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From the suspected "triviality" of the standard lattice Higgs model one expects that the physical Higgs self-coupling cannot 
exceed a certain maximal value, which depends on the ultra-violet cutoffA = 1/a (a: lattice spacing). We have determined this 
upper bound for all values of the cutofflarger than twice the Higgs mass in the approximation proposed by Dashen and Neuberger, 
where the gauge coupling is treated as a small parameter. As a result we find that the Higgs self-coupling is always smaller than 
about 2/3 of the tree level unitarity bound, i.e. there is no strong coupling lattice Higgs model which could be regarded as an 
effective continuum theory at low energies. 

1. F rom a purely aesthetic poin t  of  view, it  would 
be surprising if  the s tandard  model  was not merely 
an effective model ,  which correctly describes the dy- 
namics  o f  the degrees o f  f reedom impor t an t  for the 
electroweak phenomena  up to present ly  observed 
energies; the model  has too many  unexpla ined  free 
parameters .  The key to our  further unders tanding  
probably  lies in the probing of  the physics of  the elec- 
t roweak symmet ry  breaking sector, which, in the 
min ima l  model ,  is pa ramet r i zed  by a spontaneously  
broken O ( 4 )  Higgs scalar model.  The phenomeno-  
logical value of  the renormal ized  Higgs field vacuum 
expectat ion value VR is known, VR~ 250 GeV, but  a 
Higgs resonance has not  yet been seen. Theoret ical  
upper bounds  on the Higgs meson mass mH have been 
der ived within the per turba t ive  con t inuum formula-  
t ion of  the theory [ 1 ] and  in an approx imate  block 
spin renormal iza t ion  group t rea tment  [ 2 ], but  all of  
these eventual ly assume that  the self- interact ions in 
the symmet ry  breaking sector are weak. Thus, a 
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strongly interact ing Higgs sector with a compl ica ted  
nonl inear  dynamics  remains  an interest ing logical 
possibili ty.  

To be able to s tudy the strong self-coupling l imit  
one obviously needs a nonper turba t ive  formula t ion  
of  the model.  All such formulat ions  known to date 
require  the in t roduct ion  of  an ultra-violet  cutoff  A. 
In part icular ,  a technically at t ract ive choice of  regu- 
lar izat ion is to assume a eucl idean spacet ime latt ice 
with latt ice spacing a =  1/A. In this let ter  we in- 
vestigate the lat t ice Higgs model  in the D a s h e n -  
Neuberger  approximat ion ,  where the gauge coupling 
g is considered small [ 3 ]. To lowest order  in g, the 
model  then reduces to the 0 ( 4 )  symmetr ic  0 4 theory 
in the Golds tone  phase, the three Golds tone  bosons 
being the former longi tudinal  components  o f  the W 
and Z vector bosons and the G-particle being the Higgs 
meson. 

There is now practical ly no doubt  that  the pure lat- 
tice 0 4 theory is ' t r iv ia l '  - the only allowed value for 
the renormalized self-coupling in the l imit  A / m H--" 
is zero. The cutoff  is thus indispensable  and can be 
thought to characterize the energy scale where new 
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physics would come into play - unfortunately in the 
lattice theory a scale where rotational invariance vi- 
olations would also become large. The important  
quantitative question, which goes beyond the issue o f  
triviality, and which will be answered by our analy- 
sis, is then: how big an the Higgs self-coupling get for 
some finite value of  the cutoffsuch as e.g. A / m H  = 10? 
In other words, is it possible to have a Higgs mass as 
large as 3 TeV and a cutoffa t  say 30 TeV? 

There have already been a number  of  Monte Carlo 
investigations [4 -8 ]  addressing this question. We 
here describe an analytical approach which yields a 
detailed picture of  the lattice regularized theory and 
which produces rather precise numerical values for 
various physical quantities. The work is an extension 
of  a previously published investigation of  the one- 
component  04 theory [ 9,10 ]. We defer all technical 
details to a lengthier publication [ 11 ]. 

Before proceeding, we remark that the numerical 
determination of  physical quantities from finite lat- 
tice studies of  theories having Goldstone bosons and 
resonances is not at all straightforward. In this con- 
nection the O (n) model is interesting in its own right, 
as the simplest prototype model in which the tech- 
niques for handling the above problems can be stud- 
ied. Thus we hope our analysis will also serve as a 
control in such endeavours. 

2. We consider the theory o f  an n-component  sca- 
lar field G~ (x),  c~= 1, ..., n, on a hypercubic lattice of  
infinite extent in all directions, specified by the 
action ~1 

&= ~ - ~  ~ [O(x)O(x+~)+O(x)'O(x-¢)l 

+ O(x)'O(x) + ,~[ O(x)O(x)-  1 ]2-hO~(x) ) , 

(1) 

in the limit of  vanishing external field h-~0. The hop- 
ping parameter x, which plays the role o f  the bare 
mass, and the coupling 2 are restricted to nonnega- 
tive values. The physically interesting case is n = 4, 
but most o f  our calculations were done for general n 
and we thus keep n as a free parameter  at this stage. 

~ Here and below, the lattice spacing a is set equal to 1./2 is the 
unit vector in the positive p-direction. 

The model is studied for all values of  2, including the 
limit 2--.oo where it reduces to the nonlinear sigma 
model for n >  1 and the Ising model for the special 
case I =  1. Expectation values are defined in the con- 
ventional way. 

The system above (for a given n) is known to pos- 
sess two phases separated by a second order phase 
transition - the phase boundary specified by a line 
~c=~cc(2) in the space of  bare parameters For ~c<~Cc 
the system is in the symmetric phase, the S-matrix is 
O (n)  invariant and the spectrum has a mass gap. For 
~c>xc, on the other hand, the O ( n )  symmetry is 
spontaneously broken and the field G, acquires a 
nonvanishing expectation value 

<O~(O) ) = v .  (2) 

Moreover, the spectrum has n -  1 Goldstone bosons 
and a resonance which we will refer to as the cy-meson 
(alias the Higgs boson).  

In the symmetric phase we can (and it is conveni- 
ent to) impose renormalization conditions on the 
vertex functions at zero external momenta  in order 
to define a renormalized mass mR and renormalized 
coupling gR [9]. In the broken symmetry phase, 
where one cannot impose all conditions at zero mo- 
mentum, our definitions are as follows. The wave 
function renormalization constant ZR is defined 
through the behaviour of  the negative inverse prop- 
agator of  the Goldstone bosons at zero momentum:  

F (2) (P, --P)a/, = --(~at, Z ~  l [p2+ O ( p 4 )  ] 

(p-~O, a , b = l , . . . , n - 1 ) .  (3) 

The vacuum expectation value vR of  the renormal- 
ized G-meson field is then given by 

VR = v Z ~  '/2 • (4) 

With this definition, the Dashen-Neuberger  mass 
formula 

m2=gg~  2vRZ+O(g41ng2) (5) 

(mw is the W boson mass, g the gauge coupling) is 
an exact relation which can be derived from the O (n) 
Ward identities [ 3,12 ]. 

A definition of  a renormalized mass mR, which we 
found convenient for our calculations, is specified by 

Re[F(Z)(P, -P)n , ,  Ip=(i ..... o,o,o)] = 0 ,  (6) 
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where/~(2) (p, _p) , , ,  denotes the negative inverse o- 
meson propagator and the zero closest to the origin 
p = 0 should be taken. The relation of mR to the phys- 
ical mass rno of the a-resonance is discussed below. 

Having introduced VR and mR, a renormalized 
Higgs self-coupling gR may be defined through ~2 

gR =3mZ/v 2. (7) 

This choice has the merit that the relation 

m~/rnw =4gR/3g2 +O(ln g 2) , (8) 

usually quoted at tree-level in gR, becomes an exact 
identity (cf. eq ( 5 ) ). 

The physical o-meson mass mo and width Fo are 
defined through the position of the pole on the sec- 
ond sheet of the analytically continued o-meson 
propagator, 

F~2) (P, -P),,,, Iv=~i,,,o+(1/2)r'~,o.o.o~ = 0 .  (9) 

For weak coupling, the renormalized mass mR de- 
fined in eq. (6) and the physical mass mo are numer- 
ically very close, to two-loop renormalized pertur- 
bation theory they are related by 

mo=rnR[l+2-~2(n--1)Zo~2 +O(g3)] , (10) 

where O~R.=gR/167~ 2. For the o-meson width Fo, in- 
cluding the one-loop correction, we find 

Fo/m,~=~(n--1)O~R[1 

+ (~n-- g x ~ + ~ + ~ g 2 ) c ~ R  +O(gR)  ]. (11) 

This result was obtained by calculating the o-propa- 
gator to two loops and determining the pole as spec- 
ified in eq. (9). For the special case n = 4, eq. ( 11 ) is 
in complete agreement with a formula published re- 
cently by Marciano and Willenbrock [ 14 ]. 

The S-wave "isospin" 0 channel partial wave am- 
plitude of elastic scattering of the Goldstone bosons 
is to tree-level given by 

s 

t ° -  48gx/~[_ - 1 ) m 2 _ s  

- 2 + 2  m~ In 1+ , (12) 
s 

where s is the usual Mandelstam variable ~3. Using 
the unitarity requirement 

IRe(to°) I < 1 /x /s ,  (13) 

we obtain the tree-level unitarity bound 

gR<48g / (n+l ) .  (14) 

For the case n = 4  this implies gR< 30, or, using the 
phenomenological value VR = 250 GeV one would get 
the bound mR < 800 GeV. This is about half the value 
quoted by Lee, Quigg and Thacker [ 15 ] - a factor of  
2 arising from the fact that these authors only impose 
the unitarity restriction [to°l< 2 / \ / s ,  instead of the 
stronger requirement eq. (13) ~4 

3. Our analysis proceeds in three steps. The first 
two steps deal with the solution of the model in the 
symmetric phase and use well-known techniques. The 
third step, extending the analysis to the broken sym- 
metry phase, contains the essential new ingredient. 
Here we only summarize the salient points. 

Step 1: Deep in the symmetric phase, mR, gR and 
ZR are calculated to high orders in the "high-temper- 
ature" (i.e. small ~c) expansion. For the case n=  1 we 
were fortunate to be able to use the tenth order series 
for these quantities derived by Baker and Kincaid 
[ 16 ]. However, for the cases n > 1 no comparatively 
long series have (to our knowledge) been published. 
Using the linked-cluster expansion we have thus cal- 
culated the series to 14th order for general n and 2, 
and for lattice dimensions 2, 3 and 4 [ 17 ]. The re- 
sults are available as computer files, which can be 
readily obtained per electronic mail from the authors. 

Careful analyses of the series are then made and, in 
particular, an effort is made to estimate the system- 
atic errors which arise when truncating the expansion 
at 14th order. The critical line ~c= Kc(2) can be deter- 
mined to a good accuracy by an analysis of the series 
for the two-point susceptibility and incorporating the 
singularity behaviour predicted by the renormaliza- 
tion group. The series for mR, gR and ZR are evalu- 
ated in the range of ~c which corresponds to a 
correlation length m y J smaller than about 2 to 3 lat- 

~2 We choose the label gR for the renormalized scalar coupling to 
agree with our earlier papers on the ~4 theory. In the context 
of the Standard Model a more commonly used definition of 
the Higgs coupling is 2 R =gR/6 (e.g. ref. [ 13 ] ). 

~3 The representation eq. (12) is only valid outside the reso- 
nance region, i.e. for I s -  m ~ ] >> mRFo. 

~4 An extra factor 5/6 arises from the fact that in ref. [ 15] also 
Higgs production is included in the unitarity balance. 
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tice spacings. No Pad6 or other analytic extrapola- 
tion technique is needed here: one just observes the 
apparent convergence of  the first 14 partial sums and 
by comparing with the large order behaviour ex- 
pected from the known singularities at the critical line, 
it is possible to obtain an estimate on the absolute 
deviation of  the last partial sums from the exact value. 

A nontrivial result of  these calculations is that the 
renormalized coupling gR at the maximal value of  ~c 
considered is already rather small. More precisely, at 
the boundary of  the region in the phase diagram where 
we solve the theory by the "high-temperature" ex- 
pansion, gR is less than about 2 /3  of  the tree level 
unitarity bound. Anticipating the finding (in step 2) 
that the renormalized coupling is a monotonically 
decreasing function of  x as one approaches the criti- 
cal line, this result already says that in the symmetric 
phase there is no strong coupling domain where, at 
the same time, the correlation length is large. 

Step 2: In the remaining region of  the symmetric 
phase, the theory is solved by integrating the renor- 
malization group equations at fixed 2 starting at the 
boundary of  the "high temperature" region. Since the 
initial values of  the coupling determined in step 1 are 
small, we assume that the beta function and the other 
renormalization group functions may be evaluated in 
perturbation theory. This is consistent, because the 
renormalization group drives the coupling to smaller 
values as the integration proceeds. In the integration 
region, the O ( a  2) cutoff  dependence o f  the pertur- 
bative coefficients is typically also relatively weak and 

hence we refer to this domain as the "scaling region". 
The renormalization group functions are evaluated 
in our scheme to three loops and we also include their 
(weak) cutoff  dependence up to one-loop. 

There are various consistency checks that can be 
made to test the validity of  the crucial hypothesis 
made in our analysis that the renormalized pertur- 
bation expansion may be used to calculate the Callan- 
Symanzik functions in the scaling region. Firstly one 
can convince oneself o f  its validity by a study of  the 
1/n-expansion. Next one can calculate various low- 
energy physical quantities in perturbation theory and 
compare the contributions at successive orders. We 
have done this for a variety of  quantities and, gener- 
ally, "convergence" o f  the series in the scaling region 
was observed. A third and more convincing check is 
to compare results obtained in the neighborhood of  
the boundary of  the scaling region by (i) further ex- 
trapolating the high temperature expansions into the 
scaling region and (ii) integrating the renormaliza- 
tion group equations out o f  the scaling region. As an 
example, the result o f  such a comparison is shown in 
table 1 for the case n---4, 2 = 00. The matching is truly 
impressive. Even better agreement is obtained for 
smaller values of  2. A final check is to compare the 
results with Monte Carlo data at reasonably large 
correlation lengths. Most of  the simulations to date 
in this phase have been done for values of  the bare 
parameters where the high-temperature expansion 
alone gives a very good description of  the data. For 
n = 1 the results from recent precision numerical sire- 

Table l 
Comparison between results for 2 = Go. n = 4, obtained from the high-temperature analysis (first row for a given mR ) and from integration 
of the renormalizalion group equations (second row) with initial values equated to the high-temperature data at a x-value where m~ ~ 0.3. 
Note that the wave function renormalization constant Z'~ =2xZR of the canonically normalized bare field 0 ' = - ~ 0  is a number close 
to 1. 

mk gR Z~ ~c 

0.50 26.0(6) 1.717(4) 0.28705(8) 
0.50 27(2) 1.705(9) 0.2870(2) 
0.40 22.8(8) 1.682(5) 0.29247(8) 
0.40 23(2) 1.676(8) 0.2925(1) 
0.30 20(1) 1.653(6) 0.29708(7) 
0.30 20(1) 1.652(7) 0.29708(7) 
0.20 16(1) 1.631(7) 0.30071(5) 
0.20 16.4(9) 1.634(7) 0.30072(9) 
0.10 12(2) 1.616(8) 0.30315(2) 
0.10 12.9(6) 1.622(7) 0.3031(1) 
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ulations of  the Ising model [18] are in excellent 
agreement with our previous calculation [ 9 ]. 

Step 3: According to step 2, the renormalized cou- 
pling gR scales to zero as one approaches the critical 
line K=JCc(2) in the symmetric phase in such a way 
that the limit 

Cj (2) = lim mr~(/?~gR)&/~exp(1//?jgR) (15) 
t f  ~ R ' c  

exists, where 

/?~ = ~ ( n + S ) / 1 6 n  2 , (16) 

/ 7 2 = - ~ ( 3 n +  14) / (16n2)  2, (17) 

are the first two coefficients of the beta function. 
C~ (2) and related constants, which embody the rem- 
nants of nonperturbative information, are obtained 
with small estimable errors from the solution of the 
model in the symmetric phase described above. 

In the neighborhood of the critical line in the bro- 
ken symmetry phase there is also a scaling region 
where renormalized perturbation theory yields a good 
approximation. The solution of the model in this do- 
main relies on the observation that the scaling prop- 
erties in the scaling regions on both sides of the critical 
line can be related, by mass perturbation theory, to 
the critical theory (as explained in detail in ref. [ 1 0 ] ) 
and hence to each other. In particular one finds that 
the constant C'~ (2), defined in the broken symmetry 
phase in an analogous fashion to CL (2) in eq. (1 5 ), 
is linearly related to the latter through 

C'~ ( 2 ) =  C~ (2) exp[ (2n+ 1 7 - 3 x / 3 n ) / ( 2 n +  16)1.  
(18) 

Moreover, the renormalization constant ZR ap- 
proaches the same value from either side of the criti- 
cal line. With this information, we can integrate the 

renormalization group equations away from the crit- 
ical line into the broken symmetry phase until gR be- 
comes so large that the applicability of the 
perturbative formulae for the renormalization group 
functions becomes doubtful, i.e. until gR reaches about 
2/3 of the tree-level unitarity bound eq. (14). In ta- 
ble 2 we give the results of this analysis for the non- 
linear a-model, using three-loop renormalization 
group functions appropriate for our renormalization 
scheme and including cutoff effects to one-loop or- 
der. The results using two-loop renormalization group 
functions lie nicely within the quoted errors and the 
integration of the renormalization group equation at 
smaller values of  2 yields qualitatively similar tables 
although the coupling gR is smaller of course. 

4, The most important conclusion of our work is 
the answer to the question posed in the title. We find 
(for n = 4 and in both phases) that once the coupling 
becomes strong, the correlation length is only of the 
order of a few lattice spacings. In other words, there 
is no region in the phase diagram, where the cutoffA 
is substantially greater than the Higgs mass and where 
the Higgs self-coupling would lie outside the pertur- 
bative domain. We emphasize that this is a property 
of the standard lattice Higgs model; our result does 
not imply that a strong coupling sector is also absent 
in any other nonperturbative formulation of the 
model. In fact, it is impossible to make such a state- 
ment as long as the class of all such formulations re- 
mains unspecified. 

The renormalization group trajectories (lines of 
constant gR) in the (K, 2)-plane are qualitatively as 
for n = 1 [ 10 ], and here too the minimal value of mR 
along these trajectories is attained in the limit 2-- ,~.  
For small values of the cutoff, 2<~A/mR<~ 100, the 
maximal possible value ofgR is thus given by table 2, 

Table 2 
The values of gR, ZR and ~7 for a given value of ma in the broken symmetry phase of the O (4) nonlinear a-model (2 = oo ). 

ma gR ZR K 

0.50 19.1(8) 1.559(9) 0.3130(6) 
0.40 17.4(7) 1.571(9) 0.3101(4) 
0.30 15.6(5) 1.581(8) 0.3077(3) 
0.20 13.6(4) 1.589(8) 0.3058(2) 
0.10 11.3(3) 1.595(8) 0.30458(9) 
0.05 9.6(2) 1.597(8) 0.30424(7) 
0.01 7.1(1) 1.600(8) 0.30412(6) 
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while for A/mR >/ 100 the formula 

ln(A/mR{) <~ 1/ fl~gR + fl2/ fl~ ln(fl~gR) - 1.9(1 ) 

(19) 

applies. A plot of this " t r iv ia l i ty-bound" in terms of 
mR/1)R is given in fig. 1. If we insert the phenomeno-  
logical value for the vacuum expectation value vR, 
upper  bounds  on the Higgs meson mass, e.g. 

mR < 6 3 0  G e V ,  ifA>2mR{, (20) 

m R < 1 4 5 G e V ,  i f A > M p ,  (21) 

are obtained, where Mr, = 1,2 X 10 j9 GeV denotes the 
Planck mass. Before taking these bounds  too seri- 
ously for real phenomenology, it is impor tant  to ap- 
preciate that triviality bounds apply to a particular 
regularization - they are inherently non-universal .  
This is well illustrated in the recent study of Bhanot 
and Bitar [8 ] of  the dependence of the bound  on the 
lattice connectivity; for the cases investigated, devia- 
tions of 10-20% were found. Fur thermore the lattice 
regularization, as ment ioned before, breaks rota- 
t ional invariance, and in this respect does not simu- 
late a physical cutoff, and finally the effects of 
fermions and gauge couplings have been neglected. 
The triviality bounds can thus, for phenomenological  

application, only be considered as yielding rough 
estimates. 

As can be seen in fig. 1, our results are, given the 

estimated errors, in reasonable agreement with pub- 

lished Monte Carlo data [7] ~5. Despite this broad 

agreement, we are not yet satisfied with the situation 

since, in the analysis of the numerical  data, various 

definitions of the G-mass have been introduced, some 

even ill-defined in the infini te-volume limit, and it is 

not clear how these compare with our definit ion eq. 

(6).  With due respect to the references cited above, 

we feel that a conceptually clean numerical  simula- 

tion of the 0 ( 4 )  model, including a thorough study 

of finite volume effects is still withstanding. In par- 

ticular, since the c~-meson is a resonance its physical 

mass as defined in finite volume by an eigenvalue of 

the hamil tonian,  is expected to show nonuni fo rm 

volume dependence [20]. In connection with the 

resonance property, we remark that in the scaling re- 

gion the cy-meson is, according to eq. ( 11 ), still rela- 

tively narrow. 

~5 Presently published data by Kuti, Lin and Shen [6] are unfor- 
tunately at lower values of 2. Their 2=00 data will soon be 
available [19]. 

100 

A/m~ 0(4) r/~ode/ 

1 18 20 22 24 
m R / v  R 

Fig. 1. Maximal value of the ultra-violet cutoffA in units of mR 
for given mR~YR. The size of our estimated errors is indicated at 
two representative points (full circles). The open circles are 
Monte Carlo data points from ref. [6]. 
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