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We analyze muon decay using the most general local, derivative-free, Lorentz-invariant, lepton-
number-nonconserving interactions. We show that, neglecting neutrino masses, there is a one-to-
one correspondence between the coupling constants in the lepton-number-conserving case and com-
binations of coupling constants in the lepton-number-violating case; i.e., it is not possible, even in
principle, to test lepton-number conservation in muon decay if the final neutrinos are massless and
are not observed. Using these relations, we are able to use previous analyses of (lepton-number-
conserving) muon and inverse muon decay to put stringent limits on certain combinations of param-
eters. If fine-tuned cancellations are not allowed, these limits constrain the individual coupling con-
stants. We discuss to what extent it is directly tested that the (left-handed) neutrino emitted in
muon decay is the same as that which is produced in 7, decay.

Muon decay is one of the few processes in which the
V — A nature of the weak interactions can be tested in

precision experiments. For this reason, muon decay has.

been analyzed in terms of the most general local,
derivative-free, Lorentz-invariant, lepton-number-
conserving effective four-fermion Lagrangian.! (By
lepton-number conservation or nonconservation we refer
both to the individual lepton flavors L, L#, and L, and
to the total lepton number L =L, + L, + L) Using this,
the muon decay process in which the emitted (massless)
neutrinos are not observed can be described in terms of
the total rate 7, and nine real parameters.?

However the imposition of lepton-number conserva-
tion on this Lagrangian is somewhat ad hoc. In the stan-
dard model with massless neutrinos lepton number is au-
tomatically conserved. However, if one goes outside the
standard model and introduces scalar, pseudoscalar, and
tensor interactions, there is no reason to assume that lep-
ton number should be conserved. Even within the con-
text of gauge theories (beyond the standard model), lep-
ton number can be violated in a number of ways, includ-
ing Dirac or Majorana masses for neutrinos® and spon-
taneous lepton-number violation in supersymmetric mod-
els.* (Dirac masses can violate lepton-flavor conservation
but conserve the total lepton number; Majorana masses
violate both.)

We have been led to consider the question of lepton-
number violation in muon decay from a somewhat
different angle. In examining the constraints the
charged-current experiments put on mixings of the ordi-
nary fermions with exotic fermions,” we were led to the
possibility of lepton-number violation via nonorthogonal
neutrinos.® Consider the case in which one makes a mod-
est expansion of the two-family standard model by adding
a pair of SU(2)-singlet Weyl neutrinos N and Ng, and in
which one allows all mass terms which conserve the total
lepton number. Because of the mismatch between the
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number of left- and right-handed states, the diagonaliza-
tion of the mass matrix yields two massless neutrinos v;
and v, and one heavy Dirac neutrino N. (In this example,
the massless neutrinos are Weyl, but there are also cases
in which one ends up with Dirac or Majorana neutrinos.)
Since both weak eigenstates v0 and vg mix with the sing-
let neutrinos, the electron and muon will couple to states
which are linear combinations of the two light and the
one heavy states. However, in low-energy weak interac-
tions, the neutrinos which are produced are just the light
pieces of v? or vg. These effective light states, that is,
those states obtained by projecting out the light pieces of
v‘e) and vg, will not, in general, be orthogonal, even if the
v; are massless. Therefore, there is a nonzero amplitude
for both the electron and muon to couple to the same
light-mass eigenstate. In this case, there is the possibility
that lepton-number violation can occur in muon decay.
We have therefore recalculated the muon decay param-
eters in terms of the most general lepton-number-
nonconserving couplings. We will first review the results
of the lepton-number-conserving (LNC) calculation and
the limits on the coupling constants from both muon de-
cay and inverse muon decay. We then present the calcu-
lation of muon decay with lepton-number violation, and
discuss differences between it and the LNC calculation.
We will show that the form of the muon decay distribu-
tion in the lepton-number-nonconserving case is identical
to that of the LNC case, and that there is a one-to-one
correspondence between the parameters of the LNC case
and sets of indistinguishable parameters in the lepton-
number-nonconserving case. This implies that it is not
possible, even in principle, to test lepton-number conser-
vation in muon decay (assuming massless, unobserved
final neutrinos, and that higher-order effects can be
neglected). We will then see that, except for the possibili-
ty of fine-tuned cancellations, the previous analyses of
muon decay can be used to put constraints on the
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lepton-number-violating coupling constants. Finally, we
discuss the constraints that inverse muon decay puts on
the coupling constants in the lepton-number-non-
conserving case.

The most general lepton-number-conserving (LNC)
four-fermion interaction can be written in the helicity-
projection form! as

H= V3 (gt e ver Vibrt8 Teg VerVurbr +8 TTELver VurML T8 @RV VurML

+glle yiv,, VoLYahr +g R ey MVer VoL ValL +glRe yiv,, VurY MR

T8 R er Y VerVur Vit 87 Lt Py g Vs tuptin 8T ORI PVer Vurtapiis) 5 (1)

where the subscript L [R] denotes multiplication by
(1—ys) [F(1+ys), and 1,3=(i/2V2)[v,7p]. The
standard-model limit is obtained by taking gZf=1, and
all other g’s equal to zero. One can see that there will be
interference between certain terms in Eq. (1). For exam-
ple, since the g%, g7~, and g~ terms all create a
right-handed muon neutrino and a right-handed electron
antineutrino, they will interfere. Similar statements ap-
ply to (gRE,gT* g**), (gtt,g~ 1), and (gRRg" 7). It
has been shown? that if the neutrino masses are neglect-
ed, then all electron observables can be expressed in
terms of the following ten real constants:

a .
o [T 160g M P lg K1)
+(gT " +6gT T 2klg T T +6gTH|?), )
b RR|2 LL|2 —+12 +—12
pr [P EIg M+ (gl T T IPElg TN, 3)
¢ —-— T—12 ++ T+2
o [THlgTT 28T T PElg T 28T, )
a Re
— LR - T— \%
o —SLm}[g (g7 +6g"7)
+gRl*(gt++6gTH)], (5)
B Re
B =—4[Iml(g“g"+*+g“*g+—). Q)

Of these ten quantities, only the transverse-polarization
parameters a, a’, B, and 3’ are measurable directly. The
other six are measured indirectly through the measure-
ments of the following observables: A4, which is related
to the muon lifetime; the spectrum parameters 6 and p;
the end-point asymmetry £6/p; the longitudinal electron
polarization £’; and the angular dependence of the longi-
tudinal electron polarization £’’. These can be written as

A =a+4b +6c , (7)
p=—-(3b+60), ®)
3b'—6¢ 9)

T 3a'+4b' —14c’

f

£5 _ —3b'+6c!
5 3bt6c 10
§’=——%(a’+4b’+6c’), (11)
g"=—;¢(3a +4b —14c) . (12)

One point is worth noting. If one considers only ¥ and 4
interactions, as is the case relevant to the mixing of ordi-
nary fermions with exotic fermions, for example, exam-
ination of Egs. (5) and (6) shows that the transverse-
polarization pieces a,a’f3,3’, which have been measured
rather precisely, are predicted to vanish. However, as we
will see, because of Fierz transformations, (V, 4) terms
are related to (S,P) terms. Therefore the meaning of
“considering only ¥ and A interactions” must be more
clearly defined. We will address this point in more detail
when we consider lepton-number-nonconserving interac-
tions.

Fetscher, Gerber, and Johnson’ have obtained limits
on all the LNC coupling constants by considering the
chiralities of the decaying muon and the produced elec-
tron. After absorbing the overall strength of the interac-
tion into the Fermi constant (which is determined by the
total rate), one can define renormalized couplings for
which the common factor 4 [Eq. (7)] is 16:

A=4(g T P+lgtIP+lg P +1g TP
+16(lgLL12+|gLR]2_+_|gRL|2+|gRR!2)
+48(1gT 2+ 1gT~1>)=16. (13)

The probability of producing an e-handed electron in the
decay of a u-handed muon (e,u=L,R) is Qey, where

Qrr=2(b+b")/A=1g” ">+ [gRR|? | (14)
O;r=I[(a—a")+6(c—c")]/24

=Lllg 2+ |gtR2+3|g T2, (15)
QRL:[(G +a')+6(c +C')]/2A

=Lg 7P+ [gR P +3]gT 7|2, (16)
Q1. =2b—b")/A=1[g T |*+|gtL|*. (17)

Since all the Q, are positive definite and 3, Q, =1, the
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authors of Ref. 7 were able to put limits on all the param-
eters using the current experimental data for muon de-
cay,® along with inverse muon decay.” These measure-
ments give strong upper limits on the Qgp, Qr, and
Qrr > Which in turn give upper limits on the squares of
the coupling constants in (14)-(16). For Q;; there is a
good lower limit, and |g * 7|? is separated from |gZ%|? in
the following way. The helicity of the v, in pion decay
has been measured to be —1 to excellent precision.!
Thus the g ¥~ term does not contribute to inverse muon
decay v,e~ —pu” v, (the g T~ interaction requires an in-
coming Yy of helicity +1), and the measurement of in-
verse muon decay therefore puts a lower limit on |gZ%|?
alone. Q;; <1 gives the corresponding upper limit on
lg* 7|2 The limits on the coupling constants are listed in
Table I, which is taken from Ref. 7.

We now consider the possibility of lepton-number-
nonconserving interactions. We allow both lepton-flavor
violation and total-lepton-number violation (AL =2, Ma-
jorana mass terms). It is convenient, when dealing with
Majorana neutrinos, to denote all left-handed states n;
and all right-handed states ng. The two are not indepen-

4G,

H= 75 2 (g,,

- Cc = —_——t —_ + —
ernrA; up +8; " ErM A iR +8;

+8;

+giRe v n ARy g e Rery nG AR g 8l T

where i,j run over all the light neutrino species Just as
in the LNC case, certain terms (e.g., g,j , g,j ,and g7 )
interfere with one another. In addition, there are new
types of interference terms due to the Majorana nature of
the neutrinos. For example, the 8 RL term produces two
left-handed states, so that, for a given i,j, a g;; RL term will
interfere with its corresponding gj; RL term. This same sort

TABLE I. 90%-C.L. limits on the coupling constants in
lepton-number-conserving muon decay, from Fetscher, Gerber,
and Johnson (Ref. 7). The data from both muon decay and in-
verse muon decay are used to obtain the limits.

Muon decay

QOrr <2.0X1073 lg " "1<9.1x1072
lgRR| <4.5%x 1072
lg T+ <0.137

lgtRl <6.2x1072

g7 <4.0x1072

Qur <3.9%1073

Qg <4.5X1072 lg "7 1<0.448
lgRt| <0.114
g7 1<0.112

Q;r >0.949

Inverse muon decay
lgt 7| <0.961
lgtt]>0.877

dent, but are essentially CP conjugates, being related by
ng=Cn; , (18)

where C is the charge-conjugation matrix. In -the usual
case, n; and ng refer to left-handed neutrinos and right-
handed antineutrinos, respectively. When considering
Majorana neutrinos, however, the superscript ¢ simply
means that the two are CP conjugates. It does not mean
that the n; are leptons and the ny are antileptons; there
is no distinction for Majorana neutrinos. For the special
case in which there is a distinction (i.e., Dirac masses
only), n; refers to both left-handed leptons and antilep-
tons. [For example, a single Dirac neutrino has (in con-
ventional notation) the four components v; «<v% (dou-
blets) and Ny <N (singlets), where v; and Ny are lep-
tons and v%,Nf are antileptons. In our notation we
would denote (v ,Ni)—(n, ,n,;) and (v%,Ng)
—(n$g,n3g).] This can lead to some confusion when
considering the lepton-number-conserving limit, and we
will discuss this in more detail below.

The lepton-number-nonconserving Hamiltonian is then
written as

= 3, C 5C
e NiRN;REL

—— —=C LL— A = RL~ A, C =
CRN Ajpiby T8 €LY Ny iy Vs +8ij €Y MRA,LY AL

- — T—— —
et Pn i toppir T8, Rt Pny Aitagu) ,  (19)
[
15 : i + + T+
of internal mterference occurs also for the g;/ ™, g;; i
g,i , 8&; »and gu terms. Also, since the g; ~, g;;° +,

g, and g RR terms all produce one left-handed n;; and
one right- handed njg, they will all 1nterfere (m the LNC
case, the only interference terms were g“-g ™" and g*

gt 7). Therefore, at first sight one expects the expression
for the decay rate to be very much more complicated
than in the LNC case. However, we will see that this is
not the case.

The lepton-number-conserving limit is complicated
somewhat by the notation for the neutrinos. However, it
can be seen by writing out the components of n; and ng
explicitly for the case in which all neutrmos are Dirac:
nL=(Ver s VersVuroViLs - - - )y MR =(Veg, Ve, Virs  Vur>

.). By comparing (1) and (19), it is seen that the
]epton number-conservmg hmlt is recovered by takmg
gn s 85, 85, g, gl gl g 85> g5%, and
€13 nonzero, with all other coupling constants set equal
to zero.

We have found by explicit calculation that the full ex-
pression for muon decay in the lepton-number-
nonconserving case (for unobserved massless final neutri-
nos'!) is identical in form to the LNC case—i.e., there
are no new observables, even though there are enough ap-
propriate Lorentz invariants to construct them. In par-
ticular, all electron observables can again be expressed in
terms of a, a’, b, b’, ¢, ¢', a, &', B, and ', which have
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physical meanings identical to the LNC case. The pa-
rameters a, a’, b, b’, ¢, and ¢’ have similar forms to the
LNC case:

o (=160 FEx g R+ (g~ PelgT
(20)

b
b =4(|g RR—+|2x|g LL+—|2) | 21)
=g gl 22)
where

gt = 3 e+ T

8 3 g g >

)

and

g LRPE%Z |gkR+glR|2
ij
lg RE2=1 3 [gRE+gRE2
hj
7" =13 lgy ~+e T +ee ] +eg] I,
ij
gt =13 lgij—++gj?.++6gijr“++6gj7-‘+|2 ,
b

27T IP=13ley T e —2e) t2gi P,
ij

(24)

82" P=1 3 lef e T2 T2
hj
In Eq. (24), the origin of the factor % in front of the sums
is different for ij and for i =j. For i}, the factor
comes about because of double counting in the unrestrict-
ed sum; for i =}, it is due to the presence of identical fer-
mions in the final state. (The factor of 2 in the amplitude
for i =j is because there are two distinct but numerically
equal diagrams.)

The transverse-polarization pieces also have a similar
form to the LNC case:

a Re
o }=42 {Im ’[(gi?R"*’ngFR)(gij__+gji—_+6giJT— '*'6gjirw )*+(gi?L+gj§L)*(gi,'++ +gj?—++6gif++6gjiT+)] , 25)
ij

B
B”=“8§{

Re
I

m ][(gif“r%gj,-*“ NgRR+1g T)*].

By comparison of Egs. (2)-(6) and (20)-(22), (25), and
(26), it is clear that there are great similarities between
the lepton-number-violating and the Ilepton-number-
conserving cases. We now demonstrate explicitly that
there is a 1-1 correspondence (a homomorphism) between
the parameters in the LNC case and sets of parameters in
the lepton-number-nonconserving case.
First of all, @ and a’ in the LNC case are given by

a
o =8lglR(g ™~ +6g T )*

27)

cosf,
sinf, |’

+gRL*(g+++6gT+)I l

where 6, is the phase of
[gLR(g——+6gT—)* +gRL*(g+++6gT+)] .
Using the triangle inequality, this can be written

a
o [=8(gRllg ™ +6g ™|

cosf,

+|g“||g+++6g”|)l ]co&ﬁa, (28)

sinf,

where cos@,, is positive, and is given by

(26)

[
lgLR(g“*+6gT—)*+gRL*(g+++6gT+)|
[lg™®llg =~ +6g 77| +IgR g™ +6g "]

(29)

cosd,=

Similarly, 8 and ' in the LNC case can be written

B cosbg
B =—4(|gtllg " *+[g®R|lg T~ ]) sinfj cosgg .

(30)

For the lepton-number-nonconserving case, we must also
use the Schwarz inequality, which reads
12";")’:' ,252|xi|22|y112’ (3D
i i i
for the complex numbers x; and y;. Using the Schwarz

and triangle inequalities, o and a' [Eq. (25)] can be writ-
ten

a
o ]=8<|'g~“‘|lgl"“““|+l§’“llg,”++|>
cosf, _
sind, cosd, , (32)
where |g XR|, 1g7T =7 7|, Ig ®X|, and |g] T | are defined

in Eq. (24). For 3 and 3’ in the lepton-number-violating
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case, the situation is a bit more complicated. We must
divide up the LL +— and RR — + coupling constants
into two pieces:

1~LL+ |2_|gLL+ |2+|~LL+ |2 13
|—ngR—+|2__|gRR +|2_+_I~RR +|2 ( )
where
gt T IP= 3 left et T,
i<j
|~LL+ 2 |gLL+_g], |2 ,
i>j
~RR —+ |2 R 1 +12 (34)
g} =3 lgff+18: 717,
i<j
|~RR + 2 [gl§R+_gjl |
izj

Using these and the Schwarz and triangle inequalities,
Eq. (26) can be rewritten as

B _ -

ﬁ’J: IgLL+ HgRR +|+|~LL+ ||gRR +|
cosfp
sind, cosdy . (35)

The homomorphism relating the LNC coupling con-
stants with sets of lepton-number-nonconserving param-
eters is now evident. It is

lg P8P lg BR12, 1gRE P lg RE7,

gt T +6g Tt PolgTH 2,

lg="+6g T Plg T2,

lgtt—2g T Plgl T2, (36)
lg~ =27 PPl T2,

g M P lg e 12, [gRR2s|gRR—F |2

He T Polgr T He T PelgiR TR

In addition, the various angles for the transverse-
polarization pieces must be mapped into one another:

Ba‘_’gm 9/3(—;6“5 .
¢a‘—)$a’ ¢B’<—)€£/3 .

An interpretation of the homomorphism is that there are
classes of couplings which yield indistinguishable results
for the electron observables in muon decay, and each

(37

(g~ ~+6g T )(fegve, urir +3eR 1" By,

Ver Vurtapttr ) T(8

class contains one set of LNC parameters [the mapping
in (36) and (37) is just the identity in this case]. It is
therefore not possible, even in principle, to distinguish
between the two cases using only muon decay.

Actually, with the benefit of hindsight, it is possible to
see this correspondence at the Hamiltonian level. The
only complication in going from the LNC case to the
lepton-number-nonconserving case is the interference be-
tween the g; and g;; pieces. This complication can be re-
moved through the use of Fierz transformations.

Consider first the RL pieces. A g j’fL term can be writ-
ten using Fierz transformations (see the Appendix) as

gRleR Y n R ALy L =85 ek YR ALY (38)
which has the same form as a g* terms. Therefore, in
the Hamiltonian, the RL pieces can be written

2 (gi_IjQL_f-gJ?L

i<j

Jer v ni HNEN)

RLs A c =

+ X 8gi erY ngfyvapr - (39
i

For i=~j, there is no longer any ‘“‘internal interference,”

and the calculation of the contribution of this term

proceeds just as in the LNC case. This gives a coefficient

S lgkt+gfH>. (40)
i<j
For i =, there are two distinct diagrams which contrib-
ute to the amplitude. However, because of Fierz trans-
formations, these are equal. In addition, there is a factor
4 due to the presence of identical particles in the final
state. Therefore the coefficient of this term is

33 1281 (41)

Combining (40) and (41) and allowing an unrestricted
sum gives the coefficient

7 3 leift e, 42)
ij
which is to be mapped onto |g®%|? in the LNC case. A
similar analysis follows for the LR pieces.

For the —— and T — pieces, the Fierz transforma-
tions are more complicated, but the calculation proceeds
in a similar way. We first reexamine the LNC case. The
terms

8 RV Vg 8T T eRtPy VRt apiy (43)

can be written as

=287 T N 3CRVeL VurbL — tERE Ve Vurtaptir) - (44)

It has been shown by explicit calculatlon 1n the LNC case that the above two terms do not interfere. For the lepton-

number-nonconserving case, the g; ~ and gl i

-——= P —o—(— 1% = 1>
8ji ernj g =8; (—3ernyFpuy + gt

T—— =C A = =
8ji eRtaanLniRtaﬁ.“L“gji (3eR”iL”jRHL+%eRtaB”

pieces have the following Fierz transformations (see the Appendix):
B,y Aiptapiis) »

i TRtapltr) -
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Therefore, the — — and T — pieces in the Hamiltonian

——= =C T—= =€ -
8ij ErMiLMipi T8 ektaﬁniL"thaﬁﬂL +gj

can be written

(gij—-+gji—_+6gijr'+68jfr_ )SUT___

+(g; g T2 t2i AT, @D

where we have used Eq. (45), and

T———— 15 = 5 7€
S =Jjerni Ajgpr + g 1Py Mirtaplr > 48)
T——— _ 3= —c - —c
Aij =3eRM AR — % RtaﬁniLantaB:u‘L .
S T—==is symmetric in i,j under a Fierz transformation,
and A; I- is antisymmetric. Just as in the LNC case,

these two terms do not interfere. The analysis now fol-
lows that of the RL case. For i <, there is no internal
interference; for i =, there are two diagrams, which are
equal by the symmetry of S~~~ (which is the only
piece which contributes). There is also a factor 1 due to
identical particles in the final state. Therefore, allowing
an unrestricted sum, the coefficient

%2 lgij—w gj?—+6gi§_+6gjlr_‘2 (49)
ij
is mapped onto |g ~~ +6g T ~|? in the LNC case;
13 ley e 2y g (50)
1
is mapped onto |g~ ~ —2g7 |2 The analysis is identical

for the + + and T + pieces.
It will be useful in the following to rewrite Eq (47) as

g ernifjgur +§UT_?R’aﬁniL’7chtaﬁ#L ) (51)
where
gi'iii:gi;‘_%'gji'“+3gji_ >
(52)
ST, ——
8ij —%gjl +gu + lg_ll ’

with similar definitions for g*,-}““” and §,1T+ [The form of

Eq. (51) and (52) follow directly from the Fierz transfor-
mations in Eq. (45).] Using these variables, it is clear that
an equivalent statement of the homomorphism in Eq. (36)
is

lg*TPlg T3 g7 T IPelg T IR, 53
g7 olg T g7 Pelg TP,
where
lg * =%2|g,++|2 lg =~ 2*%2| T
- (54)
g’ =%2 g; 15 gt =%2 g;
ij ij

For the LL and + — pieces, there is no internal in-
terference. However, because of the Fierz transforma-
tions, one can write

—_ _ T——= —
ern ity +8ji eRtaanLni;taﬁf"L , (46)

—— _ _ — A _
8; "5’L”jCR”5Q,uL_ngi+ eLY ML MLV ML » (55)

Wthh has the same form as the g,JL term. Similarly, the
gi i * pieces can be transformed into the same form as the
gi IR terms. From this it is clear that only the combina-
tions

2 lgLL+-g]1 |27 2 ’gRR+_gjx |2 (56)

ij ij
will appear in the expressions in the lepton-number-
nonconserving case. To complete the homomorphism, it
is necessary to separate these combinations as in Eq. (34),
and to relate them to |g%4|%, |g T 7|2, |1gR%|%, and |g~*|?
in the LNC case. As was already derived, the correspon-
dence follows directly. It is therefore possible to see the
homomorphism at the Hamiltonian level, although this
was done a posteriori.

One point should be noted. An examination of Eq. (26)
appears to indicate that, unlike the LNC case, $ and 8’
are nonzero when one considers only ¥ and A interac-
tions. However, Eq. (55) shows that, because of Fierz
transformations, the lepton-number-nonconserving ¥ and
A interactions can be related to S and P interactions; i.e.,
the interactions are not well defined as (V, A) in the
lepton-number-nonconserving case. Even in the LNC
case there is some ambiguity, as mentioned earlier. A
lepton-number-conserving (S, P) interaction can be writ-
ten (using the Fierz transformations) as a (¥, 4) interac-
tion in which lepton-number conservation is not manifest.
Therefore the correct statement concerning the
transverse-polarization pieces in the LNC case is ‘“‘when
one considers only ¥V and A interactions with manifest
lepton-number conservation, the transverse-polarization
pieces vanish.”

Because of the homomorphism, it is possible to use the
analysis of Ref. 7 to put limits on certain combinations of
parameters in the lepton-number-violating case. As in
the lepton-number-conserving case, we normalize the
coupling constants:

|~RR +|2_|_[~RR +|2+|~LL+ |2
|~LL+ |2+|gRL|2+|~LR|2)

+4(|g~ —|2+}g~++'2)+48(|§T“12+1g—'r+|2)
=16, (57

where we have used the variables introduced in Egs. (52)
and (54). The Q’s then take the form

R=1gFR TP +IgR T2, (58)
=|§LRIZ+%|§ ++|2+3ig~ T+|2’ (59)
Qrr =g * P+ Lg ~~PP+3lg 777, (60)
QO =lgttt P+lgst TR 61)
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The constraints

a>0, b=20, ¢c=20,
a*>a'’+a'’+a’, b*Zb'P+B 7+,
c?=c'?, (62)

which were used to derive the results in Table I, hold in
the lepton-number-nonconserving case as well as in the
LNC case.

Using Table I and the homomorphism given in Egs.
(36) and (53), it is seen that the quantities |gR% " |2,
lg3® =12 g R g R g T lg TTI% lg T2 and
|g T7|? are quite stringently constrained. This in turn
can put quite good limits on the coupling constants them-
selves, except that one must allow for the possibility of
fine-tuned cancellations between them.

From Table I and Egs. (33), (34), and (61) we have

> lgi" " T1720.949 (90% C.L.), (63)
Ly

where
o= P=lgft +igl 717 64)

We can go one step further if we incorporate the experi-
mental value S =0.9810.12 (Ref. 9), where S is the total
rate for inverse muon decay (normalized to the lepton-
number-conserving V' — A case). As in the LNC case one
can use the experimental fact that the incident neutrino
from pion decay has helicity —1. Then, neglecting the
small LR, RL, and RR terms, one obtains

S=3 |Scrghitt |*=0.9810.12, (65)
i J

where v, =3 ;c;n; is the neutrino state produced in
uy

the decay 7+ ap*vnv. Without loss of generality we

can choose a basis for the light neutrinos such that

v, =ny;. Combining Eq. (65) with the fact that

"
Q;1 <1, one therefore obtains’

S lgt 7 12>0.77,
i

S gkt T12<0.23.
0L, j#3

(66)

That is, the left-handed neutrino emitted in muon decay
is, to first approximation, the same as the neutrino pro-
duced in T decay, but there is considerable room for ad-
mixtures of other states. Of course, one cannot disentan-
gle the contributions of different i’s, since the final neutri-
no is not observed, or separate the g5~ and g3: ™.

In conclusion, we have calculated the parameters in
muon decay using lepton-number-nonconserving interac-
tions. We have shown that there is a one-to-one

correspondence between the coupling constants in the
lepton-number-conserving case, and combinations of pa-
rameters in the lepton-number-violating case. It is there-
fore impossible, even in principle, to test lepton number
in muon decay if the final neutrinos are massless and
unobserved (and if higher-order corrections can be ig-
nored). Using this correspondence, good limits on cer-
tain combinations of the coupling constants are obtained
for the cases in which a right-handed muon and/or elec-
tron is involved. If we do not allow fine-tuned cancella-
tions to take place, the individual coupling constants are
quite stringently constrained. However, we cannot
discount the logical possibility that such cancellations
might occur, evading the individual constraints. Com-
bining data for muon decay with inverse muon decay, one
can constrain the couplings involving left-handed muons
and electrons. It is found, to first approximation, that the
left-handed neutrinos emitted in muon decay is the same
as that which is produced in m,, decay, but there is con-
siderable room for deviation.
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APPENDIX

The Fierz identities useful for deriving the results in
this paper are

DY oL B3 Vidbar =17 bar V3 vathar, (A1)
Vir¥ar¥sr¥ar = — ¥R Y ar 37 2¥2L 5 (A2)
bir¥or Psr¥ar = — TR Yar¥3r¥or

—301rt PYar Prtaptar » (A3)

where ¥, and i,z are anticommuting left- and right-
handed chiral fields, and t*?=(i /2V'2)[y%,v?]. There is
a relation analogous to (A1) with ¢¥; > ¢z, i=1,...,4.
A related identity is

VirtPiyy sy tap¥ar =0 .

Defining the charge-conjugate fields ¢$=C J,f, %
=C4vy], where C is the charge-conjugation matrix
(Cy,C7'=—y[), one has

(A4)

Vv = — P YAI/ﬁR » (AS)
Pioor = TU5. Y5k (A6)
Vit Pyp = — 5 1Py (A7)
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