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We investigate the energy resolution of electromagnetic sampling calorimeters using the Monte Carlo program EGS. We study
how the energy resolution depends on the shower energy, on the thickness of the absorber and detector layers, and on the charge
number and density of the materials used to construct the calorimeter. Finally we compare our Monte Carlo results with

experimental data.

1. Introduction

Electromagnetic calorimeters [1] are nowadays
standard devices in high energy physics. We can easily
classify them into two categories: homogeneous
calorimeters, made of a single material like lead glass.
Nal, BGO, etc., and sampling calorimeters, with alter-
nating layers of a passive material or absorber, and an
active material or detector. The energy resolution of a
calorimeter of the first type is limited by intrinsic
fluctuations. For a calorimeter of the second type there
is a second contribution to the energy resolution coming
from the sampling fluctuations. Many different readout
detectors have been employed in sampling calorimetry
such as scintillator [2], liquid argon [3] and gas readout
[4]. More recently also room temperature liquids [5] and
silicon detectors [6] are under study. As absorber
material, lead has been extensively used. Iron [7],
uranium [8] and, to a minor extent, copper [9] have also
been used, mainly in connection with hadronic calorim-
etry. More exotic materials like tungsten [10) have been
introduced to obtain very compact calorimeters, espe-
cially if silicon is used as readout material. Low-Z
absorbers have also been considered, but only for very
special purposes [11].

Parallel to the development of the experimental tech-
niques, Monte Carlo programs have been written to
reproduce accurately electromagnetic showers in many
different media. Starting with the shower program of
Nagel [12] and the first versions of EGS [13], these
programs have considerably grown in complexity and,
at the same time, in predictive power. More recently
and after the release of the latest version of EGS, called
EGS4 [14], a comparison of Monte Carlo calculations
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with experimental data at the percent level has become
possible.

In this article we first review present theoretical
ideas about the energy resolution of electromagnetic
sampling calorimeters. We confront them with Monte
Carlo calculations using the EGS4 code, and finally
with existing experimental data.

2. Parametrisation of the energy resolution

The experimental data suggest the following para-
metrisation of the energy resolution for electromagnetic
sampling calorimeters:

05 _ l
E—Ry/E- (1)

where E is the energy (in GeV) of the showering
particle (electron or photon), E, and o, are respectively
the visible (or sampled) energy in the calorimeter and its
rms resolution, 7 is the absorber thickness in radiation
lengths, and R a constant that depends on the absorber
material used. In ref. [15], for example, it is found that,
in the case of scintillator calorimeters, R = 14% if lead
1s used as absorber, and R =17% if iron is used (see
also ref. [16] for the lead case).

A detailed analysis of the theoretical arguments lead-
ing to such a formula can be found in ref. [17] and will
only be summarised here. It is assumed that most of the
energy deposited in the active medium by the electro-
magnetic shower is carried by electrons behaving as
minimum ionising particles. The number of “crossings”
through the active medium layers by these electrons is:
N, E.

© (dE/dx)s’
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where s is the thickness of the active medium layers and
(dE/dx), the energy deposited by minimum ionising
particles per unit length in this medium. The visible
energy E, can approximately be computed by the for-
mula:

E, (dE/ds),s

E = (dE/dx)s+ (dE/dx)s’

where ¢ is the thickness of the absorber layers. This
formula assumes that the shower is only composed of
minimum ionising particles. Since the energy deposited
in the active medium is normally much smaller than the
energy deposited in the absorber, it can be neglected.
We obtain then:

E
e —
¢ (dE/dx)t

The number of crossings N, fluctuates from shower to
shower and as a result the visible energy E, also
fluctuates. Assuming that these fluctuations are Gaus-
sian and the crossings independent, we obtain:

_yNe _ 1 _ [(dE/dx)a
E, N N E
_ | AE(MeV)
=3.2% E(GeV) ’

where AE is the energy lost per layer by a minimum
ionising particle. In the following E will be given in
units of GeV according to the standard prescription.
Since (dE/dx), = ¢,/ X, where € is the critical energy
of the absorber and X, its radiation length, the previ-
ous formula can also be written in the following way:

2

% _ L& _p/T
E VX E RVE
with

R=13.2%/e,(MeV) .

Since the critical energy of lead is ¢, = 7.2 MeV, we
obtain R=28.5% for lead absorbers. As noted in ref.
[17), this formula has to be corrected for multiple
scattering, which results in a spreading of the electron
directions and other effects which imply a reduction of
the visible energy. Taking them into account, the follow-
ing corrected values of R are obtained: 23.0% for
aluminium, 16.1% for iron, and 13.2% for lead.

The fluctuation in the number of crossings is nor-
mally the main component of the energy fluctuation but
not the only one. Path length and Landau fluctuations
should also be added but they are only important if a
gas is used as active medium. These fluctuations can
also be computed [17] and the resulting formulas agree
well with experimental data, as shown for liquid argon
calorimeters in ref. [3], for gaseous calorimeters in ref.
[4], and for various types of calorimeters in ref. [1].

The most relevant implications of the formula € /E,
=Ry/7/E, with R ~ \/¢,, are:

(1) o,/E, varies like 1/VE,

(2) o,/E,, varies like yr with no significant dependence
on the active medium layer thickness,

(3) o,, E, varies like 1/ \/Z where Z, is the charge
number of the absorber (the critical energy ¢ of a
medium is proportional to 1/2Z).

In the following sections we will check whether these
predictions are in agreement with detailed Monte Carlo
calculations performed with EGS4.

3. Some remarks about the use of EGS

The EGS Monte Carlo code (see refs. [13] and [14])
is a system of computer codes for the simulation of
electromagnetic showers produced by electron and pho-
tons in an arbitrary geometry. The different processes
occurring in these showers are taken into account for
particle energy ranges from a few keV to several TeV.
In the EGS3 version of the program, the minimum
energies (or cutoff energies) for secondary electrons and
photons are 1 and 0.1 MeV respectively. Below these
cutoff values, the energy of the particle is deposited in
place without any further transport. In the EGS4 ver-
sion of the program, the cutoff values can be as low as
0.010 MeV (kinetic energy) for electrons and 0.001 MeV
for photons. The cross sections of the different processes
used in the simulation have to be valid down to these
energies. It should be noted that EGS4 offers the option
to include Rayleigh scattering. Another important fea-
ture of the EGS4 version is the optimisation of the step
size used for the particle transport. The importance of
an adequate step size has been emphasized in ref. [18],
in particular for the transport of low energy particles
(below 20 MeV). The tuning of this step size can be
achieved via the variable ESTEPE which defines a fixed
fractional energy loss per step. The recommended val-
ues are 0.3% and 1% for high-Z and low-Z materials,
respectively [14].

In order to evaluate the importance of these cutoff
energies and step sizes, we have generated 250 electron
showers of 1 GeV using the EGS4 code for each one of
the following lead—scintillator sampling calorimeters:
(a) t=5.0 mm and s = 5.0 mm,

(b) t=0.2 mm and s = 5.0 mm,

(¢) t=5.0 mm and s = 0.2 mm,

where 1 is the thickness of the lead layers and s the
thickness of the scintillator layers. The total depth of
the calorimeter was kept constant at 30X, and the
layers were considered laterally infinite (this is the so-
called *“semi-infinite” geometry). The statistical error
expected for such a number of events is about 4%. The
energy resolution o,/ E; is displayed as a function of the
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Fig. 1. (a) Electron and photon cutoff dependence of the
energy resolution for a lead-scintillator calorimeter with =5
mm and s =5 mm. (b) Electron and photon cutoff dependence
of the energy resolution for a lead-scintillator calorimeter with
t=0.2 mm and s=5 mm. (¢) Electron and photon cutoff
dependence of the energy resolution for a lead-scintillator
calorimeter with 1 = 5 mm and s = 0.2 mm.

cutoff energies ne, and ne,, for electrons and photons,
in figs. la~c. The minimum cutoff values used are
€.=0.711 MeV and ¢, =0.010 MeV (corresponding to
n = 1). The cutoff energy for electrons includes of course
the rest mass (0.511 MeV). We observe that {or calorim-
eter a, the energy resolution is insensitive (within sta-
tistical errors) to the electron cutoff energy up to a
value n=3. For n=>5 the energy resolution has in-

creased by 15%. In the case of calorimeters » and ¢
where either the absorber or the detector are very thin,
the energy resolution is very sensitive to the electron
cutoff energy and increases by 50% or more from n =1
to n = 5. On the other hand, no significant influence of
the photon cutoff energies is observed for any of these
three calorimeters. We note, however, that n =5 corre-
sponds to a cutoff energy of 0.05 MeV in the photon
case, but to 3.6 MeV in the case of electrons. Since in
the following we will consider calorimeters with thin
layer thicknesses and since our aim is to obtain accurate
values of the energy resolution, we conclude that a
cutoff energy as low as possible has to be used. On the
other hand, the computing time needed for the stmula-
tion increases for example by a factor 4 when going
from n =2 to n=1 in the electron cutoff. For all these
reasons, in the rest of the paper we will use 0.711 MeV
as default cutoff for electrons. For photons the value
0.01 MeV will be used since no significant gain in
computing time can be obtained by increasing it.

We have also investigated for the same three
lead-scintillator calorimeters the dependence of the en-
ergy resolution on the variable ESTEPE previously de-
fined. We do not observe any significant variation of
the energy resolution when this variable is changed
around the values of 0.3% and 1% for absorber and
detector respectively. Since no spectacular gain in com-
puting time can be achieved by slightly increasing these
values, we will use them as default in the rest of the
paper.

We finally remark that all the energy deposited in
the active medium will be assumed to turn into visible
energy. In this way we suppress any intrinsic fluctua-
tion. As discussed elsewhere [17], these intrinsic fluctua-
tions are normally much smaller than the sampling
fluctuations. Our definition of sampling fluctuation is
any fluctuation of the visible energy as calculated by the
Monte Carlo program. We therefore include in it the
so-called Landau and track length fluctuations.

4. Energy dependence

According to the theoretical considerations of sec-
tion 2, the fluctuations o, of the visible energy E, of a
sampling calorimeter should scale with VE , E being the
energy of the incident particle. In order to check this
prediction we have generated showers in the energy
range between 0.1 and 50 GeV for three different semi-
infinite lead-scintillator sampling calorimeters:

(a) t=5.0mm (0.9X,) and s = 5.0 mm,

(b) r=20.0 mm (3.6 X;) and s = 5.0 mm,

(¢) t=>50.0 mm (8.9X,) and s = 5.0 mm,

where ¢+ and s are the layer thicknesses of lead and
scintillator, as before. All calorimeters had a depth of
30 X, ensuring full containment of the showers even at
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Fig. 2. (a) Energy dependence of the energy resolution for a
lead~scintillator calorimeter with 1 =5 mm and s =5 mm. (b)
Energy dependence of the energy resolution for a lead—scintil-
lator calorimeter with r =20 mm and s=35 mm. (c) Energy
dependence of the energy resolution for a lead-scintillator
calorimeter with ¢ = 50 mm and s = 5 mm.

the highest energies. The computing time needed in
these calculations is proportional to the energy of the
showers, in order to keep the statistical error, about 5%,
approximately the same at all energies.

The results of these simulations are displayed in figs.
2a, 2b and 2c. We observe that for all calorimeters the
quantity (aS/ES)y/f reaches a constant value when the
energy increases. These values are 13%, 30% and 70%

respectively. At 1 GeV no significant deviation from
this constant value is observed for calorimeters a and b,
whereas a 12% increase of the resolution is observed for
calorimeter ¢. At 0.1 GeV these deviations are 4%, 35%
and 50% respectively. It is interesting to note that the
deviations of the energy resolution from the VE depen-
dence at low energies go hand in hand with the devia-
tions from linearity, as shown in figs. 3a, 3b and 3c. At
1 GeV calorimeter a shows a deviation from linearity of
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Fig. 3. (a) Linearity of response for a lead—scintillator calorim-

eter with r = 5 mm and s = 5 mm. (b) Linearity of response for

a lead—-scintillator calorimeter with ¢t =20 mm and s =5 mm.

(c) Linearity of response for a lead-scintillator calorimeter
with ¢ = 50 mm and s = 5 mm.
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only 1%. but 6% at 0.1 GeV. Calorimeter ¢ shows
enormous deviations from linearity, even at high en-
ergies. This is not surprising since the absorber layer
thickness is as large as 9X,. In order to limit the
computing time needed, a compromise had to be found
between the requirement of statistical precision in the
calculations, which favours low energies, and the re-
quirement that the response of the calorimeter should
be linear with E and the energy resolution scale as
l/ﬁ. The latter requirements favour of course calcula-
tions at high energies. For these reasons all the compu-
tations have been performed for 1 GeV electron showers
in the rest of the paper.

5. Thickness dependence

We have generated 1 GeV electron showers for
lead—scintillator calorimeter with a constant scintillator
layer thickness s =35 mm, and lead layer thicknesses
varying in the range between = 0.2 mm (0.04 X;;) and
=100 mm (18X,). All calorimeters had a fixed total
depth of 30 X, but were laterally infinite. The statistical
precision obtained in each computation of o /E, was
about 5%.

The result of these simulations is shown in fig. 4a.
The dependence of o,/E, on t shows three different
regions:

(1) For values of ¢ between 1 and 10 mm, o,/ E is well
described by a straight line in the log/log plot. This
means that o,/E_ is proportional to /%, The value of
a which gives the best fit is a = 0.66 + 0.02.

(2) For values of r below 1 mm (0.2X,), o,/F, gets
increasingly smaller than predicted by %%,

(3) For values of r above 10 mm (1.8X;), o,/E, gets
increasingly larger than predicted by 1%

These calculations have been repeated for different val-

ues of the scintillator layer thickness s. We observe a

dependence of the exponent « on s as indicated in fig.

4b.
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Similarly, we have generated 1 GeV electron showers
for lead—scintillator calorimeters with a constant lead
layer thickness of r=35 mm and scintillator layer thick-
nesses varying between s= 0.2 mm and s= 100 mm.
The result is displayed in fig. S5a. The resolution o /E is
again well described by a curve of the type s # with
B =10.2340.01. The exponent 8 depends on r (lead
layer thickness) as indicated in fig. 5b.

These results show that the formula o, /E, = R‘/T/1E
introduced in section 2, which assumes no dependence
on the active matenal thickness, is in fact only a crude
approximation. The dependence of o /E, on ¢ and s
over the large range of values considered before is
complicated. However, for practical purposes, the typi-
cal values of t and s are limited in the range between 1
to 10 mm. In this regton o, /E is well described by:

o, g 1
E. VE s#

oy, a and B being parameters only slightly dependent
on s and 1.

For practical purposes we will use in the following
the formula:

o o (1 \s B

il ()

where X, and X, are the radiation lengths of the
absorber and the detector respectively. In this way o,
has the same dimensions as the parameter R introduced
in section 2. We emphasize that this formula is purely
empirical and the parameters o,, a« and 8 have to be
determined by fitting Monte Carlo data, and not from
first principles as in section 2.

In fig. 6 we plot the energy resolution of 12 different
lead-scintillator calorimeters with lead layer thicknesses
t equal to 1, 2, 5 and 10 mm and scintillator layer
thicknesses of 1, 5 and 10 mm. The resolution of all
these calorimeters has been determined by Monte Carlo
simulations with a statistical precision of 10%. The best

als) i E ¢

05+ t

01 1 0 00 simml

Fig. 4. (a) Dependence of the energy resolution of a lead—scintillator calorimeter with s =5 mm on the absorber thickness. Both
scales are logarithmic. (b) Dependence of the exponent a on the active material thickness.
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Fig. 5. (a) Dependence of the energy resolution of a lead—scintillator calorimeter with ¢t = 5 mm on the detector thickness. Both scales
are logarithmic. (b) Dependence of the exponent 8 on the absorber thickness.

fit of these resolutions by our empirical formula is
obtained for the following values of g, a and f:

0,=3.46+0.35%, a=0.67+0.03, B=0.29+0.03.

The formula of section 2, o,/E,= R(1/X)!/?, is also
indicated in this plot. We observe that this formula
gives a good description of the resolution for calorime-
ters with s =5 mm, but fails to reproduce other values
of s, since no dependence on s is assumed.

We can evaluate the systematic error made by con-
sidering that the parameters « and 3 are completely
independent of s and ¢ in the following way: let us
assume that o,, « and B are perfectly known for a
calorimeter with 7, =3 mm and s,=3 mm, then for
other values of 1 and s we have:

i__"g(L)a(i)_ﬁ
Es \/—E tO So '

E o)
s Pb/Sc calorimeters (E=1GeV)
4 Monte Cgorlo
o -
30 r— —_ O},‘ S 4

—RVT

20
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Fig. 6. Energy resolution for 1 GeV electron showers of a

lead—scintillator calorimeter for various absorber and detector

thicknesses. The points are Monte Carlo data, the full line is a

fit to the formula given in section 5, and the dashed line is the
formula given in section 2.

and therefore:

Ao,

s _ L s
. —Aa(loglo) A,B(logso),

s

where Aa and A are the differences between the exact
values of these parameters for a calorimeter with layer
thicknesses ¢ and s, and the values for ¢, and s,. In fig.
4b and Sb we observe that for ¢+ and s in the range
between 1 and 10 mm we have: a = 0.65+ 0.05 and
B =0.25+0.05. This implies a maximum systematic
error in o, of 11% and an average systematic error of
4%.

We also remark that the statistical error expected in
the calculation of the energy resolution is:

LA

(Aas)2 - (ATZ")Z + (Aa)’(log 1) + (AB)*(log s)’

Ao, Ag,
+2| —Aallogt—2| —AB|log s
9 %
—2(AalB) log s log t.

Taking into account the statistical errors of o,, a and 8
and the correlation errors given by the fit, we obtain for
the previous computations a statistical error of about
5% for values of ¢ and s in the range between 1 and 10
mm.

We have repeated the calculation of the parameters
6y, « and B for 10 GeV incident electrons. The result is
compatible within errors with the previous one obtained
at 1 GeV.

6. Z dependence
We have calculated the parameters o,, « and B

introduced in the previous section for different calorim-
eters using scintillator as active material and absorbers
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Table 1a
Charge number, density and radiation length of various materi-
als used as absorbers

Material Z o [g/cm’] Xy [mm]
C 6 2.27 188.5

Al 13 2.70 88.9
Fe 26 7.87 17.6
Sn 50 7.31 12.1

w 74 19.30 3.5
Pb 82 11.35 5.6

U 92 18.95 3.2
Table 1b

Charge number, density and radiation length of various materi-
als used as active materials

Material z p [g/cm’] X, [mm]
Liquid He 2 0.13 7546
T™S (2.9) 0.65 525
Scintillator (3.4) 1.03 424
Silicon 14 2.33 93
Liquid Ar 18 1.40 140

with charge number going from Z = 6 (carbon) to Z =
92 (uranium). The charge number Z, density p and
radiation length X, of these materials is listed in table
la. The procedure to obtain oy, a and B is similar to
the one used for lead in the previous section: the
resolution for 1 GeV electron showers of 12 calorime-
ters with s = 1, 5 and 10 mm scintillator layer thickness,
and absorber layer thicknesses of 0.2, 0.4, 1 and 2 Xj. is
calculated with 10% statistical precision. Then the for-
mula

o _ o (1) ) o

E. VE\X ] \X

is fitted to the 12 values. The resulting parameters are
listed in table 2a and in fig. 7a and 7b. We note that for

Z > 125 the exponents a« and B are constant within
errors, and that o, scales like 1/VZ in agreement with

Table 2a

Values of the parameters 6,, a and f obtained from fits to
Monte-Carlo data for various calorimeters using scintillator as
active material

Absorber Detector oy [%] a B

C Scintillator 16.48+2.50 0.72+0.03 0.16+0.02
Al Scintiliator 11.02+1.21 0.70+0.03 0.15+0.02
Fe Scintillator  6.33+0.52 0.624+0.03 0.21+0.02
Sn Scintillator  4.5340.32 0.654+0.03 0.25+0.03
w Scintillator  3.61+0.17 0.70+0.03 0.29+0.03
Pb Scintillator  3.46+0.19 0.67+0.03 0.29+0.03
U Scintillator  3.284+0.15 0.67+0.03 0.30+0.03

Table 2b

Values of the parameters o,. @ and B obtained from fits to
Monte Carlo data for various calorimeters using lead as ab-
sorber

Absorber Detector o, [%] a B

Pb Liquid He 5.68+0.59 0.62+0.03 0.17+0.03
Pb T™MS 4434026 0.71+0.03 0.26+0.03
Pb Scintillator  3.464+0.19 0.67+0.03 0.2940.03
Pb C 355+0.16 0.65+0.03 0.30+0.03

Pb Si 5.04+020 0.66+0.03 0.24+0.03
Pb Liquid Ar  6.49+0.31 0.62+0.03 0.1940.03

Pb Fe 776 +0.47 0.62+0.03 0.18+0.03
Pb Sn 9.49+0.70 0.624+0.03 0.16+0.03
Pb Pb 7.53+0.76 0.57+0.03 0.20+0.03

the theoretical prediction made in section 2 for the
parameter R.

Similarly we have calculated o,, a and B for lead
calorimeters containing active media with a charge
number going from Z =2 (liquid helium) to Z =82
(lead). The material constants used in these calculations
are listed in tables 1a and 1b, and the results listed in
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Fig. 7. (a) The parameter o, as a function of the absorber

charge number Z, for various calorimeters using scintillator as

active material. (b) The exponents « and 8 as a function of the

absorber charge number Z, for various calorimeters using
scintillator as active material.
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as absorber.

table 2b and plotted in figs. 8a and 8b. In practice only
low-Z materials have been experimentally used so far as
active media. We observe in this case a strong depen-
dence of g,, a and B on the charge number Z of the
active material, in particular for low Z values.

7. Density dependence

The formula o /E, = R(t/X,)!/* of section 2, with
R ~1/VZ, implies no dependence of o, on the density
of the absorber, apart, of course, from the one con-
tained in X,. We have also investigated if in our for-
mula of section 5 the whole density dependence is
contained in X, and X,. In other words, we have
investigated how ¢;, a and 8 depend on the density of
the calorimeter materials.

For these purpose we have calculated these three
parameters for several lead-scintillator calorimeters,
following the method described in previous sections and
for the following material parameters:

(a) the scintillator density is kept constant at its nomi-
nal value (1.032 g/cm’) and the lead density is
varied between 1 and 20 g/cm’,

(b) the lead density is kept constant at its nominal
value (11.3 g/cm’) and the scintillator density is
varied between 0.1 and 10 g/cm’.

The result of these simulations is plotted in figs. 9a
and 9b for the case of lead of varying density, and in
figs. 10a and 10b for the case of scintillator of varying
density. We observe, within our statistical errors, no
significant dependence of g, @ and B on the density of
the materials used in the simulation. Lead and scintilla-
tor of varying density cannot, of course, exist in nature.
However, the Monte Carlo program also allows to
simulate them.

8. Comparison with experiment

In order to compare our EGS based formula with
experimental results, we have selected a large number of
energy resolution measurements performed over the last
15 years with electromagnetic calorimeters made of
lead, iron or uranium as absober, and scintillator or
liquid argon as active material. The measurements are
listed in tables 3a and 3b.

o-n(p) T T —T T
(%) a lead-scintitlator  calonmeters

¢
¢
T T fmmmmm o -
t ?
2 - 4
U 1 N L 1
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p (lead density in g/cm3)
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b leod-scintillator colorimeters
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sft ¢ :
04} 1
(p)
e L S N
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p (lead densily in g/cm’)

Fig. 9. (a) The parameter o, as a function of the lead density p,

for various calorimeters using scintillator as active material. (b)

The exponents a and 8 as a function of the lead density p, for
various calorimeters using scintillator as active material.
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Fig. 10. (a) The parameter g, as a function of the scintillator
density p. for various calorimeters using lead as active material.
(b) The exponents « and B as a function of the scintillator
density p. for various calorimeters using lead as active material.

Ideally a good measurement of the energy resolution
should satisfy the following requirements:
~ The calorimeter should have a regular sampling

structure with no mixture of absorbers or active

materials. The layers should have a fixed thickness.

— No additional dead materials should be present in
front or inside the calorimeter.

— The calorimeter should provide full containment of
the showers. In particular the depth should be at least
20X,.

— The measurements should be performed over a wide
range of energies, and energies below 1 GeV should
be ignored in the analysis.

— The experimental result should be carefully corrected
for instrumental effects (electronic noise, calibration
errors. photostatistics, etc.).

In practice almost none of the measurements listed
in tables 3a and 3b fulfil all these requirements. This
has to be taken into account when comparing with the
Monte Carlo predictions. In the case of scintillator
readout, the fluctuation in the number of photoelec-
trons is the main effect which adds to the sampling
fluctuations. This contribution has been subtracted from

Table 3a

Measured and calculated energy resolutions  for  various
calorimeters employing scintillator as active material. The val-
ues given for ¢ are fractional energy resolutions scaled to ]
GeV showers. The contribution of photoelectron statistics has
been subtracted to the measured values. Otherwise they appear
in parentheses.

Absorber r [mm] s [mm] o, [%] 0pis (%] Oup/Oras Rel.

Pb 1.0 5.0 50 4.0 12 {20}
Pb 1.0 5.0 6.0 4.0 1.5 [24]
Pb 2.0 5.0 7.5 6.3 1.2 [25]
Pb 2.1 6.3 9.0 6.1 1.5 [15]
Pb 2.5 4.0 (10.5) 7.8 1.3 [26]
Pb 32 5.0 12.0 8.6 14 [27]
Pb 35 4.0 (14.0) 9.8 14 28]
Pb 4.0 5.0 11.6 10.0 1.2 [29]
Pb 42 126 108 719 1.4 (15]
Pb 6.0 5.0 13.6 13.1 1.1 [30]
Pb 6.0 2.5 17.5 16.0 1.1 [311
Pb 8.4 25.2 14.7 10.3 14 [15]
Pb 9.4 6.4 (18.2) 165 1.1 [32)
Pb 10.0 2.5 22.6 22,6 1.0 [33]
U 1.6 2.5 (11.0) 9.7 1.1 [34]
U 2.0 2.5 (13.9) 113 1.2 [35]
U 3.0 2.5 (16.3) 15.0 1.1 [36]
U 32 5.0 (14.8) 12.7 12 [37]
U 32 3.0 (15.0) 14.8 1.0 [37]
U 10.0 5.0 (28.0) 279 1.0 [38]
Fe 4.8 6.3 10.1 6.8 1.5 [15]
Fe 25.0 5.0 (23.0) 200 1.1 7]
Table 3b

Measured and calculated energy resolutions for various
calorimeters employing liquid argon as active material. The
contributions of electronic noise and calibration errors have
been subtracted to the measured values. Otherwise they appear
in parentheses.

Absorber 1 [mm] s [mm] o, [%] ogcs (%] Owp/0kcs Rel.

Pb 10 20 80 50 1.6 (39]
Pb 12 36 (85) 50 17 [40]
Pb 15 50 75 5.4 14 [41]
Pb 15 20 80 64 1.3 [42]
Pb 19 30 90 69 13 (43)
Pb 20 50 (100) 65 15 [44]
Pb 20 30 (108 71 1.5 45]
Pb 20 20 96 17 1.2 (46]
Pb 20 20 (103 77 1.3 [47]
Pb 22 20 95 17 1.2 (48]
Pb 24 28 12 81 14 [43]
U 20 16 140 115 12 [49]
Fe 1.0 10 28 37 0.8 [50]
Fe 15 15 95 44 2.2 [51]
Fe L5 20 69 41 1.7 [52]
Fe 1.5 20 (7.4) 41 1.8 [53]
Fe 20 20 61 49 1.2 [46]
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Table 3c
Measured and calculated energy resolutions for various
calorimeters employing a gas as active material

Absorber 7 [mm] 5 [mm] 0., Opgs Oep/ Ref
[%] [%] OEGS

Pb 11 5.0 112 140 08  [54]
Pb 1.3 127 170 130 13 [59]
Pb 1.4 10.0 140 140 10  [S6]
Pb 20 6.0 150 184 08  [57)
Pb 20 32 160 205 08  [58)
Pb 2.8 11.6 170 195 09  [59]
Pb 28 12.4 175 193 09  [60]
Pb 28 95 170 202 08 (6]
Pb 3.0 70 240 220 11 [62)
Pb 5.0 9.0 280 274 10  [63]
Pb 6.0 2.0 270 388 07  [64]

the measured energy resolution whenever the informa-
tion was available (otherwise the measured value ap-
pears in brackets). In the case of liquid argon readout,
the main instrumental effects are electronic noise and
calibration errors. Again these contributions have been
subtracted whenever possible.

We estimate the errors in the values calculated from
our EGS based formula to be about 5% systematic and
5% statistical (see the discussion in section 5). The
errors in the measured values have not been quoted
since the systematic errors, which are dominant, are
difficult to estimate and are normally not given.

The ratios between the measured resolutions and the
calculated ones are also listed in the tables. In general
the measured resolutions are worse than the calculated
ones. We attribute this fact to the instrumental effects
mentioned before. It is significant that the measured
energy resolution of calorimeters with a calculated value
below 10% /VE are worse by 50% on the average than
the calculated value. Of course, these calorimeters are
more sensitive to instrumental effects. The case of the
ARGUS calorimeter is particularly interesting. With 1
mm lead and 5 mm scintillator layer thicknesses, it can
theoretically achieve an energy resolution of 4%/ VE , to
be compared with a measured value of 7%/ VE [19].
However, after careful corrections for photostatistics
and for energy leakage, a value of 5%VE is obtained
[20]. Calorimeters with an energy resolution above 10% /
VE are in general well reproduced by the EGS calcula-
tion. The agreement is typically better than 10%.

9. The case of gaseous calorimeters

Calorimeters with gaseous detectors [4] require a
special treatment for the following reason: the density
of gases is smaller by 3 orders of magnitude than the
density of the solid or liquid materials considered up to

now as active media. These small densities lead to a
qualitatively different behaviour of the energy resolu-
tion. The dominant fluctuations are no longer the
fluctuations in the number of crossings, as discussed in
section 2, but rather the Landau fluctuations of the
energy deposited by low energy electrons in each cross-
ing and the path length fluctuations produced by elec-
trons trapped in the gas layers. All these fluctuations
produce a considerable degradation of the energy reso-
lution in case a purely proportional mode is used for the
readout. Attempts have been made to reduce these
fluctuations, e.g. by operating in the limited streamer
mode [21] with the aim to suppress Landau fluctuations
by a saturation in the response of each calorimeter cell.
This is practically achieved but at the price of losing
linearity in the response. This type of readout is some-
times called “digital” readout [4]. The track length
fluctuations can also be limited by adding walls able to
stop low energy electrons. It is obvious that the particu-
lar readout technique will have a strong influence on the
energy resolution of gaseous calorimeters.

From the simulation point of view, the fact that the
range of delta rays is much longer in gases than in
solids or liquids adds a new complication. According to
ref. [22], the range r of low energetic electrons in a
medium of density p can be approximated by the for-
mula:

r=0.75E'"/p

(r in cm, E in MeV, p in g/cm®), E being the kinetic
energy of electrons. The kinetic energy used as cutoff in
the calculations reported above was 0.2 MeV, which
implies a minimum range for electrons in scintillator of
0.4 mm. This value is in general much smaller than the
layer thickness considered. In argon gas, a 0.2 MeV
electron has a range of 25 cm. To obtain a similar
minimum range of 0.4 mm a cutoff of 20 keV has to be
used. This is certainly possible at the cost of a consider-
able increase in the computing time needed for the
calculations. The necessity of using such low cutoff
values to simulate gaseous detectors was pointed out a
long time ago [23]. Fig. 11 shows how the energy
resolution depends on the cutoff values for a calorime-
ter with lead as absorber (=5 mm) and argon gas
(s = 5 mm) as active material. For an electron cutoff of
20 keV (kinetic energy) we obtain a resolution of about
30%/VE, whereas for the cutoff of 200 keV used in
previous calculations we obtain 42% /VE .

A fit to the energy resolution of lead-argon gas
calorimeters using the procedures described in section 5
and the cutoff value of 20 keV yields the following
parameters:

0,=5.86+0.33%, «=0.514+0.02, B=0.17+0.03,

the radiation length of gaseous argon being 1.1 X 10°
mm. In table 3b we compare the measured energy



466 J. Del Peso, E. Ros / Energy resolution of electromagnetic sampling calorimeters

Zsion) , , : v
vS
40r 4 ¢ 1
¢ * f
0 ¢ 1
20+ lead /argon gas 1
t=5mm, s=5mm, E=15eV
10k © eleciron cutoff= (0511+0020n]MeV ]
D L i 1 1 1
? b 6 8 13 n

Fig. 11. Electron cutoff dependence of the energy resolution
for a lead-argon gas calorimeter with = 5 mm and s = 5 mm.

resolution of various gaseous electromagnetic calorime-
ters using lead as absorber, with the prediction of our
EGS based formula. We observe in this case that in
general the measured value is smaller than the predicted
one. This is not surprising since, as discussed previ-
ously, part of the energy fluctuations can be reduced by
an adequate choice of the readout technique.

10. Conclusions

We have studied the energy resolution of electromag-
netic sampling calorimeters using the Monte Carlo pro-
gram EGS4. We have found that for absorber and
detector layer thicknesses ¢ and s, the fractional energy
resolution o,/E, can be approximately described by:

o, oy [ 1\ s\

F-vrlw) (%)

E being the shower energy and X, and X, the radiation
lengths of absorber and detector respectively. The other
parameters appearing in this formula, o,, a and S, have
to be adjusted to Monte Carlo data. We have found that
a and B are rather independent of the density and
charge number of the absorber. The parameter o, scales
with 1/ ‘/Z , Z, being the absorber charge number.
Finally we have compared the predictions of this Monte
Carlo based formula with existing experimental data.
Good agreement is found in general within the limits
imposed by expected instrumental effects in the energy
resolution measurements.
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