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Abstract. We calculate the O(a~ 2) correction to 
the energy-energy corelation cross section in e+e - 
annihilation using different resolution criteria in the 
limit of vanishing resolution cuts. We compare this in 
the back-to-back angular region with results of the 
logarithm approximation (LA) and deduce higher 
order corrections (beyond O(a~)) from the LA 
formula. The final results are compared with recent 
TASSO data. 

1 Introduction 

The measurement of energy-energy correlation (EEC) 
in e+e - annihilation has been used quite frequently 
as a possible test of perturbative QCD. Experiment- 
ally, one measures the energy weighted correlation 
defined by 

1 dE 2 1 
adcosz W2Azsinz ~ a~_l 2 EA, EAb (1.1) pairs in 

AZ 

where Z is the relative angle between two calorimeters 
and the index A specifies the event (1 to N), while a 
and b specify the individual particles. To compare 
with perturbative QCD one then calculates the same 
quantity for quarks and gluons. The collinear con- 
figurations are removed by looking at angles X, 
between quarks and gluons, such that X 5 0  ~ 180~ 
Due to the energy weighting the rapid variation of the 
QCD matrix elements is tempered in the region of 
small parton momenta. 

In QCD perturbation theory the correlation func- 
tion E is written up to second order in as as 

1 _ _ d E  _ a s C(cos Z) + D(cos X) (1.2) 
a o d cos Z 

where a o is the total annihilation cross section in 
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zeroth order of a s. The first order term receives its 
contribution from the well-known one-gluon emission 
diagrams [1]. The second order term D(cos Z) receives 
contributions from graphs with q~gg and qgtqgl final 
states and also from graphs which consist of virtual 
corrections to the qgtg final state. These O(a 2) 3- and 
4-parton cross sections are individually infrared and 
collinear divergent. To cancel these singularities 
several methods have been invented which give similar 
results. One finds that D/C ~-5-10 over the whole 
range of cosx, so that, since (aJn)-~0.05, the O(a~) 
correction is appreciable and leads to an increase of 
up to 50~ compared to the lowest order result [2-4]. 
The O(a~) cross section (1.2) is useful only for Z values 
away from Z = 0~ 180~ In the limiting back-to-back 
(X ~ 180~ and collinear ()~--* 0 ~ regions the two func- 
tions C(cosx) and D(cosx) diverge. To study the 
behaviour of the EEC in these limiting regions one 
must go beyond perturbation theory of finite order 
and try to sum up all terms up to finite order. This 
can be done by summing the most singular contribu- 
tions to the EEC in the respective limits. Of course, 
this leading logarithm summation is valid only in the 
nearest vicinity of X = 0 ~ and X = 180 ~ and cannot be 
applied for large angles away from the forward or 
backward direction, respectively. In order to obtain a 
reasonable approximation of the EEC over all angles 
one can try to combine the logarithmic approximation 
(LA) with the finite order results. To be more specific, 
let us consider the combination of the LA in the limit 
Z--* 180~ with finite order results in the following form 

1 dE 1 dE LA 
a0 dcos Z - aodcos Z + X(cos Z) (1.3) 

where X(cos Z) contains all terms of (1.2) not already 
contained in (1/%)(dE/dcosz) after expansion in 
powers of a s up to a~. Then (1.3) has the correct 
behaviour for Z ~  180 ~ (this will be given later) and 
agrees with (1.2), if expanded in powers of a s up to 
O(a~Z). One might hope that (1.3) will be a better 
representation of the EEC in QCD than (1.2), since 
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near ;~ = 180 ~ it is corrected by an infinite power series 
in as, although only valid for angles very near to the 
back-to-back direction. In this region the logarithms 
are large and one might hope that their sum represents 
a good approximation to the EEC for angles near the 
backward direction. Away from the backward direc- 
tion (1.3) agrees with (1.2) up to O(e~ 2) terms and the 
higher order terms contained in the LA term in (1.3) 
constitute some correction. The many large logarith- 
mic factors in the LA term come from the infrared, 
soft gluon region. There has been considerable 
theoretical effort for controlling these logarithmic 
factors and sum them to all order in G [5]. In this 
work we shall employ the representation of the LA 
term and supplement them with the higher order 
results represented by (1.2). This way we obtain a 
representation of the EEC which is valid not only for 
small back-to-back angles (i.e. of order 180~ but 
also for large angles up to angles near the collinear 
region due to the term X(cos Z) in (1.3). 

If one discusses the limiting behaviour for cos ;~--* 
- 1  it is useful to define a variable t /=  �89 + cos X) 
and to include in the LA term all singular terms in 
the limit q --, 0, i.e. all terms proportional to l/r/. Then 
X has the property that it contains all contributions 
such that 

lim ~/X(cos X = 2~ - 1) = 0. " (1.4) 
q~O 

This procedure was followed easily by many authors 
when combining the summed LA, which is the first 
term in (1.3), with the lowest order term, i.e. the term 
(G/re)C( cos Z) in (1.2) (see (2.1) for C(cosz)) since the 
singular terms of C are known explicitly (see (2.2)). 
Unfortunately the singular terms of D(cosx), i.e. the 
terms proportional to t/-1, are not firmly established. 
The reason being that D(cos Z) has been obtained only 
numerically. Although some contributions of D(cos Z) 
have been calculated analytically, of which we shall 
present examples in the next section, the complete 
result of D is produced only through extensive 
numerical integrations using Monte-Carlo routines. 
The largest effort to establish the singular behaviour 
of D for ~/--* 0 has been made by Ellis et al. [3]. They 
found that the two most singular terms proportional 
to ln3(1/~)/~ and to lnZ(1/~/)/t/ agree with the cor- 
responding O(e 2) terms of the LA but that the 
ln(1/tl)/t/term already differs from the predicted LA 
term (the term 1/7 is not predicted in the LA approach). 
Since even the agreement of the leading and the next 
sub-leading term could be verified only inside very 
large errors we consider the problem whether D(cos X) 
as calculated numerically in [3] agrees in the most 
singular terms (,,~ 1/~/) with the LA as unsolved. Since 
the numerical evaluation of D is particular problematic 
for small ~ there is little hope that the singular 
behaviour of D for ~/~ 0 will be known in the future. 
In addition the evaluation of D(cos Z) is not unique, 
since there are several methods, how to cancel infrared 
and collinear divergences between virtual and real 

O(a 2) corrections. This might have bearing in parti- 
cular on the third leading term of D(cos;0 for ~/~0 
proportional to ln(1/r/)/t/. Therefore we propose a 
more pragmatic procedure. We start with (1.3) and 
calculate the LA term as it appears in the literature 
[5] and determine X(cos Z) in (1.3) from our evaluation 
of(1.2) minus the terms up to O(~ 2) contained already 
in the LA-term of (1.3). In this form we have a 
representation of the EEC with reasonable behaviour 
for r /~  0 which agrees with the higher order evaluation 

2 In this form we give up to terms proportional to ~ .  
up the property (1.4). Our X(cos Z) might still contain 
sub-leading singular terms in the 0(~ 2) contribution. 
Only part of them is contained in the LA-term. In this 
framework the LA term has been considered only in 
connection with the O(G) contribution to X(cosz). 
Then there is no problem to obey (1.4) since the O(as) 
term is known analytically and its singular part 
coincides with the O(as) part of the LA-term. It is the 
purpose of this work to extend (1.3) in such a way that 
it includes the completes O(a 2) term in the whole i/ 
range. This way we can learn something about higher 
order corrections (ct~(n > 3)) in the small t /range and 
can study how (1.3) behaves in the limit r /~0.  The 
range of small t/is also heavily influenced by hadroni- 
zation effects of quarks and gluons. Since the effects 
diminish with increasing beam energy it is particularly 
important to know the modification of the ECC in 
the small t/range through higher order terms. 

The outline of our work is as follows. In sect. 2 we 
discuss different approaches for calculating the higher 
order term D(cosz) in (1.2) and compare the results 
to them. Section 3 contains the formulas for the LA 
contribution in (1.3) and the numerical results for the 
EEC based on (1.3) with one particular form for D 
from Sect. 2. These results are compared with recent 
results from the TASSO collaboration at PETRA. 

2 0 ( ~  2) Corrections to the EEC 

In this section we describe different methods for 
calculating D(cosz) as defined in (1.2) and compare 
their results. First we present results based on resolu- 
tion dependent cross sections for 3 and 4 jets. This is 
an extension of earlier work of Schneider et al. [4]. 
Then we consider results from [2] and [3] where the 
EEC was calculated directly without defining jet cross 
sections. 

The first order term C(cosz) in (1.2) receives its. 
contribution from the well known one gluon emission 
diagrams and reads [1] 

C(cos z) = Cr 
3 2~ 

-[2(3 - 6~ + 2~2) In (1 - 0 + 3~(2 - 30] 
(2.1) 

where ~ = �89 - cos X) = 1 - q. Its singular approxi- 
mation in the limit ~/--, 0 is 



CF 
C(cos Z)LA = ~ -  (ln (l/r/) -- 3). (2.2) 

The second order term D(cosz) in (1.2) receives its 
contributions from graphs with qglgg and qglqCl final 
states and from all graphs which consist of the virtual 
corrections to the q~g final state. These 4- and 
3-parton cross sections are individuallly infrared 
and collinear divergent. To cancel these singularities 
several methods are available. One possibility is to 
define cross sections for the production of 3- and 4-jets 
and then calculate the EEC for jets. Such jet cross 
sections are resolution dependent. For example, the 

2 i s  3-jet cross section to order as 

do-3"jet(~s 5)  = d o  "3"part~ 4- do-4"part~ 8) (2.3) 

where do "3-part~ is the O(~) contribution with q @  
in the final state, and where d o  -4-part~ stands for the cross 
section for e + e - ~ qgtg9 and e + e - --* qclq?l, in which 
two of the 4 partons are not resolved. As resolution 
we can take, for example, the Sterman-Weinberg 
criteria. Then two partons are not resolved, if the two 
partons lie inside a cone of (full) opening angle 
5 and/or the energy of one of the two partons is 
< sW/2 .  This resolution dependent 3-jet cross section 
has been calculated analytically in an approximation 
where subleading terms which are not needed for the 
cancellation of infrared and collinear singularities had 
been neglected [6]. It depends on the two scaled 
energies for quark and antiquark xi = 2 E i / W ( i  = 1, 2) 
like the lowest order 3-jet cross section. It is straight- 
forward to calculate the EEC from it. Since subleading 
terms which give contributions proportional to e and 
5 have been neglected, do'3-jet(e, 5)  is reliable only for 
very small e, b-values. To obtain the complete EEC the 
genuine (hard) 4-jet contributions da4-iet(e, 5) must be 
added. It is the cross section for the production of 4 
partons which fails the e, 5 cuts, and which is obtained 
by simple Monte-Carlo integration. This part is exact 
and includes all O(e) and 0(8 )  terms. Altogether 
D(cos Z) is given in this scheme by 

3 EiE.  ,, d o - 3 " j e t ( / 3 ,  8 )  

D(cos Z) = j' dP3 V ~ 5(PiPj ~,s~ = ~ W ~ - c o s  z )  

_ 4 EiE.  da4-jet(e, 8) 
�9 ldP+ S ~ - ' ~ - J b ( ~ .  ~ ,~,~ ~ -  c o s  z) 

i , j =  l vv 

(2.4) 

where dP3(dP4)  denotes the 3-body (4-body) phase 
space integration for massless quanta. Both da3J~t(e, 5) 

4 j e t  and d a -  (e, 5) depend on e and 8; the 3-jet cross 
section decreases for e, 5 --* 0 like ( -  In e In 8) whereas 
the 4-jet cross section increases like ln eln 5. In the 
sum (2.4) this strong e, 5 dependence, together with 
the subdominant single logarithmic terms ,-~ In e and 

In 5, is expected to cancel, so that the sum (2.3) has 
a finite limit for e, 5 --* O. This was checked numerically 
for the inclusive thrust distribution in I-7]. In [4] 
C(cosz) and D(cosz) have been calculated for two 
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Fig. 1. First  and  second order  cont r ibu t ions  C(cos Z) and  D(cos Z) 
to the ene rgy -ene rgy  correlat ion for e, c5 = 0.05, 5 + and  s, 5 = 0.15,15 ~ 
as a funct ion of cos Z 

values of ~, 5, i.e. e, 6 = 0.15, 15 ~ and e, 6 = 0.05, 5 ~ It 
was found that C(cosz) increased somewhat with 
decreasing e, 8. This change is due to the separation 
of the 2-jet contribution from the 3-jet (q?/g) final state. 
In D(cos Z) the variation with e, 5 was found to be 
stronger. Part of this variation comes again from the 
change in the 2-jet contribution. The other part 
originates from the fact that in the calculation of 
da Jet(e, 5) sub-leading terms proportional to e and 
5 had been neglected [8]. In this paper we are 
interested to know the limit of (2.3) for s, 8 - 0 .  For 
this purpose and to compare with the earlier results 
we have calculated C(cos Z) and D(cos Z) for e, 5 = 0.15, 
15~ 0.05, 5 ~ and 0.01, 1, 5 ~ We have plotted C(cosx) 
and D(cosz) for ~,5=0.15,15 ~ and e,5=0.05,5 ~ in 
Fig. l* and for e, 5 = 0.01,1.5 ~ in Fig. 2. We see 
that C(cos Z) in Fig. 1 changes by 30%, whereas D(cos Z) 
increases by 60%, if we go from the higher to the lower 
e, 5 values. This shows that a large fraction of the 
change in D is due to the separation of different 2-jet 
contributions which is the only reason for the e, 5- 
dependence of C(cos Z). The result for D(cos X) at e, 8 = 
0.01, 1.5 ~ is not very accurate due to appreciable 
Monte-Carlo fluctuations. But inside the fluctuations 

* The  results for e, 6 = 0.15, 15 + and  e, 6 = 0.05, 5 ~ differ f rom the 
results in [4] for the  same  e, 5. In [4] easy  to calculate subleading  
te rms  propor t iona l  to e In 5 were kept. In  I8] it was  found  tha t  such  
te rms  are cancelled by other  subleading  contr ibut ions .  Therefore we 
left t hem out  here. We  checked tha t  these s In 5 t e rms  of [4] were 
negligible for s, 5 = 0.01,1.5 ~ 
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Fig. 2. Same as Fig. 1 for e, ~ = 0.01, 1.5 ~ 

it agrees approximately with the result for e = 0.05, 
5 = 5 ~ This means, that for small enough e, 3 values 
D(cos Z) is independent of e, 5 and we can consider the 
result in Fig. 2 as the limit for ~, 3 ~ 0. For  comparison 
of different methods we write (1.2) in the following form 

1 dZ _~zs C(cosz)( l+~SR(cosz)~.  (2.5) 
Go dcosz  n 

We have plotted R(cos Z) for e = 0.05, 3 = 5 ~ in Fig. 3, 
the corresponding curve for e = 0.01, 3 = 1.5 ~ is similar, 
but with much larger Monte Carlo fluctuations. 

A second possibility to cancel infrared and collinear 
singularities is to calculate (2.3), but with a different 
resolution approach to separate 3-jet from 4-jet 
production. An even simpler than the (e, 3) resolution 
is the invariant mass resolution. In this case two 
partons i,j are irresolvable if(p i + pj)2/W2 ~ y. By 3-jet 
cross section we then understand the cross section for 
events which consist of three dusters, each having an 
invariant mass squared smaller than yW z. In analogy 
to the case with e, 5-cuts do'4"jet(y) is the cross section 
for e + e-  --* q~lgg + q(lq71 with (p~ + pj)2 >= yW 2 for all 
combinations i,j = 1, 2, 3, 4. Then D(cos Z) is calculated 
from (2.4) with e, 6 cuts replaced by the y cut. Both 
cross sections da3-jet(y) and da*J~t(y) depend on y. 
da3J~t(y) decreases with decreasing y like ( - lnZy) ,  
whereas the daajet(y) increases like In z y. In the sum 
(2.4) these and the y dependent subdominant terms 

In y should cancel. This was checked for the inclusive 
thrust distribution on [7]. To see how D(cos Z) changes 
with the y resolution and to check whether it 
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Fig. 3. Ra t io  R(cos Z) of second to first o rder  con t r ibu t ion  as a 
function of cos Z for e, 5 = 0.05, 5 ~ and  y = 0.0001 

approaches the same limit for small enough y values 
as D(cos Z) obtained with e, 6 resolution above we have 
done the evaluation of D(cos ;~) for y = 0.01, 0.001 and 
0.0001. The formulas for da3"jet(y) are taken from [7]. 
They are not complete since subdominant terms O(y) 
could not be calculated analytically and had been 
neglected. For  the da3-J~(y) of [7], which depend on 
the scaled energies xi = 2 E / W  (i = 1, 2), we were able 
to do the integrals analytically and to obtain the 3-jet 
part of D(cos Z) directly. The result is written down in 
Appendix A. These formulae are useful to investigate 
the asymptotic behaviour for Z ~  180 ~ which is also 
given in this appendix. 

We present the results for C(cos Z) and D(cos Z) for 
y = 0.01 and 0.001 in Fig. 4 and for y = 0.0001 in Fig. 5. 
The lowest order result C(cos Z) is somewhat different 
from the C in Fig. 1 since with the y cut the 2-jet 
contribution is defined differently as compared to the 
e, 3-cut. We notice that C(cos X) changes very little if 
we go from y = 0.01 to y = 0.001 except in the small 
Z region where C(cos Z) is reduced if y is increased. 
This sensitivity of C(cos Z) for small angles on the y 
cut was also noticed in [2]. Also D(cos Z) changes less 
with varying y (see Fig. 4) as compared to the D(cos ~) 
with varying e, fi in Fig: 1. But D(cos X) is also influenced 
more for small angles if y is increased. If we compare 
D(cos Z) for y = 0.001 in Fig. 4 with D(cos Z) for y = 
0.0001 we see that D(cos 2) increases by less than 10% 
with decreasing y. In Fig. 3 we have plotted R for 
y = 0.0001. This can be compared to R calculated for 
s = 0.05, 6 = 5 ~ We see that both R's have approxi- 
mately the same shape as a function of cos Z. R 
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increases if we change X from 180 ~ to X = 0~ But R 
with the e, 5 cut is still approximately 15% larger (for 
example in the interval cos Z e [ -  0.25, 0.25]) although 
e = 0.05, 5 = 5 ~ would correspond more to the y-cut 
value y = 0.001 (e 2 -~ t~2/4 '~ y). On the other hand 
C(cosx) for e = 0.05 and 5 = 5 ~ is still 10% smaller 
than C(cos Z) for y = 0.0001. If we had divided by the 
limiting C(cosz) the two R's in Fig. 3 would agree 
reasonably well. It seems that with the method based 
on y cuts one can obtain more stable results for 
D(cosz) than with comparable e, f-cuts (compare 
Fig. 2 with Fig. 5) if the same amount of Monte-Carlo 
runs are done. In the following we shall take 
D(cosx) for y = 0.0001 as the limit of D(cosx) with 
resolution cut going to zero and combine it with the 
summed LA results in the next section. Instead of this 
D(cos Z) we could have used the corresponding result 
of [2] or [3]. We prefer our result since it has been 
obtained with two essentially independent methods. 

Now we compare our D(cos Z) with y = 0.0001 to 
results of other authors using a different method for 
cancelling infrared and collinear singularities. So Ali 
and Barreiro [2] and Ellis et al. [3] base their evalua- 
tion of D(cos Z) on the following formula [2] 

Y~,',~ d th  
da = dO-virt jr_ S dYu~- [da4(YiJ 1 piece)]. (2.6) 

o z f f  

The integral in (2.6) is done by writing 

do" 4 : do-~ + [ d o  4 - da~4]. (2.7) 

The singular piece da] is obtained by integrating 

analytically the singular contribution of d o  "4"part~ 

in (2.6) with the appropriate upper limit of integration 
Ymax and is combined with the contribution of the 
virtual corrections dtrvirt. The resulting formulae are 
derived in [9]. The result is dtr 3. It depends on the 
two 3-jet variables xl and x2. By integrating over one 
of these variables the contribution to the EEC can be 
derived also analytically. The result is given in 
Appendix B, where also the asymptotic behaviour for 
r /~  0 is evaluated. The integral for the square bracket 
in (2.7) can be calculated only numerically, usually 
with a lower limit Yo on the integration of all invariants 
Yu (in [2] Yo = 10-7 is used). We can rewrite (2.6) with 
the lower limit Yo in the following form 

yo d,4, 
dff = dffvirt 4- ! dyij ~ [da4(yi~ a piece) ] 

+ S dyu~-[da4(YlJ ~ piece)]. (2.8) 
Yo ZTg 

By choosing Yo = 10-4 the third term in (2.8) is identi- 
cal to the 4-jet part in (2.4) with e, 5 replaced by Yo. 
The first and second term in (2.8) can be obtained 
from our 3-jet contribution for y = 0.0001 by leaving 
out one term which corresponds to a subleading 
contribution originating from symmetric integration 
to produce the correct 3-jet cross section (for a more 
complete discussion see [8]). Furthermore in the range 
0 < YU ~ Yo the full do 4 is approximated by da~4. The 
result of such a calculation is shown in Fig. 6, where 
we plotted R(cos Z). In this approach R has the same 
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dependence on cos z as the R in Fig. 3 but it is 
approximately 50% smaller (at cos ~ = 0 we have R ~ 8 
as compared to R - 12.5 in Fig. 3). On the other hand 
R in Fig. 6 agrees rather well with the result from Ellis 
et al. [3] and somewhat less with the results of Ali et 
al. [2]. Ellis et al. [3] and Ali et al. [2] employed the 
same method for calculating R. So their results should 
coincide. They differ roughly by one unit in R. It is 
conceivable that the difference comes either from using 
different values for the lower limit Y0 or different 
Monte-Carlo routines. We conclude from this that 
the lower cut Yo = 10-4 seems to be sufficient and 
that for Yu < Yo the 4-parton cross section can be 
approximated by the singular contribution da]. The 
difference of R in Fig. 3 as compared to Fig. 6 can 
only be attributed to the fact, that in the approach 
which we used to compute R in Fig. 3, we made use 
of a different definition for do"  3jet than by using (2.7). 
We think that further work is necessary for establishing 
the ultimate higher order EEC. Since the results for 
R obtained in the different approaches still differ some- 
what it seems premature to say something definite 
about he singular behaviour of R for q ~ 0. 

3 Leading logarithms in the EEC 

In this section we present the summed leading 
logarithm formulae for the EEC and establish their ~ 
expansion up to O(~2). By subtracting this 0 ( ~ )  
expansion we obtain the LA correction for small t/ 
which is added to D(cos Z) obtained in Sect. 2. 

The summed to all orders of as leading logarithm 
approximation of the EEC is given by the Bessel 
transform (to incorporate the conservation of trans- 
verse momentum) [10] 

1 dXZLA= 1 oo dz J o( x/~)e ~(~) (3:1) 
a cos i g  0 

where the exponent v(z) has a perturbative expansion 

of the following form 

v(z) = Dnu In (3.2) 
N=I  M=0 

Zo stands for e 2 0 n z - r )  where ? is Euler's constant 
(0.57721..). The coefficients Dnu have been calculated 
by several groups [5]. Best understood are the terms 
for M = N + 1. The frist term Dtz yields the usual 
double leading logarithm approximation (DLLA). The 
higher terms with M = N + 1 are simply generated 
from D~2 as a result of the running of the coupling 
constant. The subleading terms with M = N are less 
understood. In total the coefficients known so far are 
[5, 11]: 

D12 - -  - ! C 2  r ,  Dil =~Cr, 

D2 3 = ~ ~  D12,  

C v [- {67 ] 
where b 0 = (11N c - 2N f)/6, Nc = 3, C v = 4/3. ~s(W 2) 
is supposed to be given by the well-known two-loop 
formula. The coefficients D21 and D2o a r e  unknown 
as well as all higher D•M with N > 3. The perturbative 
expansion of (3.1) with v(z) is easily calculated from 

La 1 oo 
1 dY, = 6 ! dzx/~Ji(v/-~)v'(z)e*'~' (3.4) 

o" o d cos Z 

using the techniques of [10]. The expansion is written 
a s  

1 dd~zLacos 1 | - 
= I  M=O \ ~ // \ ~ / /  

(3.5) 

Then the expansion coefficients are given in terms of 
the DUM. Up to N = 2 they are [33: 

Cal = -�89 =�88 
C l o  = - - 1 D l l - - - ~  - - 3 C F  ' 

C2 3 1 2 i 2 = -~D~2 = - g C r  

C22 ~-- - -  3 D 2 3  - 3 D 1 2 D r  t 
_ 1  9 --~cF(~c~ + ~ Nc - �89 N s) 

C21 _i/) 2 / ) 2  I = -- 2 ae,22 -- 4~.. ii --~-Ol2Olo 

=~CvI_ /17  n2\ 

7~ 2 

C 2  0 : _ iD21 a + ~_D22 --~D~iDlo 

= - � 8 8  +-~C~(6 + ~ + 4~3). (3.6) 



Since D 21 is not known we put O 21 = 0 in the following. 
As mentioned we see explicitly in (3.6) that all coeffi- 
cients except C2~ are expressible through Dlz, Dll, 
D~0 and bo. This means they are generated from the 
lowest order term through exponentiation and 
through the running coupling constant e~. 

We can compare the LA expansion of the singular 
part of the EEC, this is the EEC deduced from (2.6) 
and da4 replaced by do-I, with the coefficients in (3.6). 
In Appendix B we obtained for the O(e 2) coefficients, 
where (3 is the usual (-function: (3 = 1.202057: 

C23 =-~ Cp(-2C e -~N~) 
= + - N 

[53 rc2 "~ N _ i!g N y ] 
+ + c 

155 7n 2 \ N  11 rc 2 

(3.7) 

Now we can compare the C u in (3.7) with those in 
(3.6). Since D2~ is unknown in the LA this can be done 
only for C23, Cz2 and C21. We see that only the N~ 
and the Ny term in C22 agrees. This is one of the terms 
proportional to bo which in the LA is generated 
through the running e~. Another term of this sort 
appears in C2~ originating from D22 in (3.3). This can- 
not be checked since other terms proportional to N~ 
and Ny are present. But the Ny-term agrees neverthe- 
less. But the leading terms Cz3 (the CF and N~-part) 
and C22 (only Cr-part) do not agree. We have checked 
by direct numerical integration that the missing CF 
and N~-terms in C23 and C22 , namely C~/24 and 
CeNd48 in C23 and ~6 C2 in C22 are generated from 
(2.6) when we replace do- 4 in (2.6) by the second term 
in (2.7), i.e. the non-singular 4-parton contribution dG,~- 
da]. But we were unable to verify the missing terms 
in C21 from numerical integration of da4-d6 ]. But, of 
course, there is some uncertainty in this method. 
In [3] the C2~ term was checked by a very detailed 
numerical integration of dcr,,-da]. These authors 
found, compared to (3.6), an additional term in C2~ 
equal to - ~ C  e (25 + 6) which reduces the value of 
C2a appreciably. On the other hand they also found 
a very positive term in C2o if compared to C2o in 
(3.6) with D2~ = 0, so that these two additional terms 
cancel each other to a large extent except when t/is 
extremely small. Due to the fact that Ali et al. [2] and 
Ellis et al. [3] differ in the result of D(cos Z), although 
using the same method, we have doubts that it is 
possible to determine accurately subleading terms in 
(3.5) by numerical integrations, although the authors 
in [3] did a very thorough numerical analysis to 
substantiate their claim. 
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In the following we shall disregard the problem 
whether our D(cos Z) has the same singular terms for 
q ~ 0 as those in (3.5) and (3.6). We take the point of 
view that for very small tl the EEC is given by (3.4) 
with v(z) taken from (3.2) and (3.3). Then the perturba- 
tive expansion of this EEC might come close to the 
full perturbative EEC as obtained in Sect. 2 in all 
terms up to C22. 

Before we calculate the correction of the EEC for 
small ~ with the summed up LA in (3.4) we compare 
numerically the perturbative expansion of (3.4), i.e. 
(3.5) with coefficients (3.6) with the full perturbative 
EEC from Sect. 2. This is shown in Fig. 7 where we 
have plotted C(cos Z) and D(cos Z) as defined in (1.2) 
and obtained with y =  10 -4, as already shown in 
Fig. 5, which are compared to C and D calculated from 
(3.5) and (3.6). All functions are plotted only for cos Z 
smaller than 0.5, since only for small ~ we can expect 
some similarity. Both C and D in LA seem to approach 
the complete C and D for cos X ~ - 1. C in LA becomes 
negative for cos x > -  0.6, as is obvious from (2.2). 
Therefore C in LA can be used only for small t/, i.e. 
cos Z < -0 .8 .  This property of C is well-known and 
forbids the application of the LA and the summed LA 
for larger ~ values. D in LA stays positive but deviates 
also from the complete D for cos Z > - 0.8. This quali- 
tative behaviour of the LA in comparison with the 
complete perturbative (up to O(e~)) expansion does 
not change if we sum the LA using (3.4). To see this 
explicitly we must make a choice for es(W2). We take 
es(W 2) = 0.14, which is a reasonable coupling in the 
PETRA-PEP energy range. In Fig. 8 we exhibited 
(1/%)(dZ/dcosz) with the complete O(~)+O(~  2) 
terms obtained in Sect. 2 and the corresponding curve 
in LA together with the summed LA. In Fig. 8 we 
observe that the summed LA and the perturbative LA 
are very similar. Both are sensible only for cos X < 
- 0.5. They differ appreciably from the complete EEC 
for cos Z > - 0.8. Furthermore the LA to all orders is 
always larger than the perturbative LA, at least for 
cos Z > - 0.95, so that, if we correct the complete per- 
turbative EEC with LA to all orders minus pertur- 
bative LA, the correction is positive and not too large 
as can be read off from Fig. 8. The three curves in 
Fig. 8 are extended to smaller ~/ (with smaller cos Z 
intervals averaged) down to cos Z = -0 .99  in Fig. 9. 
The perturbative LA approaches the complete 
perturbative EEC further. The difference between 
summed LA and perturbative LA changes sign at 
cos ;g -~ - 0.97. But this difference is still small 
compared to the complete perturbative EEC. There- 
fore for moderate Z, i.e. cos z > -0 .99  the  complete 
perturbative EEC is still a very accurate result. The 
significance of the summed LA lies in the fact that it 
is needed for extrapolation to 2 t / -  (1 + cos X) ~0 ,  This 
can be seen in Fig. 10 where the perturbative LA is 
compared with the summed LA as a function of 
l+cos)~ between 10-5 and 10-1. Down to 
(l + cos x) = 3-10 -4 the perturbative LA and the 
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(3.6)) with the complete C and D of Fig. 5 
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Fig. 10. C~176 ~176176 f~ perturba" 
tive LA and for LA to all orders as a function of (1 + c o s z )  for 
angles very near to the back-to-back limit 

summed LA (both for es = 0.14) are very similar. For 
(1 + c o s z ) =  2"10 -4  the perturbative LA diverges to 
- oo, whereas the summed LA converges to a finite 
limit for r / ~ 0 .  Between 2r/= 10 -2  and 2r/= 10 -5 the 
EEC in summed LA still increases by a factor 25. Since 
it seems impossible to calculate numerically the 
complete perturbative EEC for very small r/values a 
reasonable approximation to the EEC for all angles 
might be: i) use the perturbative EEC for cos Z above 
( -  0.99), say, and replace it for cos Z < - 0.99 by the 
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Fig. 11. Higher order (c~', n > 3) correction term A originating from 
the summed logarithmic approximation as defined in the text and 
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Fig. 5 
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Fig. 12. Comparison of the energy-energy correlation for c~, = 0.14 
corrected with the A contribution of Fig. 11 compared to TASSO 
data [12] 

summed logarithmic approximation obtained from 
(3.4). of course, this procedure corrects just the limiting 
behaviour of the EEC for t / ~  0 via the summed LA. 
Actually we want to improve the EEC also for finite 
although small t/. For this purpose we have calculated 
A which is the EEC according to (3.4) minus the EEC 
based on (3.5) and (3.6), i.e. the perturbative LA, both 
multiplied with (es/zc)-2 

A = [LA(all orders) - LA(O(es) + O(c~))]. 

(3.8) 
Then A is the higher order correction to / ) (cos  Z) for 
small t/(t 1 __< 0.25). It is plotted in Fig. 11 for es = 0.12, 
0.14 and 0.16 (it depends on c~ since (3.4) has terms 
O(c~) with n > 3). Depending on the cos Z interval A 
constitutes a correction to D between 5% and 30%. 
For the smallest tl's the correction is largest. The curve 
for A as presented in Fig. 11 is our main result (Fig. 8 
and Fig. 9 contain the same information for c~s = 0.14). 
It shows that the higher order corrections O(e~) with 
n > 3 are not very large of the order of 10% for cos Z 
between - 0.99 and - 0.85 and smaller for larger cos Z. 

The effect of A on the complete EEC for a realistic 
e~ can be seen by comparing the curves in Figs. 12 and 
13 with the curves labelled O(e~) + O(~) in Figs. 8 and 
9. We see that the difference is astonishingly small. 
This means that the fixed order calculation is much 
more reliable than anticipated. Of course, our 
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proposal ,  to replace at extremely small t / the  E E C  by 
the summed LA term makes  sense only, it the O(a 2) 
singular terms in D(cos) 0 agree with the LA. This 
might  be the case but  has not  been proven  jet. In case 
they deviate one could correct  the LA by the extra 
terms. In  case these extra terms are in subleading 
contributions,  as, for  example,  found in [3], this will 
hardly change A in the very small t / r eg ion  (cos Z < 
- 0.99). If  on the other  hand  the D(cos Z), as used here, 
differs f rom the LA in the O(e~) asympto t ic  terms the 
ansatz (1.3) is useless for establishing the behaviour  of  
the EEC for t / ~  0, since X would still contain divergent 
terms for q--. 0. Since it is unlikely that  all singular 
terms of D will ever be known  the best s trategy is to 
use D(cos ~) up to such cos Z where it equals the LA 
term and then extrapolate  with the LA down to I / =  0. 

In Figs. 12 and 13 we compare  our  final predict ion 
with recent experimental  da ta  of  the TASSO Colla- 
bora t ion  for E~ .m=43 .5GeV [12] *. In  Fig. 13 the 
small tt region is plot ted separately. We see that  the 
experimental  data  agree with the theoretical curve 
reasonably  well, in part icular  in the small t/ region. 
Actually we can expect only qualitative agreement  with 
the data, since our  predict ion has not  been corrected 
for f ragmenta t ion  effects. These f ragmenta t ion  effects 
are part icularly impor tan t  for small t/, so tha t  the nice 
agreement,  in par t icular  for small q's might  be 
fortuitous. 

Acknowledoement. We thank A. Ali for discussions and helpful 
remarks. 

Appendix A 

In  this appendix  we state the analytical result for 
D3-jet(cosz) f rom do-3-ie~(y) of [-7]. Fo r  conveni- 
ence, we introduce the abbreviat ions  

pl  = l n ~ a t n  / ~ -  2 I m  L i 2 ( i  N / ~ )  (A.1) 

Pz = -ln~ReLi~(iN/~) +atnN/~ImLi2(i~/~ ) 

-2ReLi3(i~)+ReSlz(iw/~ ) (A.2) 

where ( =  1 - , / =  � 8 9  cos Z). The definitions of  the 
polylogar i thms m a y  e.g. be found in [14]. The  
imaginary  and real parts  of  the polylogar i thms can be 
evaluated to any desired accuracy using the appro-  
priate power  expansions. We split D(cos ~) into the 
part icular  contr ibut ions associated to the different 
colour  factors: 

* Similar data from the PLUTO collaboration for E = 34.6 GeV are 
published in [13]. 

3 jet CF D- (cosz)=8~(CvDc~ + N~Du~ + NyDu• 
with 

DCF 

ONc 

(A.3) 

lnZy[(8(  3 -- 36( 2 + 48( -- 18)In r/ 

- 18( 3 + 39( 2 -- 18(] 

+ In y [ ( ~ ( 3  _ 42(2 + 54( -- ~ ) I n  

+ (_~(2 + 4 ( -  16 ) ( l n (  

+ ( - 16( 3 + 72( 2 - 84( + 20)Li2( 0 

+ ( -  8( 3 + 36( 2 - 54( + 26) in 2 

+ (12( - 16)In t/In ( - 47( 3 + ~ ( 2  _ ~ ( ]  

+ ~2[,(_ {(3 + 6(2 _ 6( + �89 
1 + ~r _ ~(~  + ~(3 

+ ( _ 9 ( z  + 50(~ _ ~ t (  + *}-~)ln ~ 
65 2 41 + ( ~ (  - ~ - (  + ~ - ) ( ln  ( 

+ (za~(3 - '4@~ 2 + 48( - ~ ) L i 2 (  0 
+ (lO_3_7(3 _ 3@(2 + 44( - 18) ln 2 t/ 

+ ( _ �89 _ 2( + 8)in 2 ( 

+ ( _ ~ ( 3  + ~ ( 2  _ 28( + ~ ) l n  t/ln ( 

+ ( - 8( 3 + 54( 2 - 72~ + 14) Li3( 0 

+ (28( 3 - 102( 2 + 96( - 10)S~2(0 

+ ( - 10( 2 + 50( - 70) / ln t /L i2(  0 

+ (8( a - 18( 2 -- 36( + 58)1n { Li2( 0 
+ ( _ 3(3 + _12sr2 + 29( -- ~ )  In 3 q 

+ ( 6 (  3 --2s27;'2 _ 9r + 3% ln2 ~ In ( ~  2~ 

+ ( - 6( + 8) In r/In 2 ( 
U g  

+ (8( 3 - 18( 2 - 12( + 2 6 ) l n ~ a t n  2 / ~ -  

127 2 32 52)x/~pl  + ( T (  - ~ - ( -  

+ ( - 79 (2 + 212( - 160)t/Re Li2 ( i  X / ~ )  

+ ( - 32(  3 + 72( 2 + 48( - 104)p 2 
32/ '3 . .1_16017"2 323?" 

- - 3 - ~  36 ~ - -  9 

In 2 y [ (4 (  3 - 18( 2 + 24( - 9) lnq  

- 9( ~ + ~ ( ~ -  9(3 
+ In y[-( - 10( 3 + 42( 2 - 52( + ~ ) l n  q 

+ ( ~ ( ~  - 43 ( + 34)( ln 

+ ( - 16( 3 + 72( 2 - 108( + 52)Li2( 0 

+ (6( - 8) In 2 ~/ 

+ ( - 8( 3 + 36( 2 - 60( + 34) In q In ( 
_ _ ~ ( 3  @ 725? '2  1 9 9 y q  

12 ~ - -  6 ~A 

+ rc z [( - 2~ 3 + 9~ 2 - 14( + ~ )  In r I 

883r3 lOOt2 ~559r+4V%ln + t - -  36 ~ + ~ - - - i 2 - ~  T J  I'/ 
(329~'2 __ 61 + t-f6-~ , (  + ~ ) ( l n  ( 

+ ( - ~  - 9 (  2 + ~  - ~ ) L i 2 ( 0  
+ ( _ ~ ( 3  + z6__ a (2 _ ~ + . ~ ) l n  2 r/ 

(A.4) 



+ (  a g ~ 3 + ~ ( _ 1 7 ) ( l n 2 (  
47 3 115 2 + ( w (  - ~ (  + 6 6 ( - ~ ) l n q l n ~  

+ ( - 32( 3 + 135( 2 - 195( + 94) Li3(~ ) 

+ ( - 14( 2 + 61( - 62)qS~2(0 

+ (7( 3 - 24( 2 + 6( + 16) In ~ Li 2 (() 

+ (16( 3 - 81( 2 + 153( - 94)In ( Li2( 0 

+ ( _ ~ ( 3  + ~ ( 2 _ q ~ ( + ~ ) l n  3 
+ ( _ _ ~ ( 2  + ~ ( _ ~ ) l n 2  q l n (  

+ ( 4 (  3 - -  1 8 (  2 + 30( - 17) In ~/ln 2 ( 

+ ( - 9( 2 + 33( - 26)1n-( atn2 / -( 

+ ( ~ ( 2  _ ~ (  + 52) , fgpl  

+ (36( 2 - 132( + 104)p 2 
. .}_221(3 __ 1613 ~ ' 2 3 6  ~ .-3- 206ff9 ~ (A.5) 

Dn~ = (�89 - ~ ) [ (  - 4( 3 + 18( 2 - 24( + 9) In ~/ 
+ 9(3 _ ~ ( 2  + 9(]. (a.6) 

In the back-to-back limiting case 01 ~ 0) this leads to 
the following asymptotic  behaviour:  

D(cos Z ~ -- 1) 

= ~ {ln3 ~ [ - {  N~] + ln21-[- 2N~ln y + 

+ I n , I ( - 2 C ~ - N c ) l n 2 y  

+ ( -  3C~ +7N~  + �89  

3 \  / n 2 1 1 \  ~2-t-~)CF +t--T-}-g)Ne--5Nf] +(-3- 
+ 3(C~ + �89 y 

+I( 
+ ~ 2 5  2 25 t ~  n --l~-- 16(3)C~ 

-SN } (A.71 + ( - ~ 4 ~  _2 _ 7 + 10(3)Nc + 6 

where only those terms have been kept  which diverge 
at least as fast as 1/-~. It is interesting to note  that  the 
leading y-cut dependence ~ In 2 y is only in subleading 
terms ~ In ( l# / ) / r /and ~ 1/q. The most  singular term 

ln3(1/q)#/is independent  of y. Because of the cut to 
separate 3- and 4-jet (A.7) shows little similarity to the 
expansion of the LA in (3.5) and (3.6). In order  to 
obtain all singular terms one must  add the genuine 
4-jet contr ibutions calculated with the same y cut. 

Appendix B 

Here we present the contr ibut ion to the EEC coming 
from da 3 plus the singular par t  of da 4 [9]. Again, we 
use the nota t ion int roduced in (A.1)-(A.3), then the 
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particular contributions to D 3 +4S(cos Z) read 

DcF = 7~2[( __4(3 + 6(2 __ 9( + ~ ) l n  q 

~ . _ ~  + ~ 3  +Tgs 
+ ( @ ~  - 85~,~= + ~ - z~) In  

+ ( -  =~= ~'~ + ~  + ~ ) ~ I n  ~ 36 

+ ( _ 7 ( 3  _ ~ 3 ( 2  + a ~ (  _ 53)Li2(() 

+ ( ~ ( 3  _ 2~9(2 + ~ (  _ 14)In 2 

+ ( ~ 3  _ ~ ( 2  + ~ (  _ ~s) in ~/in ( 

+ ( _  ~6~(2 + 4 1 ( _  13)(ln2 ( 

+ (8( 3 -- 18( 2 - 12( + 26)Li3( 0 

+ (28( 3 - 102( 2 + 96( - 10)S~2(0 

+ (-- 14( 3 + 48( 2 -- 42( + 8)ln ~/Li2(() 

+ (24( 3 -- 90( 2 + 96( - 26) In ( Li 2 (0  
+ (__  31 if33,..q - 6z(2 ~ ( _  3)1n3 q 
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The asymptotic behaviour for large angles can be 
extracted to be: 
D3+4S(cosz----r -- l)  

= C~ ~ln31 ( 
8 , 7 (  ,7 

+ In 2 I(3CF + ~-Nr -- �89 f) 
t/ 

+ In I [ - ( ~  + -~ ~2) C~ + ( ~  + �89 - ~ N r  

+ ( - ~ + ~rc2)Ce + ( - ~ - ~c 2 - 2~3)N c 

" } + ( ~  - ~ u2)Nf (B.4) 

where, again, all terms which diverge less than 17-' 
have been neglected. This result shows much more 
similarly to the O(a 2) LA-term in (3.5) (with (3.6)) than 
the result in Appendix A. This is obvious since (B.4) 
includes the 4-parton part, although only in the singu- 
lar approximation, in the whole 4-parton phase space 
and not only up to the cut y as in (A.7). To obtin the 
complete large angle behaviour the non-singular 
4-parton contribution and a correction, which treats 
the 4-parton singular part as an EEC correlation 
involving 4 partons instead of 3 jets, must be added. 

da 3 contains an infrared finite contribution coming 
from loop corrections [6,9]. This, denoted by 
f(x,,x2), is not accessible for the leading log ap- 
proximation. For  comparison with the LA (O(a~)+ 
O(a2)), this should be subtracted. For  this purpose we 
also give the analytical result for the contribution of f 
to the EEC: 
D { ~ = ( - ~ ; 3  +68~ ~ - 6 ~  

/55F2 43?" + ~  - 3 - ~ + 2 1 ) ~ 1 n ~  
(61 ?"3 63 ?"2 + ~ - ~ - ~  + 4 0 ~ -  18)Li2(0 

+ ( ~ 3  _ z ~ 2  + 22~ - 4)In 2 ~/ 

+ ( _ ~ 3  + . ~ 2  _ 2~ - 5)ln ~/In ~ 

+ (8~ 3 - 18~ 2 - 12~ + 26)Li3(0 

+ (12~ 3 - 30( 2 + 12~ + 10)S~2(0 

+ ( - 6~ 3 + 12~ 2 + 24~ - 34)lnq Li2( 0 

+ (8~ 3 - 18~ 2 - 12~ + 26)1n ~ Li2 (0 
_[_ ( _ _ ~ ( 3  .~_ ~ 2  .4_ 11~ -- ~ ) l n 3  t/ 

-I- (6( 3 -- ~ ( 2  _ 9( + ~ ) l n  2 q In 

+ ( - - 7 9 ( 2  + 212( - 160)t/Re Li2( i  / ~ )  

Dfo=  

+ ,27 2 32 52) / ~ p ,  

+ ( -  16~ 3 + 36~ 2 + 24~ -- 52)p2 
qt_ 4.9 y3 599F2 70y ~-~  - - - ~ - ~  - - ~ - ~  

 )ln. 36 
+ (__ ~-~19'?'2 +2~_~_  12)~ln ~ 

+ ( - + - - Li (0 
_[_ ( -- 5 ~ 3  _~ 295~2 "4- ~ -4- V )  ln2 q 

+ ( _ 5(3 + ~ ( 2  _ 26( + 14)In t/In 

(B.5)  

+q - 9~ 2 + 33~ - 26)Li3( 0 

+q - 2 ~  3 - 3 ~  2 + 15~-  10)$12(0 

+ q _ ~3 + 12~2 _ 42~ + 34) In q Li2(0 

+ q - 9~ z + 33~ - 26) In ~ L i / ( 0  
q_, _ 1~3 -4- ~9~2 __ 1 0 ~  __ 1@5) ln3 r/ 

+I -- zzz~z -- ~ - -  ~ ) l n 2  r/ln ~ 

+ (70(  2 -  185(+ 133)q Re L i 2 ( i x / ~ )  

+ _ + 52),f p, 
+ (18~ 2 - 66~ + 52)p2 

73r3 + ~ 2  + ~ .  (B.6) 
- -  12~ 

For t/-~0, the O(a 2) loop contribution to the EEC 
has the asymptotic behaviour: 

DI( cos Z'-* - 1) 

- Cv {ln3~ ( - ~ N c )  8t/ 

+ In -1 [ ( ~ -  2u2)C F + (�89 + ~Tr2)Uc] 

i 97•  8#3)CF + ~_ ]-~ w-~-,j~ - 

+ (~2 - ~ zcz + 6#3)Nc t" (B.7) 

The result (B.7) shows that the No-term proportional 
to ln3(l#/) in (B.4) originates from the contribution 
(B.6), i.e. non-infrared virtual corrections. It is difficult 
to believe that such a term is contained in the usual 
logarithmic approximation. If also the CvN~ In (l/t/)/ 
16r/ is subtracted in (B.4) another term agrees with 
the logarithmic approximation (3.5). 
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