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Monte Carlo determinations of the distribution of topological charge are used to study 
properties of the SU(2) pure-gauge 0-vacuum. In particular, we compare the possibility that a 
phase transition occurs, as 0 is varied, to the simple dilute instanton gas picture. For small 
physical volumes we find no deviation from the dilute instanton gas, but for z t > 1.5 there are 
deviations that may be statistically significant. For example, for z t > 1.5 the partition function has 
a zero, and the ratio of the fourth and second moments of the charge distribution changes its value 
suddenly at z t = 1.5. 

1. Introduction 

O n e  o f  t h e  c h a r a c t e r i s t i c  f e a t u r e s  o f  S U ( N )  n o n a b e l i a n  g a u g e  t h e o r i e s  is t he  

e x i s t e n c e  o f  a n  i n t e g e r - v a l u e d  t o p o l o g i c a l  c h a r g e  [1] 

1 
(2 = 16rr 2 f dax  t r  { F ~  * F ~  } ,  * F ~  = ½e~ooFoo. (1 .1 )  

This results in an additional term in the QCD action 

S o = S + iOO, (1.2) 

which does not modify the classical equations of motion, although there are physical 
consequences through quantum effects. In particular, each angle O E [0, 2¢r) corre- 
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sponds to a different vacuum state, which means that 0 is a free parameter*.  The 
appearance of 0 has at least three interesting implications. 

The vacuum is an eigenstate of CP (and T)  only for 0 = 0, qr. Measurements of 
the electric-dipole moment  of the neutron [2, 3] provide a peculiarly small experi- 
mental  upper  bound of 0 ~< 10 -9. Many have sought an explanation for the strong 
CP-problem, " W h y  is 0 so small?" A popular mechanism introduces an additional 
U(1) "Pecce i -Quinn"  symmetry [4] into the standard model. This tunes 0 to zero. 
However, the Peccei-Quinn symmetry must be spontaneously broken [5], and the 
associated pseudo-Goldstone boson, the axion, has not been observed, despite 
strenuous at tempts [6]. Thus, one is perhaps forced to wonder if some other 
mechanism can solve the strong CP-problem. Presumably, any solution intrinsic to 
QCD will be nontrivial and nonperturbative [7, 8]. For example, Wu and Zee have 
analyzed the topology of the gauge orbit space, and speculated that 0 is restricted to 
0 = 2~rn, n ~ Z, by an analogy with magnetic flux in a superconductor [9]. 

Another  nonperturbative issue is the influence of 0 on the dynamics of non- 
abelian gauge theories, in particular the confinement mechanism. There is numerical 
evidence that confinement at 0 = 0 is caused by the condensation of color magnetic 
monopoles [10]. In the 0-vacuum these monopoles acquire an electric charge 0/2~r; 
they become dyons [11]. This led 't Hooft  to propose new "oblique" confinement 
phases, in which monopole-gluon bound states condense [12]. These phases are 
separated from the ordinary confined phase by phase transition(s) at some 0 ~< 7r. In 
an oblique confinement phase, a quark can bind to a dyon to form a liberated object 
with the flavor of the quark and the color magnetic charge of the monopole. 

Finally, 0 can be viewed as an artificial parameter which can be exploited to 
obtain information about the theory at 0 = 0. It is an imaginary chemical potential 
for the topological charge Q, so derivatives of the free energy with respect to 0 
measure the influence of topologically nontrivial configurations on the vacuum. 
Furthermore,  these derivatives can be related to the mass and couplings of the 77' 

meson [13]. 
With these ideas as motivation we have sought t o  analyze the 0-dependence of 

S U ( N )  gauge theory using numerical simulations of  the lattice theory. A direct 
simulation of the 0-vacuum is impossible because the action has an imaginary part. 
However, one can generate configurations at 0 = 0 and include the Boltzmann 
factor e i0Q in the measured observable. Large values of 0 therefore require very 
large ensembles of gauge-field configurations for which Q has been evaluated, and 
this is the basic limitation of this approach. At present, sufficiently precise data 
have been published only for pure gauge (SU)2 [14], but, as we shall see, even it 

becomes inadequate once 0 ~ ~ ' .  

* Actually, in the standard model O is replaced by 0 = O + ep, where ff is the phase of the determinant 
of the quark mass matrix; if any quarks are massless, one can choose ~ so that 0 vanishes. We shall 
assume that none of the quarks is massless, and write O for O. 
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Several years ago a pilot investigation along these lines appeared [15]. However, 
this work was on a smal l  lattice (5 4) at a small value of the gauge coupling 
(fl = 2.1). Moreover, ref. [15] used a heuristic (though integer) prescription for the 
charge [16]. In contrast, we have lattices up to size 16 4, and a range of couplings 
2.2 ~< fl ~< 2.7. Most importantly, we use the topological charge of Phillips and Stone 
[17], which is based on reconstructing a fiber bundle [18]. 

In sect. 2 we provide the basic formalism for discussing g-physics. Sect. 3 contains 
the results of our analysis of the Monte Carlo data from ref. [14]. This includes the 
g-dependence of the partition function, the free energy, and the "string tension", as 
well as the volume dependence of the 7' self-coupling. We compare our results to 
the predictions of the dilute instanton gas [19]; for larger volumes, the numerical 
simulations deviate from this naive picture. Finally, sect. 4 provides some outlook. 

2. O-dependence of physical observables 

We consider SU(2) lattice gauge fields U: with the Wilson action. In the O-vacuum 
the expectation value of an operator is given by the path integral 

f [dUe]d) e -so 
(O>e= f[dUele_So . (2.1) 

The functional integration over field configurations decomposes into a sum over 
sectors with common topological charge Q. The topological charge distribution (at 
0 = 0) is 

f[dUe]oe -s 
PQ f[dUe]e_ s , EPQ = 1, (2.2) 

Q 

where [dUe] Q denotes the functional measure on the charge-Q sector. The PQ play a 
central role in our study of 0-effects because they are directly determined in the 
numerical simulations. 

Observables which only depend on the topological charge can be obtained from 
the 0-dependent partition function 

Z(O) = EPQe -'°Q, (2.3) 
Q 

and the associated "free energy" per spacetime volume V 

1 
F(O) = - - - I n  Z(O). 

V 
(2.4) 

Moreover, a phase transition in 0 would be reflected by nonanalytic behavior of the 
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partition function Z(O) in the complex P-plane. Actually, since numerical simula- 
tions necessarily work with infrared and ultraviolet cutoffs, we expect only an 
accumulation of zeros in Z(O) [20]. 

The expectation value of some operator 0[Ue] in the P-vacuum can be written as a 
sum over different topological charge sectors 

1 
(#))°= Z(O) ~-'<O)QPQe-i°Q' (2.5) 

Q 

where 

f [dUelaC) e - s 
(O)O = f[dUelQe_ s (2.6) 

denotes the expectation value of O in the sector with fixed topological charge Q. 
The connected moments of the topological charge distribution can be obtained 
directly from the free energy 

1 d"F 
~(Q")o,c  = - i " - - ( O ) .  (2.7) 

dO" 

For example, the topological susceptibility, given by 

d2F 1 
X,(O) = - ~ ( 0 )  = ~ ( ( Q 2 ) o -  (Q)~),  (2.8) 

pQ(i~) ~ p(i)p(i) p(i) p 0 ) =  (Q2)a, cexp( - (Q2)° ,c /2 )  (2.9) 
= , .  ' O - n '  = - 2nn! n=O 

From eq. (2.9) one finds that the free energy of the dilute instanton gas is 

F(a)(O) = Xt(0)(1 - cos O), (2.10) 

which is regular in the complex 0-plane. Hence, this scenario has no phase transition 
in 0, contradicting oblique confinement. 

At least in the large-N limit of SU(N), the topological susceptibility of the 
pure-glue theory at 0 = 0 is related to the mass of the o'-meson according to [13] 

2 2NF d2F [ 

turf= ~'~ ~ ( 0 )  pureglue' (2.11) 

is especially interesting. 
The simplest picture of the vacuum is the dilute instanton gas [19]. The topologi- 

cal charge distribution is obtained from a convolution of separate Poisson distribu- 
tions for instantons and anti-instantons 
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TABLE 1 
Parameters of the simulations. The lattice size is always L 4, fl is the gauge coupling, NQ is the number 
of configurations for which the topological charge was computed, and "group" refers to the physical 
volume, as explained in the text. 

L fl NQ group L fl N O group 

6 2.3 5000 A 
8 2.4 12500 A 
8 2.5 3000 A 

10 2.5 7000 A 
12 2.6 2600 A 
12 2.7 1100 A 
16 2.7 1800 A 

6 2.2 5500 B 
8 2.3 20000 B 

10 2.4 19069 B 
12 2.5 3200 B 

where f is the large-N limit of the meson decay constant ,  and N v is the n u m b e r  of 

l ight quark  flavors. In  the same context, the four-point  ~/' self-coupling of the 

effective in teract ion vertex 

1 
V(4)(~,) = ~.Ig~,(4) 7]t4 , (2.12) 

is de te rmined  by the fourth derivative of F(O)  [13]: 

where 

gnU'4) 4N2 d4F pu~e 2NF 
f4  ~0--~ (0) -~- f ~  FF/2,R , (2.13) 

glue 

4 (Q)O,c _ _  4. R =  <Q2) ° , <Q > o , c = ( Q 4 > o - 3 < Q 2 > o  2- (2.14) 

Even beyond  the validity of eq. (2.13), R is an interesting quant i ty  in the context of 

numer ica l  s imulat ions because it is universal,  i.e. it is a dimensionless ratio of 

physical  observables. 

3. A n a l y s i s  o f  the  M o n t e  Car lo  data  

In  ref. [14] the probabi l i ty  dis t r ibut ion PQ for a wide variety of lattices has been 

determined.  The simulat ion parameters  of the lattices included in the 0-vacuum 

analysis  are listed in table 1. They fall into two groups. Group  A corresponds to 

small  to in termedia te  physical volumes with* z t = Laxlt/4<~ 1.5. In  these volumes 

* z t is related to the conventional dimensionless measure of the physical volume, z = L/~, where ~ is 
the correlation length, by z -- 4.7z t. 
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the spectrum is well described by a perturbative hamiltonian [21], and color 
magnetic monopoles are dilute [10], indicating that confinement has not yet set in 
dynamically. Also, the dilute instanton gas becomes a reliable approximation [22]. 
Group B corresponds to larger physical volumes, z t >/1.5; here the validity of the 
perturbative hamiltonian breaks down, and the monopoles condense - the dynam- 
ics of confinement emerge. One also can no longer assume that the dilute instanton 
gas picture is valid; long-range correlations might induce significant interactions 
between the topological charge carriers. 

Fig. I displays the charge distributions obtained on ensemble ~¢, L = 8 at 
fl = 2.4, from group A, and on ensemble ~ ,  L = 10 at fl = 2.4, from group B. The 
two distributions are somewhat different in the region of small charges. Ensemble 
~ ' s  distribution is flatter, and its fluctuations are greater. Since the partition 
function is the Fourier transform of PQ, we anticipate an effect for larger values of 
0. The partition function Z(O) for these two ensembles is shown in fig. 2, together 
with the dilute gas prediction using the susceptibility determined in the simulation. 
In the small volume, fig. 2a, we find agreement with the dilute gas, within the errors. 
This was seen also in ref. [15], which also had z t < 1.5. On the other hand, in the 
larger volume, fig. 2b, we observe a zero in Z(O) around 0/~r = 0.35 - this result is 
perhaps a first indication of the accumulation of zeroes that signals a phase 
transition [20]. The partition function determined from the numerical simulations 
has too few zeroes in the complex plane to see any accumulation, because in 
practice we have the Pe only for a restricted range of Q. The deviation of Z(O) from 
the dilute gas is a 2-3 standard error effect. Throughout, we determine the errors 
after binning the data into subensembles, and the statistical significance is stable 
against different binning procedures. For 0-dependent quantities the solid line 
indicates the central value, and the dashed lines a one standard error fluctuation. 

Fig. 3 shows the normalized free energy, F(O)/xt(O), for all lattices in the two 
groups, again compared to the dilute-gas prediction. The dashed error curves are 
omitted for clarity. For small volumes, fig. 3a, we find agreement up to 0/~r ~ 0.55, 
beyond which the statistical errors become too large to draw any conclusions. For 
the larger volume, fig. 3b, the free energy diverges at the zero of the partition 
function; note that all group B lattices have a zero in the range 0.30 < 0/~r ~< 0.40. 

The 0-dependence of the normalized topological susceptibility, X t(0)/X,(0),  is 
shown in fig. 4. In this case statistical uncertainties are tolerable only in a small 
range of 0, in which both groups agree with dilute-gas behavior (within errors). 
Note,  however, that even the central value from ensemble ~¢ is consistent with the 
dilute gas, whereas the central value from ensemble M is not. 

Besides purely topological quantities, we have studied the 0-dependence of the 
energy of a unit of 't Hooft electric flux, Eo; in the string picture of the vacuum 
E o = LaK, for large L, where K is the string tension. We extract aE o 
from the exponential decay of the correlation function of Polyakov loops, 
E x ~ P ( x l ,  t)P(O±,O)) o. For each value of 0 we fit the correlation function to a 
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Fig. 1. Charge distributions of: (a) ensemble ~¢ at L = 8, fl = 2.4, typical of group A; and (b) ensemble 
at L = 10, fl = 2.4, typical of group B. The dotted histograms indicate the dilute gas prediction, 

whereas the solid lines with error bars indicate the Monte Carlo simulations. 
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indicate a one standard error fluctuation, and the dotted lines indicate the dilute gas prediction. 
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Fig. 3. Free-energy density (normalized by the susceptibility) F(O)/xt(O ) as a function of 0, for (a) all 

of group A, (b) all of group B. The dotted lines indicate the dilute gas prediction. 

single hyperbol ic  cosine, discarding the first two timeslices. The results for the 
L = 12, fl = 2.5 ensemble and ensemble M are shown in fig. 5. It turns out that 
Eo(O ) does no t  vary much for 0/~r _< 0.2, indicating that color is still confined in this 
range. At  larger values of  0 the statistical fluctuations become overwhelming. We 
should mention,  however, that on these lattices finite-volume effects and scaling 
violations of  the electric flux energy are sizeable. We also cannot  rule out the 
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gas prediction. 
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Fig. 5. *'String tension" aEo/L obtained from the 't Hooft electric flux as a function of 0 for (a) the 

L = 12, fl = 2.5 ensemble, (b) ensemble ~'. The dashed lines indicate one standard error fluctuations. 

pos s ib i l i t y  tha t  la t t ice  ar tefacts  - the d i s loca t ions  - wash  out  the 0 - d e p e n d e n c e  of 
E 0 even  in  t h i s / 3  range  [23]. 

T h e  z t d e p e n d e n c e  of  the q u a n t i t y  R,  de f ined  in  eq. (2.14), is p lo t t ed  in  fig. 6, 

i n c l u d i n g  also some  o ther  s imu la t i ons  f rom ref. [14]. I n  par t i cu la r ,  the solid po in t s  

c o m e  f r o m  s i m u l a t i o n s  f rom the  mixed  f u n d a m e n t a l - a d j o i n t  ac t ion,  so tha t  fig. 6 

a lso  shows a test  of  universa l i ty .  In  the d i lu te  gas p ic ture ,  one  has  R = 1, which  the 
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Fig. 6. The ratio R of eq. (2.14) as a function of zt; all simulations from both groups are included, as 
well as a few more from ref. [14]. The solid points were obtained using the mixed fundamental-adjoint 

action. The dilute gas predicts R = 1. 

small-volume simulations substantiate. However,  at z t ~ 1.5 the ratio R drops 
rapidly  to R = 0.3. Through eq. (2.13) it implies an 7' self-coupling [13] which is 

rather weaker than in the dilute gas model. In fact, R is also consistent with zero, 
for z t >_ 1.5, which perhaps indicates that the free energy is of the form F(O) c~ 02, 

as conjectured by Affleck [24]. The conjecture is supported by the third moment  

(Q3)0,c , which is consistent with zero, for z t >_. 1.5. 

4. Conclusions 

Calculat ions of the spectrum [21, 25-27], the topological susceptibility [14, 22], 
and the density of color magnetic monopoles  [10] point  to a coherent  picture of 
Q C D  in finite volumes. In  small volumes the physics is well described by perturba- 

tive a n d / o r  semiclassical techniques. However,  a round z t ~ 1.5 (z = L / ~  ~ 7, ~ = 
correlat ion length) a qualitative change takes place, and the vacuum becomes truly 
nonperturbat ive.  Our analysis of the 0-vacuum in SU(2) lattice gauge theory 
supports  this picture. For  simulations with z t < 1.5 we found no significant devia- 
t ion f rom a dilute instanton gas. On the other hand, for z t > 1.5 we found some 
surprises: mos t  remarkable are the zero in Z(O)  at 0 = 0.35~ and the rapid drop in 
R. These intriguing results deserve to be strengthened by more simulations. Unfor-  
tunately, one would need about  100 times better statistics to attain precise enough 

charge distributions. 
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There is little we can say about the strong CP-problem. In the Wu-Zee  [9] 
scenario, the free energy F(O) has a deep well at O --- 2qrn. The physical picture is 
that the dynamics might tune 0 to minimize F(O). To realize this, QCD probably 
needs to be coupled to some other system, which would carry off the energy. At an 
early stage of our runs the large-z t Monte Carlo data appeared to support the 
W u - Z e e  free energy. However, the higher statistics analyzed here do not really 
encourage any speculation. 

In order to test the ideas of refs. [9,12] and others, the Monte Carlo methods 
must be refined. This might be possible using the techniques of refs. [28] to compute 
simultaneously the/3 and O dependence of the partition function. The variation for 
complex actions proposed by Gocksch [29] appears especially promising, and we are 
now testing it. Applied to the 0-vacuum, this would mean running Monte Carlo 
simulations at fixed Q, keeping a record of how eager the simulation is to leave the 
fixed-charge sector. This technique would allow us to determine Po for very large 
values of Q, which do not appear in conventional Monte Carlo runs. With a large 
range of Q the numerical approximation to Z(O) will have more zeros, and the 
hypothesis of a phase transition [12] could be tested. Whether even more esoteric 
speculations can be tested, like those touching the strong CP-problem [9], remains 
to be seen. 

We have profitted from discussions with E.M. Ilgenfritz, M.L.L. and C.S. thank 
R.D. Peccei for hospitality during visits to the DESY theory group. Computer time 
was provided by DESY, the Niels Bohr Institute, the KFA JiJlich, and the Universi- 
ties of Berlin, Hamburg, Hannover, and Kaiserslautern. Finally, we thank M. 
Kremer for collaborating in ref. [14]. 
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