, which becomes nonnormalizable as 
soon as the origin is considered within the configu- 
ration space. 

As a final point we want to use the above consid- 
erations to derive via symmetry arguments the frac- 
tional fermionic charge induced by the sphaleron 
configuration. We recall that in the gauge Ao = 0 the 
sphaleron scalar and gauge fields are 

~Osoh = ~ h ( gvr ) U ~ 

A, = - ~f(gvr)O, U ~ U  ~+ l f(g.__vr) 
- g r 2 - -  ~okXjak, 

(35) 

where 

~.joo . X ' O "  
= 1  

r 

and the functions h (gvr), f ( g v r )  have the following 
asymptotic behaviour: 

h=fl~, f=y~2 

near ~= 0 and 

h= 1 - (r//~ x) e x p ( _ ~ 2 ~ ) ,  

f =  1 - 3  exp( - ~ / 2 ) ,  

as ~--+oo (~=gvr is the dimensionless radial distance 
and fl, y, q, d are constants of order unity, which can 
only be determined by finding the complete solution). 

Using the boundary conditions of the radial func- 
tions of the scalar and gauge sphaleron fields, it is easy 
to prove [ 21 ], with the same ansatz as in ref. [ 17 ], 
that a zero-energy fermion mode must appear in the 
presence of these background fields. Furthermore, 
from eqs. (35) we observe that the scalar and vector 
fields obey the conditions 

~0(X) = --~0(--X), A i ( x ) = - - A i ( - - x ) .  (36) 

This leads, once more, to the existence of symmetry 
between positive- and negative-energy states. Rea- 
soning in the same way as above, we then conclude 
immediately that the fermionic charge induced by the 
sphaleron is ½. This result is the same as that ob- 
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tained by Kl inkhamer  and Manton  [ 12 ] considering 

only the gauge current density in the gauge where the 
vector field has a trivial expression at spatial infinity, 
that is to say, placing t f=0  in eq. (33).  We have ar- 
rived at the same induced charge value in the back- 

ground of the sphaleron as after reaching the static 
configuration of the ' t  Hooft ins tanton and its asso- 
ciated scalar field at t=  0. Looking at both configu- 

rations, eqs. (9) ,  (34) at t = 0  and eqs. (35),  we 
observe that they differ only in the radial functions. 
Nevertheless, these functions have the same bound-  

ary conditions. Therefore these configurations lead 
to the same induced charge ½, since the energy level 

crossings depend on these radial functions only 
through their boundary  conditions. Of  course, the 
main  point  in considering the sphaleron as a partic- 

ular configuration is that the funct ionsf(gvr) ,  h(gvr) 
are those which minimize  the energy functional,  but  
their expicit expression is irrelevant for the above 

considerations. 

I would like to thank Roberto Peccei for introduc- 

ing me to this subject and for very helpful discussions 
and warm encouragements.  I am grateful to A. 
Ringwald for point ing out some relevant references 

to me. 
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