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In the broken phase of the four-dimensional Ising model tunneling between the two degenerate minima of the effective potential
takes place in a finite volume. We study this phenomenon numerically. The energies of the lowest zero momentum states are
determined on both sides of the phase transition and their different correspondence to particle states in the infinite-volume limit
is discussed. A Z.-invariant definition of the field expectation value and susceptibility is exploited for calculation of these quan-

tities in finite volumes.

The numerical study of spontaneous symmetry
breaking is an interesting but delicate problem, be-
cause the symmetry is never spontaneously broken in
a finite volume where the numerical simulation is
done. In this letter we investigate a prototype model
with spontaneously broken discrete symmetry, the
four-dimensional Ising model. Variables ¢,.= £ 1 are
associated with the points x of a hypercubical lattice
in four dimensions. The action

4
S=-2« Z Zl ¢’.\‘¢.\‘+ﬂ (1)
N op=
couples nearest neighbour points. This model is
equivalent to the single-component ¢* theory in the
limit of an infinite bare quartic self-coupling A=co
for fixed hopping parameter k. For values of k above
a certain critical k. the Z,-symmetry ¢— — ¢ of the
action is broken spontaneously by the non-zero vac-
uum expectation value of the field: v=<¢,)> #0in an
infinite volume. This “spontaneous magnetization”
can be defined by applying an external magnetic field
h and taking first the limit of an infinite volume V—oo
and then 2—0. In a numerical simulation, however,
this extrapolation procedure would be demanding and
introduces an additional source of systematic errors.
Therefore other equivalent definitions which avoid
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the introduction of a magnetic field are more appro-
priate. We choose a definition of v in terms of the
long-distance behaviour of the two-point function,
which has a clear conceptual and field theoretic
meaning and can be determined unambiguously in
finite volumes. From the point of view of four-di-
mensional euclidean quantum field theories, besides
the vacuum expectation value of the field, other ex-
pectation values with odd field parity like the cubic
coupling are also of interest. In numerical simula-
tions an important question is the influence of the
finite volume on the results. Usually a careful inves-
tigation of the finite-size effects has to be done in or-
der to extract the required infinite-volume
information.

This letter is a continuation of previous work in
the symmetric phase of the four-dimensional Ising
model [1,2]. We report on a detailed study of finite-
size effects in the broken phase. It is shown that on
medium-size lattices (which occur quite often in four-
dimensional Monte Carlo investigations) the finite-
size effects are dominated by tunneling of the system
between the two degenerate minima of the finite-vol-
ume effective action. The spectrum of low-lying states
on a finite-size lattice is investigated in the critical
region near the phase transition, and the possible rel-
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evance of the obtained results to the numerical sim-
ulation of other quantum field theories is briefly
discussed.

In a finite volume spontaneous symmetry breaking
does not occur, as is well known. However, the spon-
taneous symmetry breaking in the infinite-volume
limit manifests itself on finite lattices in the distri-
bution of the average value of the field [3]. If the
value of k is larger than the critical value «,, this dis-
tribution is doubly peaked with two maxima near +v
and —v. In a Monte Carlo simulation the distribu-
tion is sampled with an efficiency which can strongly
depend on the choice of the algorithm. In standard
algorithms based on sequences of local updating steps
global changes resulting in a transition between +v
and —v are suppressed. Far away from the phase
transition or on very large lattices overall sign changes
practically never occur. This fact can even be used
for a rough determination of expectation values with
odd Z,-parity, which appear to be non-zero due to
the inefficiency of the updating procedure.

In the long run, however, tunneling between the
field averages +vand — vtakes place. Configurations

overage spin
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with an average field somewhere between +vand —v,
although suppressed, sometimes do occur. Typically
they have a domain structure, where regions with av-
erage field values around +v and —v are separated
by more or less sharp surfaces. The exponential
suppression of these configurations is proportional to
the area of the separating surface. This situation can
be visualized in a simulation on elongated lattices of
space-time volume L3 T'with T>> L. As an example,
the distribution of the timeslice averages of the field

1
SIEF;¢.:.M X= (x9 t) (2)

is shown in fig. 1 on an 8%-240 lattice at x=0.076
>k.~0.0748. As it can be seen in fig. 1, the transi-
tion regions separating the positive and negative do-
mains are well defined even on the moderately large
8> volume. For larger volumes the transition is even
sharper and the fluctuations inside the domains are
smaller. We checked this on a 123240 lattice with an-
tiperiodic boundary conditions.

Most of our results presented in this paper were ob-
tained by the percolation cluster algorithm [4]. This

0.6 T T

0.0 4ag.o 80.0

120.0 160.0 200.0 240.0

timeslice

Fig. 1. The timeslice averages of the field on a 8°-240 lattice at k=0.076.
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algorithm turned out to be very efficient in the sym-
metric phase of the four-dimensional Ising model for
fighting critical slowing down and for variance re-
duction [2]. In the present context it is advanta-
geous because of the global character of the updating.
It makes the algorithm particularly suitable for a study
of tunneling. The algorithm also allows to get quick
thermalization on elongated lattices, which are cru-
cial for a precise calculation of energy splittings and
other quantities related to tunneling. The typical sit-
uation in the broken phase on a large enough lattice
is that there is a single large ‘“background cluster”
corresponding to the non-zero field expectation value
and a large number of small clusters with random
signs. During the cluster updating whole clusters are
assigned to +1 or —1 with 50% probability, there-
fore the sign of the average field can change from one
sweep to the next. On medium-size lattices, where
tunneling between the two minima is important, there
are a few large clusters and many small ones. Since
the large clusters are changed globally, the cluster al-
gorithm exploits the tunneling configurations very
effectively. Pictures like fig. 1 can also be obtained by
a local Metropolis algorithm, but the change of the
configuration is much slower, i.e. the autocorrelation
time is much longer, as we checked in a few runs.

We would now like to discuss the model, in partic-
ular the spectrum of states, in a more field theoretic
context. In the infinite volume the model has a phase
transition at x.=0.0748. For k<, there is a unique
ground state which is symmetric with respect to the
reflection ¢— —¢. The spectrum above this vacuum
state corresponds to that of multi-particle states which
are symmetric(s) or antisymmetric (a) under field
reflection. The mass gap m, is given by the energy Eg,
of the antisymmetric one-particle state with zero mo-
mentum. For x>k, the ground state as well as all
higher states are doubly degenerate. In the two vacua
|0+ > the field has expectation values +v and —v,
respectively. They yield two sectors of the system such
that matrix elements of local operators between dif-
ferent sectors vanish. The reflection ¢— —¢ trans-
forms the sectors into each other. The spectra in both
sectors are identical and again correspond to multi-
particle states. The mass gap m, =m_ is the single-
particle mass. As xk— k. the mass gap m, (for k<k,.)
or m, (for k> k,.) approaches zero.

In a finite spatial volume L3 there is always a
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unique symmetric ground state |0, >. For k> K, tran-
sitions between the two sectors occur and the degen-
eracy of states is lifted by tunneling. The ground state
and the lowest antisymmetric state can be written as

tos>s71§(|o+>+10_>),

|oa>s71§<|o+>—|0_>), (3)

where |0, > and |0_) are states which go over into
the above mentioned degenerate vacua in the infi-
nite-volume limit. The energy E,, of the ground state
is usually defined to be zero, whereas |0, ) has a small
energy Ey,>0. Similarly, the symmetric and anti-
symmetric one-particle states with momentum zero
in the broken phase are denoted by [1,> and |1,)
and their energies by E | and E,, respectively.

The small energy splitting E;, in the broken phase
can be estimated in a semiclassical instanton-type
calculation. The tunneling configurations are de-
scribed by continuous instanton (“kink”) solutions
of an effective ¢* theory, which interpolate between
the two minima of the effective action at +vand —v
[5]. Expanding around those solutions a one-loop
calculation yields [5,6] (see alsoref. [7])

E,,~C-L'? exp(—0alL?3), (4)

where the “surface tension” ¢ is given to leading or-
der by

o0=2mg/gr =} mp vk . (5)

Here my is the renormalized mass, gr the renor-
malized coupling defined by the second equality and
vg is the renormalized vacuum expectation value.
Some details of this calculation and many other things
related to the finite-size effects in the broken phase
of the four-dimensional Ising model will be pub-
lished in a longer paper [6].

In the Monte Carlo simulation the transition re-
gions between two domains in fig. 1 correspond to
the instanton solutions mentioned above. The small
tunneling energy Ey, results in a long range correla-
tion, which is represented in fig. | by the domain
structure. The average length of the domain is roughly
of the same order as the correlation length. For local
Metropolis or Langevin updating procedures the au-
tocorrelation time (relevant for observables with odd
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parity) is proportional to the square of this correla-
tion length [8].

On a lattice of finite spatial extension L the spec-
trum is similar to the infinite-volume spectrum if
|k—k.| is sufficiently large, namely for m;! or
m7' <L/2. For k near k. the spectrum interpolates
continuously between these two spectra. The quali-
tative nature of the spectrum of low-lying zero mo-
mentum states can be illustrated by a quantum
mechanical system. The finite-size scaling theory for
cylindrical geometry [ 5] asserts that for x~ x, the be-
haviour of the model is governed by the Fourier com-
ponent of ¢, with vanishing three-momentum. In such
an approximation the system is described by a quan-
tum mechanical model with one degree of freedom
and a single-well (k<x.) or a double-well (x>k.)
quartic potential, whose spectrum is well known [9].
For x<k. it is similar to the harmonic-oscillator
spectrum, whereas for x> k. it is the spectrum be-
longing to two potential wells separated by a barrier,
and each pair of energies E ,; and E,, of the nth sym-
metric and antisymmetric state is nearly degenerate.
A schematic picture of the dependence of the zero-
momentum spectrum on x is shown in fig. 2, where
scattering states with non-zero relative momenta have
been neglected.

The contribution of the lowest zero-momentum
states to the partition function in the case of periodic
boundary conditions is given by

energy

(5m,) \

(4m,) EZa
(2my)

(3mq)

(2m,)

(m4) \Et)
a

i (0)
0 K

c

Fig. 2. Schematic picture of the spectrum of low-lying states in
the one-component ¢* theory on a finite lattice. States with non-
zero momentum and scattering states with non-zero relative mo-
mentum are neglected. The energies result from an effective
quantum-mechanical hamiltonian for the zero momentum field
mode; see the discussion in the text.

206

PHYSICS LETTERS B

20 October 1988

Z=Trexp(—TH)
=1+exp(—TEy,) +exp(—TE,,)
+exp(—TE,,)+.... (6)

Here H is the hamiltonian, exp(—H) the transfer
matrix and the dots stand for higher contributions.
The vacuum expectation value of the product of ti-
meslice field averages is given by

(S80S > Z=Tr{Spexp(—tH)S,exp[— (T—t)H]}
=v*{exp(—tEy,) +exp[ — (T—1)Ep]}
+coi{exp(—1E ) +exp[ - (T—1)E\, ]}
+ciof{exp[ —tEp — (T—1)E|;]
+exp[—(T—¢t)Ep, —tE ]}
+ci{exp[ —tE |, — (T—1)E]
+exp[—(T—t)E,,—tE\]}
+o (7)

Here the matrix elements are defined as

v={0,]S,10,> , (8)

and »

o1 =018, 1123, clo=<118510:> ,

cn=<LLIS L) (9)

Eq. (8) is a possible definition of the vacuum expec-
tation value of the field in a finite volume. In the in-
finite-volume limit this is equivalent to the definition
by an external magnetic field. This “invariant” defi-
nition was, to our knowledge, first introduced in the
two-dimensional Ising model by Yang [10]. (For a
discussion of other possible finite-volume definitions
of the vacuum expectation value see refs. [11,3,12].)
Using eq. (7) one can also define an “invariant™ sus-
ceptibility x» in the broken phase by subtracting from
the sum of the two-point function the contribution
proportional to v

X2 = Z<¢O¢x>c

EL3Z<<SOS,>

, {exp(—1tEq,) +exp[ — (T—1)En]}
—v 1+exp(—TEo) ) (10)
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The subtraction here is only meaningful if the spec-
trum is of the broken symmetry type. The definition
(8) can also be generalized to other expectation val-
ues in the broken phase which are odd in field parity:

<¢«\'l¢.\'2"'¢,\'ll\+l >
E<05|¢.\'I¢.\'2"'¢,\'2A+l Ioa> * (11)

In a numerical simulation these can, in principle, be
extracted from (2k+2)—point functions, if the ad-
ditional point is separated from the rest by a larger
time distance. The separation must be large enough
in order to suppress the propagation of the higher
states besides |0, >.

In the broken phase the approximate degeneracy of
states in a finite volume has to be taken into account
in every correlation function. Another example be-
sides eq. (7) is the connected correlation of the ti-
meslice squared. For large volumes one obtains

(S3S7 ) =(S587> —<(85)°

2 eXp(_TE‘Oa)
[1+exp(—TEo) ]

2
ag)
+ —_— e
1+exp(—TE,,)
2 exp(—TEOa)
o1 +exp(—TEo,)

exp(—1E)

exp[_t(Ela_EOa)]

+O(exp(—TE,), exp(—tE>)) , (12)

where we define

Table |
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a01=<05|S%|15>a b01=<0a|S(2)|1a>’ (13)
and the small quantity 4 is given by
4=¢0,18310.>—<0,|S310.> - (14)

For small ¢ the second and third terms are relevant,
whereas for large ¢ only the first term survives. This
formula can be used to obtain numerical information
of the effect of tunneling on the matrix elements of
the operator S7.

We have measured the correlation functions
{(S,S,> and (S3S?> on various lattices of size
L3-120 in the vicinity of k.. The results of the analy-
sis of these functions are listed in table 1 and will be
discussed in the following.

The correlation function ¢.5,S,) has been fitted by
the first two terms in (7), whenever the second term
was large enough to be determined reliably. This was
the case for £ 0.0755, whereas for smaller « only the
first term was obtained. The third term in eq. (7) is
negligible in most of the points due to the suppres-
sion factor exp(—TE,,). Exceptions are the points
L=8, k=0.077 and L=10, k=0.076, where this
suppression is only moderate, therefore there is some
additional systematic uncertainty in the value of E,.
The fits yield results for v? and the energy E,, with
rather high precision. The susceptibility y, was then
calculated according to (10). It is very small for k~«,
and increases with increasing x above «.. This signals
strong finite-size effects because the infinite-volume
susceptibility should decrease with increasing .

The results of the numerical calculation on L*-120 lattices. The number of sweeps is given in thousands (ks). Error estimates in last
numerals are in parentheses. They were determined by the fluctuation of the best fit parameters from subsamples of our data.

L K ks Eoa E E, 14 X2 |41
8 0.0740 200 0.2458(7) 0.588(4) 0.1583(5)
8 0.0745 412 0.1951(4) 0.504(3) 0.1761(2)
8 0.0750 200 0.1415(3) 0.434(4) 0.2014(4)
8 0.0755 200 0.0900(3) 0.379(5) 0.70(14) 0.2400(3) 1.9(1.2)
8 0.0760 528 0.04609(15) 0.352(3) 0.63(4) 0.2898(3) 5.7 (4) 0.04(2)
8 0.0765 200 0.01805(12) 0.40(2) 0.50(4) 0.3415(3) 15.4(6)
8 0.0770 334 0.00580(5) 0.47(1) 0.521(5) 0.3852(1) 18.5(2) 0.006¢2)
6 0.0760 256 0.1281(4) 0.51(1) 0.3083(5) 1.0(4)
7 0.0760 256 0.0812(3) 0.417(4) 0.2938(4) 1.6(7) 0.2(1)
9 0.0760 256 0.02238(11) 0.316(8) 0.42(4) 0.2921(2) 17(1) 0.016(2)
10 0.0760 361 0.00902(6) 0.329(8) 0.366(8) 0.2958(2) 35.0(6) 0.008(2)

207



Volume 213, number 2

The correlation function ¢S$3S57?> has been fitted
with a constant plus an exponentially decreasing term
although according to (12) a second exponential
should also be present on a finite lattice. It would,
however, be difficult to separate the exponentials nu-
merically, because the energies E | and E,,— E, are
of similar magnitude. Furthermore, the third contri-
bution in (12) is relatively smaller than the second
one. Therefore we take the energy extracted from the
exponential fit as a measure for E,,. The constant 4
has also been obtained from this fit and is included
in table 1. As a measure of the difference between the
matrix elements of the states |0,> and |0, it is a
quantity characteristic for tunneling.

The energies Eo,, E,;and E,, are displayed in fig. 3
as a function of x. The results are in agreement with
the expected behaviour discussed before (fig. 2). In
particular it is clearly visible how the double degen-

Bxx3x120 LATTICE

L L 1 [ ]
0.07y 0.075 0.076 0.0

Fig. 3. The lowest zero momentum energy levels as a function of

xon a 8120 lattice. The full dots stand for E,,, the open squares
for E,, and the full squares for E|,.
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eracy in the broken phase is approached. The energy
splittings E,, E,,—E|,, which we have been able to
determine, are a manifestation of the tunneling
phenomenon.

Of particular interest is the volume dependence of
E,,, which can be compared with the semiclassical
formula (4). A corresponding fit is shown in fig. 4.
The predicted form of the volume dependence is con-
firmed very well. The best fit value for the surface
tension between L=8, 10 is

0=0.00358 +0.00002 . (15)

The prediction (5) from the instanton calculation
would yield ¢=0.0047 if the values of mg and vy in
the infinite volume from the analytic calculation of
ref. [13] are inserted. If instead we use our measured
valuesof E |, vand y, ona 10%- 120 lattice at k=0.076
to get estimates for my and g, the prediction is

log(E,/7T )
-1.0 T T
e Lxx3x120 LATTICE
KAPPAR=0.076

-3.0 F ‘3‘\ b
,Q.O =

-00035813-2.29 ]
_SD = ‘4
-6.0 = -
Lo L X . ]

c.0 300.0 600.0 900.0 1200.0

E
Fig. 4. The quantity log (E,L ~'/?) as a function of the volume
L7, The straight line is a fit to the points L=8-10
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o=0.0051. These values are roughly consistent with
the number from our fit in view of the expected
higher-loop corrections. At x=0.076 we have deter-
mined o also from the autocorrelation time (inverse
flip rates on 84, 10* and 12* lattices in the Metropolis
algorithm), as suggested by ref. [8]. We find
0=0.00289(7), which is in reasonable agreement
with the value in (15).

On the lattices under consideration tunneling plays
a role which is by far not negligible for the study of
finite-size effects. Ultimately our aim is to extend our
previous work on the symmetric phase of the Ising
model [2] to the broken phase and to investigate the
scaling behaviour and perturbative finite-size effects
[6]. A full control of tunneling is prerequisite for a
precise extrapolation to the infinite-volume limit in
order to be able to make a comparison with the re-
sults of ref. [13]. From the data obtained in the pres-
ent work we get information on how large the lattices
have to be in order for finite-size effects to be domi-
nated by perturbative effects instead of tunneling.

Since tunneling effects in general are fading away
exponentially with the volume, once the volume is
large enough they quickly disappear. Nevertheless,
one has to keep in mind that some more subtle quan-
tities could still be strongly effected even if the vac-
uum degeneracy is well satisfied (i.e. Eg, i very
small). As an example, as one can see form table 1
the splitting of the one-particle energies E,, and E |,
is still appreciable on volumes where E,, is already
very small. In other words, the one-particle mass is
still ill-defined, although in a local updating algo-
rithm sign flips of the average spin are very seldom.
This can be understood as a consequence of tunnel-
ing of local domains even if the configuration as a
whole stays in one of the vacua.

It is to be expected that the qualitative features of
the finite-size effects due to tunneling are similar also
in other systems with two (or more) discrete degen-
erate ground states. An obvious example is the finite-
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temperature deconfining phase transition in pure
gauge theories (particularly for the SU(2) gauge field,
which also has a Z,-symmetry). More generally, tun-
neling can also be important near first-order phase
transitions, when there are two degenerate minima of
the finite-volume effective potential.
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