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In the broken phase of the four-dimensional Ising model tunneling between the two degenerate minima of  the effective potential 
takes place in a finite volume. We study this phenomenon numerically. The energies of  the lowest zero m o m e n t u m  states are 
determined on both sides of  the phase transition and their different correspondence to particle states in the infinite-volume limit 
is discussed. A Z2-invariant definition of  the field expectation value and susceptibility is exploited for calculation of these quan- 
tities in finite volumes. 

The numerical study of spontaneous symmetry 
breaking is an interesting but delicate problem, be- 
cause the symmetry is never spontaneously broken in 
a finite volume where the numerical simulation is 
done. In this letter we investigate a prototype model 
with spontaneously broken discrete symmetry, the 
four-dimensional Ising model. Variables ~x= + 1 are 
associated with the points x of a hypercubical lattice 
in four dimensions. The action 

4 
S = - 2 t ¢ ~  ~ Ox~.,-+z (1) 

.v p= 1 

couples nearest neighbour points. This model is 
equivalent to the single-component ~4 theory in the 
limit of an infinite bare quartic self-coupling 2 = 
for fixed hopping parameter x. For values of x above 
a certain critical ~:c the Z2-symmetry ~--*- ~ of the 
action is broken spontaneously by the non-zero vac- 
uum expectation value of the field: v= (~x) ~ 0 in an 
infinite volume. This "spontaneous magnetization" 
can be defined by applying an external magnetic field 
h and taking first the limit of an infinite volume V~oo 
and then h~0.  In a numerical simulation, however, 
this extrapolation procedure would be demanding and 
introduces an additional source of systematic errors. 
Therefore other equivalent definitions which avoid 

the introduction of a magnetic field are more appro- 
priate. We choose a definition of v in terms of the 
long-distance behaviour of the two-point function, 
which has a clear conceptual and field theoretic 
meaning and can be determined unambiguously in 
finite volumes. From the point of view of four-di- 
mensional euclidean quantum field theories, besides 
the vacuum expectation value of the field, other ex- 
pectation values with odd field parity like the cubic 
coupling are also of interest. In numerical simula- 
tions an important question is the influence of the 
finite volume on the results. Usually a careful inves- 
tigation of the finite-size effects has to be done in or- 
der to extract the required infinite-volume 
information. 

This letter is a continuation of previous work in 
the symmetric phase of the four-dimensional Ising 
model [ 1,2]. We report on a detailed study of finite- 
size effects in the broken phase. It is shown that on 
medium-size lattices (which occur quite often in four- 
dimensional Monte Carlo investigations) the finite- 
size effects are dominated by tunneling of the system 
between the two degenerate minima of the finite-vol- 
ume effective action. The spectrum of low-lying states 
on a finite-size lattice is investigated in the critical 
region near the phase transition, and the possible rel- 
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evance of  the obta ined  results to the numerical  sim- 
ulat ion of  other  quan tum field theories is briefly 
discussed. 

In a finite volume spontaneous symmetry  breaking 
does not occur, as is well known. However,  the spon- 
taneous symmetry  breaking in the inf ini te-volume 
l imit  manifests  i tself  on finite lattices in the distri-  
but ion of  the average value of  the field [3] .  I f  the 
value of  ~c is larger than the crit ical value G, this dis- 
t r ibut ion is doubly peaked with two max ima  near  + v 
and - v .  In a Monte  Carlo s imulat ion the distr ibu-  
t ion is sampled with an efficiency which can strongly 
depend on the choice o f  the algorithm. In s tandard  
algorithms based on sequences of  local updating steps 
global changes resulting in a t ransi t ion between + v 
and - v  are suppressed. Far  away from the phase 
transit ion or on very large lattices overall sign changes 
practically never occur. This fact can even be used 
for a rough de te rmina t ion  of  expectat ion values with 
odd Z2-parity, which appear  to be non-zero due to 
the inefficiency of  the updat ing procedure.  

In the long run, however, tunneling between the 
field averages + v and - v takes place. Configurat ions 

with an average field somewhere between + v and - v, 
al though suppressed, somet imes do occur. Typical ly  
they have a domain  structure, where regions with av- 
erage field values a round  + v and - v  are separated 
by more  or  less sharp surfaces. The exponential  
suppression of  these configurations is proport ional  to 
the area of  the separat ing surface. This si tuat ion can 
be visual ized in a s imulat ion on elongated lattices of  
space - t ime  volume L 3. Twi th  T>> L. As an example,  
the dis t r ibut ion of  the t imeslice averages of  the field 

1 S,-~5~¢x.,, x=(x,t) (2)  

is shown in fig. 1 on an 83.240 latt ice at ~c=0.076 
> x c ~ 0 . 0 7 4 8 .  As it can be seen in fig. 1, the transi- 
t ion regions separat ing the posi t ive and negative do- 
mains  are well defined even on the modera te ly  large 
83 volume. For  larger volumes the t ransi t ion is even 
sharper  and the f luctuations inside the domains  are 
smaller. We checked this on a 123. 240 latt ice with an- 
t iper iodic  boundary  condit ions.  

Most  o f  our  results presented in this paper  were ob- 
ta ined by the percolat ion cluster algori thm [4] .  This 
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Fig. 1. The timeslice averages of the field on a 83.240 lattice at ~c= 0.076. 
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algorithm turned out to be very efficient in the sym- 
metric phase of the four-dimensional Ising model for 
fighting critical slowing down and for variance re- 
duction [2]. In the present context it is advanta- 
geous because of the global character of the updating. 
It makes the algorithm particularly suitable for a study 
of tunneling. The algorithm also allows to get quick 
thermalization on elongated lattices, which are cru- 
cial for a precise calculation of energy splittings and 
other quantities related to tunneling. The typical sit- 
uation in the broken phase on a large enough lattice 
is that there is a single large "background cluster" 
corresponding to the non-zero field expectation value 
and a large number of small clusters with random 
signs. During the cluster updating whole clusters are 
assigned to + 1 or - 1 with 50% probability, there- 
fore the sign of the average field can change from one 
sweep to the next. On medium-size lattices, where 
tunneling between the two minima is important, there 
are a few large clusters and many small ones. Since 
the large clusters are changed globally, the cluster al- 
gorithm exploits the tunneling configurations very 
effectively. Pictures like fig. 1 can also be obtained by 
a local Metropolis algorithm, hut the change of the 
configuration is much slower, i.e. the autocorrelation 
time is much longer, as we checked in a few runs. 

We would now like to discuss the model, in partic- 
ular the spectrum of states, in a more field theoretic 
context. In the infinite volume the model has a phase 
transition at xc = 0.0748. For tc< tq there is a unique 
ground state which is symmetric with respect to the 
reflection ~--, - ~ .  The spectrum above this vacuum 
state corresponds to that of multi-particle states which 
are symmetric (s) or antisymmetric (a) under field 
reflection. The mass gap ma is given by the energy E0a 
of the antisymmetric one-particle state with zero mo- 
mentum. For ~:> ~c~ the ground state as well as all 
higher states are doubly degenerate. In the two vacua 
I 0 + ) the field has expectation values + v and - v, 
respectively. They yield two sectors of the system such 
that matrix elements of local operators between dif- 
ferent sectors vanish. The reflection ~ - ~  trans- 
forms the sectors into each other. The spectra in both 
sectors are identical and again correspond to multi- 
particle states. The mass gap m+ = m is the single- 
particle mass. As K-*K~ the mass gap ma (for K<Kc) 
or m+ (for x> ~cc) approaches zero. 

In a finite spatial volume L 3 there is always a 

unique symmetric ground state 10s). For x> xc tran- 
sitions between the two sectors occur and the degen- 
eracy of states is lifted by tunneling. The ground state 
and the lowest antisymmetric state can be written as 

1 
10s>--- ~ ( 1 0 + ) + t 0 _  ) ) ,  

1 
10a>- ~ (10+ > - I 0 -  ) ) ,  (3) 

where 10+ ) and 10_ ) are states which go over into 
the above mentioned degenerate vacua in the infi- 
nite-volume limit. The energy Eos of the ground state 
is usually defined to be zero, whereas 10a) has a small 
energy Eoa> 0. Similarly, the symmetric and anti- 
symmetric one-particle states with momentum zero 
in the broken phase are denoted by I ls) and I la) 
and their energies by Els and ELa, respectively. 

The small energy splitting Eoa in the broken phase 
can be estimated in a semiclassical instanton-type 
calculation. The tunneling configurations are de- 
scribed by continuous instanton ("kink") solutions 
of an effective 0 4 theory, which interpolate between 
the two minima of the effective action at + v and - v 
[5]. Expanding around those solutions a one-loop 
calculation yields [ 5,6 ] (see also ref. [ 7 ] ) 

Eoa ~ C . L  L/2 exp( - t T L  3 ) , (4) 

where the "surface tension" a is given to leading or- 
der by 

a = 2 m 3 / g R  _ 2 2 (5) = ~ m R V  R • 

Here mR is the renormalized mass, gR the renor- 
malized coupling defined by the second equality and 
VR is the renormalized vacuum expectation value. 
Some details of this calculation and many other things 
related to the finite-size effects in the broken phase 
of the four-dimensional Ising model will be pub- 
lished in a longer paper [ 6 ]. 

In the Monte Carlo simulation the transition re- 
gions between two domains in fig. 1 correspond to 
the instanton solutions mentioned above. The small 
tunneling energy Eoa results in a long range correla- 
tion, which is represented in fig. 1 by the domain 
structure. The average length of the domain is roughly 
of the same order as the correlation length. For local 
Metropolis or Langevin updating procedures the au- 
tocorrelation time (relevant for observables with odd 
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parity) is proportional to the square of  this correla- 
tion length [ 8 ]. 

On a lattice of  finite spatial extension L the spec- 
trum is similar to the infinite-volume spectrum if 
I~C-Kcl is sufficiently large, namely for m a ~ or 
m ¥~ < L /2 .  For ~: near K~ the spectrum interpolates 
continuously between these two spectra. The quali- 
tative nature of  the spectrum of  low-lying zero mo- 
mentum states can be illustrated by a quantum 
mechanical system. The finite-size scaling theory for 
cylindrical geometry [ 5 ] asserts that for x ~  K~ the be- 
haviour of  the model is governed by the Fourier com- 
ponent Of Ox with vanishing three-momentum. In such 
an approximation the system is described by a quan- 
tum mechanical model with one degree of  freedom 
and a single-well (K<K~) or a double-well (K>K~) 
quartic potential, whose spectrum is well known [ 9 ]. 
For K<K~ it is similar to the harmonic-oscillator 
spectrum, whereas for x>  Xc it is the spectrum be- 
longing to two potential wells separated by a barrier, 
and each pair of  energies E.~ and E~a of  the nth sym- 
metric and antisymmetric state is nearly degenerate. 
A schematic picture of  the dependence of  the zero- 
momentum spectrum on x is shown in fig. 2, where 
scattering states with non-zero relative momenta  have 
been neglected. 

The contribution of  the lowest zero-momentum 
states to the partition function in the case o f  periodic 
boundary conditions is given by 

energy 

(sm~)~ 

(4ma) \ 

(3ma) % s ~  / (Zm+_) 

(ma) ~ E ~ a  ~ 

(0) Eos (0) 
0 K= E 

Fig. 2. Schematic picture of  the spectrum of low-lying states in 
the one-component 0 4 theory on a finite lattice. States with non- 
zero momen tum and scattering states with non-zero relative mo- 
mentum are neglected. The energies result from an effective 
quantum-mechanical  hamiltonian for the zero momen t um field 
mode: see the discussion in the text. 

Z = T r  exp( - TH)  

= 1 + e x p (  - TEo.) +exp(  - TEIs) 

+ e x p ( -  TE~.) + .... (6) 

Here H is the hamiltonian, e x p ( - H )  the transfer 
matrix and the dots stand for higher contributions. 
The vacuum expectation value of  the product of  ti- 
meslice field averages is given by 

(SOS,)  Z -  Tr{S0 exp ( - tH)S,  exp [ - ( T -  t )H] } 

= vZ{exp ( -  tEoa) + e x p [ -  ( T - t ) E o a ] }  

+Co 2, {exp( - tE,a) + e x p [  - ( T -  t)E,a]  } 

+c20 {exp [ - t E o , -  ( T - t ) E j s ]  

+ e x p [ -  ( T - t  )Eoa- tE,s]  } 

+ c  2, {exp[ - tE,, - ( T -  t)E,s] 

+ e x p [  - ( T - t ) E , ,  - tE~s]} 

+ .... (7) 

Here the matrix elements are defined as 

v= (0s Ia, 10a ) ,  (8) 

and 

Col= (0s lS ,  I la }, C lo=(1s l&10a}  , 

Cl , -=( l~ lS ,  I I , )  . (9) 

Eq. (8) is a possible definition of  the vacuum expec- 
tation value of  the field in a finite volume. In the in- 
finite-volume limit this is equivalent to the definition 
by an external magnetic field. This " invariant"  defi- 
nition was, to our knowledge, first introduced in the 
two-dimensional Ising model by Yang [10].  (For  a 
discussion of  other possible finite-volume definitions 
of  the vacuum expectation value see refs. [ 11,3,12 ]. ) 
Using eq. (7) one can also define an "invariant"  sus- 
ceptibility X2 in the broken phase by subtracting from 
the sum of  the two-point function the contribution 
proportional to v2: 

x2- Y (0o0x)c ~c 

=L3 Z(<SoS,> 

{exp( - tEoa)  + e x p [  - ( T - t ) E o a ] } ~  
~ ~ -  T-Eo-~ .}. (10) 
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The subtract ion here is only meaningful  i f  the spec- 
t rum is of  the broken symmet ry  type. The def ini t ion 
(8)  can also be general ized to other  expectat ion val- 
ues in the broken phase which are odd  in field pari ty:  

< 0,-,0,_,...0~_,k+ ~ > 

- <0~ I 0.,-,G_~...G2k+, l O.) • (I i ) 

In a numerica l  s imula t ion  these can, in principle,  be 
extracted from (2k + 2)  - poin t  functions,  i f  the ad- 
di t ional  point  is separa ted  from the rest by a larger 
t ime distance. The separat ion must  be large enough 
in order  to suppress the propagat ion  o f  the higher 
states besides { 0s, a >.  

In the broken phase the approx imate  degeneracy of  
states in a finite volume has to be taken into account  
in every correlat ion function. Another  example  be- 
sides eq. (7)  is the connected correlat ion of  the ti- 
meslice squared. Fo r  large volumes one obta ins  

2 2 <SOS, >~=-<s~s~>-<s~,> ~ 

= A 2 exp ( - TEoa) 
[ 1 + e x p (  - TEoa) ]2 

ao2, 
+ e x p ( - t E ~ s )  

1 + e x p (  - TEoa) 

+b~,  e x p ( -  TEoa) 
1 + e x p (  - TEoa) exp[ - t (E ,a  -Eo , )  ] 

+ O (exp ( - TE, ), e x p ( - t E 2 )  ) , ( 12 ) 

where we define 

ao,=(OslS2lls>, bo, = ( 0 a l S 2 l  l a ) ,  (13)  

and the small  quant i ty  3 is given by 

A =  ( 0  a Isg {0a ) -- (0s IS g 10s ) • (14)  

For  small  t the second and th i rd  terms are relevant,  
whereas for large t only the first term survives. This 
formula  can be used to obta in  numerical  informat ion 
of  the effect of  tunneling on the matr ix  elements of  
the opera tor  S 2. 

We have measured the correlat ion functions 
(SOS,) and 2 2 (SOS, > on various lattices o f  size 
L 3.120 in the vicini ty  of  tcc. The results of  the analy- 
sis of  these functions are l isted in table 1 and will be 
discussed in the following. 

The correlat ion function (SOS, > has been fi t ted by 
the first two terms in (7) ,  whenever  the second term 
was large enough to be de te rmined  reliably. This was 
the case for x >  0.0755, whereas for smaller  tc only the 
first term was obtained.  The th i rd  term in eq. (7)  is 
negligible in most  of  the points  due to the suppres- 
sion factor exp ( -  TEoa). Exceptions are the points  
L = 8 ,  ~c=0.077 and L = 1 0 ,  x=0 .076 ,  where this 
suppression is only moderate ,  therefore there is some 
addi t ional  systematic uncer ta inty  in the value of  E,a. 
The fits yield results for v 2 and the energy Eoa with 
ra ther  high precision. The susceptibi l i ty Z2 was then 
calculated according to (10).  It is very small for lc ~ lco 
and increases with increasing ~c above Kc. This signals 
strong finite-size effects because the inf in i te-volume 
susceptibi l i ty should decrease with increasing ~c. 

Table l 
The results of the numerical calculation on  L 3 .120 lattices. The number of sweeps is given in thousands (ks). Error estimates in last 
numerals are in parentheses. They were determined by the fluctuation of the best fit parameters from subsamples of our data. 

L K ks Eoa Els El .  v Z2 13f 

8 0.0740 200 0.2458(7) 0.588(4) 0.1583(5) 
8 0.0745 412 0.1951(4) 0.504(3) 0.1761(2) 
8 0.0750 200 0.1415(3) 0.434(4) 0.2014(4) 
8 0.0755 200 0.0900(3) 0.379(5) 0.70(14) 0.2400(3) 1.9(1.2) 
8 0.0760 528 0.04609(15) 0.352(3) 0.63(4) 0.2898(3) 5.7 (4) 
8 0.0765 200 0.01805(12) 0.40(2) 0.50(4) 0.3415(3) 15.4(6) 
8 0.0770 334 0.00580(5) 0.47(1) 0.521(5) 0.3852(1) 18.5(2) 

6 0.0760 256 0.1281(4) 0.51(1) 0.3083(5) 1.0(4) 
7 0.0760 256 0.0812(3) 0.417(4) 0.2938(4) 1.6(7) 
9 0.0760 256 0.02238(11) 0.316(8) 0.42(4) 0.2921(2) 17(1) 

10 0.0760 361 0.00902(6) 0.329(8) 0.366(8) 0.2958(2) 35.0(6) 

0.04(2) 

0.006(2) 

0.2(1) 
0.016(2) 
O.008(2) 
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The correlat ion function <S~S 2 > has been fi t ted 
with a constant plus an exponentially decreasing term 
although according to (12)  a second exponent ial  
should also be present  on a finite lattice. It would, 
however, be difficult to separate the exponent ia ls  nu- 
merically, because the energies E1s and Ela--Eoa are 
of  s imilar  magnitude.  Fur thermore ,  the th i rd  contri-  
but ion  in ( 12 ) is relatively smaller  than the second 
one. Therefore we take the energy extracted from the 
exponential  fit as a measure for E,s. The constant  A 
has also been obta ined  from this fit and is included 
in table 1. As a measure of  the difference between the 
matr ix  elements of  the states 10a> and 10s> it is a 
quant i ty  characterist ic  for tunneling. 

The energies Eoa, E~s and Ela are displayed in fig. 3 
as a function of  x. The results are in agreement  with 
the expected behaviour  discussed before (fig. 2).  In 
par t icular  it is clearly visible how the double degen- 

eracy in the broken phase is approached.  The energy 
split t ings Eoa, Ela-EIs,  which we have been able to 
determine,  are a manifes ta t ion of  the tunneling 
phenomenon.  

Of  par t icular  interest  is the volume dependence  of  
Eoa, which can be compared  with the semiclassical 
formula  (4) .  A corresponding fit is shown in fig. 4. 
The predic ted  form of  the volume dependence  is con- 
f i rmed very well. The best fit value for the surface 
tension between L = 8, 10 is 

a =  0.00358 + 0 .00002.  (15)  

The predic t ion  (5)  from the instanton calculation 
would yield a =  0.0047 i f  the values of  mR and vR in 
the infini te volume from the analytic calculation of  
ref. [ 13 ] are inserted. I f  ins tead we use our measured 
values ofE~s, v and Z2 on a 103, 120 latt ice at x =  0.076 
to get es t imates  for mR and VR, the predic t ion  is 

energy 
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Fig. 3. The lowest zero momentum energy levels as a function of 
x on a 83. 120 lattice. The full dots stand for Eoa, the open squares 
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a=0 .0051 .  These values are roughly consistent  with 
the number  f rom our fit in view of  the expected 
higher-loop corrections.  At  x =  0.076 we have deter- 
mined  a also f rom the autocorre la t ion  t ime ( inverse  
flip rates on 84, 104 and 124 lattices in the Metropol i s  

a lgor i thm) ,  as suggested by ref. [8] .  We f ind 
a = 0 . 0 0 2 8 9 ( 7 ) ,  which is in reasonable  agreement  
with the value in ( 15 ). 

On the lattices under  considerat ion tunneling plays 
a role which is by far not  negligible for the study of  
finite-size effects. Ul t imate ly  our  a im is to extend our  
previous work on the symmetr ic  phase of  the Ising 
model  [ 2 ] to the broken phase and to investigate the 
scaling behav iour  and per turba t ive  finite-size effects 
[ 6 ]. A full control  of  tunnel ing is prerequis i te  for a 
precise ext rapola t ion  to the inf in i te-volume l imi t  in 
order  to be able to make a compar ison  with the re- 
sults of  ref. [ 13 ]. F rom the da ta  ob ta ined  in the pres- 
ent  work we get in format ion  on how large the lattices 
have to be in order  for finite-size effects to be domi-  
nated by per turba t ive  effects ins tead of  tunneling. 

Since tunneling effects in general  are fading away 
exponent ia l ly  with the volume,  once the volume is 
large enough they quickly disappear .  Nevertheless,  
one has to keep in mind  that  some more  subtle quan-  
tit ies could still be strongly effected even i f  the vac- 
uum degeneracy is well sat isfied (i.e. Eoa is very 
smal l ) .  As an example,  as one can see form table 1 
the spli t t ing of  the one-part ic le  energies Els and  E~a 
is still appreciable  on volumes where Eoa is a l ready 
very small. In other  words, the one-part ic le  mass  is 
still i l l-defined, al though in a local updat ing  algo- 
r i thm sign flips of  the average spin are very seldom. 
This can be unders tood  as a consequence of  tunnel-  
ing of  local domains  even i f  the configurat ion as a 
whole stays in one of  the vacua. 

It is to be expected that  the qual i ta t ive  features of  
the finite-size effects due to tunnel ing are s imilar  also 
in other  systems with two (or  more )  discrete degen- 
erate ground states. An obvious example  is the finite- 

t empera ture  deconfining phase t ransi t ion in pure 
gauge theories (part icularly for the SU ( 2 ) gauge field, 
which also has a Z2-symmetry) .  More  generally, tun- 
neling can also be impor tan t  near f i rs t -order  phase 
transi t ions,  when there are two degenerate m i n i m a  o f  
the f ini te-volume effective potential .  
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