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We present a conceptual model for baryon production in jets, inspired by the Skyrme picture of baryons as topological defects 
in a chiral quark-antiquark condensate. High energy collisions produce "hot" partons which split perturbatively into showers of 
"cool" partons which hadronize non-perturbatively. We visualize each of these as corresponding to a connected domain with a 
common orientation of the chiral condensate. Topological defects, namely baryons, are formed when there are mismatches in the 
orientations of adjacent field domains, rather as cosmic strings or monopoles are formed in the early Universe. Our model gives 
a good qualitative description of various salient features of baryon production in jets, which previously could be described only 
with a large number of free parameters. In particular, we give a qualitative explanation of the high baryon production rate in "1" 
decays compared to the e+e - continuum. When combined with a perturbative QCD parton shower Monte Carlo it could become 
a basis for a fully-fledged fragmentation model. 

1. Introduction 

Although the product ion  o f h a d r o n s  in high energy 
hard  collisions is in pr inciple  calculable, in pract ice 
complete  calculat ions are not  yet possible.  Par t  o f  the 
je t  f ragmenta t ion process can be computed  using per- 
turbat ive  QCD,  as a shower in i t ia ted  by a " h o t "  par-  
ton which is far off  mass-shell  and  which branches  
into "cooler"  par tons  of  successively lower vir tual-  
ity, unti l  they are within ~ 1 GeV of  mass-shell.  At  
this point ,  the "cool"  par tons  are bel ieved to hadron-  
ize in an as yet non-computab le  manner .  There  are 
two ma in  theoret ical  approaches  to this  final hadron-  
izat ion step: string models  [ I ] in which mesons are 
formed as qua rk -an t i qua rk  pairs  popping  out  o f  the 
colour field, and  cluster models  [ 2 ] in which colour- 
singlet combina t ions  o f  cool par tons  are assumed to 
decay isotropical ly into hadrons.  Baryon produc t ion  
in string models  is handled  by postula t ing arb i t ra ry  
probabil i t ies  for various d iquark -an t id iquark  pairs to 
pop out  o f  the colour field, whereas in models  based 
on colour singlet clusters, these are assigned arb i t ra ry  

probabi l i t ies  for decays into final states containing 
baryons.  The string model  for baryon product ion  is 
based on the naive non-relat ivis t ic  quark model  
( N Q M )  for baryons  whereas cluster models  avo id  
even this meagre theoret ical  input.  

The baryon product ion  measured  in jets  shows 
several interest ing proper t ies  indicat ing that  the pro- 
duct ion mechanism for baryons  may  be considerably 
different  from that  for mesons ~1. The baryon mult i -  
plicity was found to be surprisingly high - around 0 .6-  
0.7 protons  per  event  at x /~~  30 GeV [4] whilst the 
early f ragmenta t ion  models  had  ant ic ipa ted  no bar- 
yon product ion  at all. This  result forced string model  
bui lders  [ 1 ] to in t roduce  a new object,  the diquark,  
which helps to parametr ize  baryon propert ies.  How- 
ever, the probabi l i ty  to produce  diquarks  is chosen 
freely without  any theoret ical  constraint .  The cluster 
models  expected baryon product ion  from the ther- 
modynamica l  behav iour  o f  cluster decay products  
[ 2 ], however,  these models  predict  no differences as 

~ See ref. [3] for a review. 
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a function of jet event type, in clear contradiction to 
the data. The ARGUS measurement [ 5 ] of baryon 
production on the/ ' - resonance (final states domi- 
nated by three-gluon decay) and in the jet events of  
the surrounding continuum (mainly Clq final states) 
found a drastic difference of more than a factor 2 ~2. 
Moreover, both the string and cluster models have 
difficulties in reproducing the momentum distribu- 
tion of baryons within jets whereas they are quite 
successful in the meson sector. 

In our opinion the difficulties of  the standard 
phenomenology of baryon production are due to the 
fact that it treats baryons and mesons identically: di- 
quarks are introduced like quarks, and thermody- 
namically protons and pions differ only by their 
masses. In this paper we propose a new kind of frag- 
mentation model in which baryons and mesons are 
treated differently from the beginning. We base our 
new approach on inhomogeneities in the chiral 
quark-antiquark condensate field U [ 7 ]. The fluc- 
tuations of the field U around the spontaneously bro- 
ken vacuum expectation values can be interpreted as 
pseudoscalar mesons whereas, as was first noticed by 
Skyrme [ 8 ], the topological defects of this field can 
be interpreted as baryons. 

We guess that when each colour-singlet cluster of 
cool partons prepared by perturbative QCD hadron- 
izes, it breaks chiral symmetry spontaneously and 
non-perturbatively by choosing at random one of the 
possible orientations of <01UI0> in the internal 
symmetry space. Each cluster forms a domain with a 
uniform value of ( 0 1UI0 )  much like a domain of 
spin orientations in a ferromagnet, or of Higgs VEV 
(0 IHI  0 > forming in the early Universe as it cools 
[ 9 ]. In the latter case one has at least one domain per 
horizon volume, since causality does not permit the 
orientations of (01 HI 0)  to be correlated beyond the 
horizon. According to the standard picture of string 
or monopole formation in the early Universe, these 
arise as topological defects at junctions between do- 
mains with different orientations of  (0  I HI 0 >. We 
visualize baryon production in a similar way, as the 
formation of topological defects at junctions between 
clusters with different orientations of  (01 UI0) .  
String defects correspond to non-trivial elements of 

~2 For an attempt to reproduce this result within a cluster ap- 
proach see ref. [6]. 

rll (M), monopoles to non-trivial elements of HE(M) 
and baryons to non-trivial elements of  I13(M) where 
M is the vacuum manifold. The different orders of 
the homotopy groups translate into different proba- 
bilities for the formation of the corresponding defect 
at any individual junction of domains. In an infinite 
medium, one expects a probability per domain of 
for string formation, i per domain for monopole for- 
mation, and by extension ~6 per domain for baryon 
formation. Thus the asymptotic baryon multiplicity 
is proportional to the cluster multiplicity with a 
known coefficient. However, if the excitation of the 
chiral field has only a finite extent in space, as in jets, 
the coefficient 1 may be strongly modified due to the 
connectivity of the excited domain and to the influ- 
ence of the surrounding vacuum. We discuss this be- 
low and show that the probability of finding a defect 
is strongly dependent on the form of the excited re- 
gion (e.g., cigar-like shapes give much lower proba- 
bilities than ball-like ones). It is also easy to see that 
this picture leads to strong baryon-antibaryon cor- 
relation and baryon-baryon anticorrelation in agree- 
ment with observation. Some other qualitative 
features of baryon production in high energy colli- 
sions can also be reproduced in this topological model. 

2. Chiral symmetry, the Skyrme model and 
fragmentation 

Before describing in more detail our model for bar- 
yon production, we first recall some key features of  
chiral symmetry [ 7 ] and the Skyrme model [ 8,10] ~3. 
Non-perturbative phenomena in QCD are believed 
to be responsible for two phenomena of importance 
to us here: confinement and spontaneous chiral sym- 
metry breaking. The need for the former is obvious: 
the latter is motivated by pion and kaon dynamics, 
which indicate that the u, d and s quarks are very light 
( << roB~3) and that chiral quark-antiquark conden- 
sates form: (01 flu, dd, ~s [ 0)  ~ 0. According to spon- 
taneously broken chiral symmetry, pions and kaons 
are Goldstone bosons corresponding to fluctuations 
in the quark-antiquark condensate, analogons to spin 
waves in a ferromagnet. It is generally thought that, 
in hot hadronic matter, confinement and sponta- 

~3 See ref. [ 11 ] for the three-flavour extension of the model. 
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neous chiral symmetry breaking occur at nearby tem- 
peratures, which are even likely to be identical [ 12 ]. 
This suggests that chiral symmetry should be an es- 
sential ingredient in any model of hadronization in 
hard collisions. According to chiral symmetry, bar- 
yons are to be regarded as coherent " lumps" or soli- 
tons corresponding to 'topological defects in the 
quark-antiquark condensate field. This may be writ- 
ten as an SU (3) matrix U, 

U(x)=exp ( f i=,~ •iOi(X) ) , (1) 

where ¢?~ represents the octet of pseudoscalar mesons 
it, Ka, 118 a n d f i s  the pseudoscalar meson decay con- 
stant. Baryons are topologically non-trivial con- 
figurations 

U(x) = v. Uo. W ,  (2) 

where Uo=exp[2iz'xF(Ixl)] takes values in an 
SU(2) subgroup of SU(3),  and Vis an SU(3) rota- 
tion matrix. Baryons exist because there are configu- 
rations U(x) which cannot be deformed continuously 
into a space-time-independent constant matrix U: in 
mathematical language they appear because of the 
non-triviality of  the third homotopy groups: 
Ha (SU (2) or SU (3)) = Z. This Skyrme model would 
be exact in the chiral limit of massless quarks and an 
infinite number ofcolours Arc [ 10 ]. The former should 
be a good approximation for the u and d quarks which 
are believed to weigh only a few MeV, but should be 
less good for the s quark which weighs ~ 100 MeV. 
The 1~No expansion explains the OZI rule and the 
narrow widths of mesons [ 13 ], but until recently there 
was no clear evidence of its applicability to baryons. 

It has been known for years that the static proper- 
ties of baryons and their spectroscopy are fitted well 
by the NQM ,4. Ratios of static quantities and me- 
son-nucleon scattering phase shifts have also been 
reproduced using the Skyrme model [ 10,15 ], but 
there used to be no compelling reason to prefer it over 
the NQM. However, recently EMC data [ 16 ] have 
made it possible to disentangle the contributions (Au, 
Ad, As) to the proton helicity from u, d and s quarks. 
Remarkably, (Au + Ad + As) ~ 0 [ 17 ], indicating that 
(within errors of  ~ 25%) none of the proton spin is 
carried by quarks, in contradiction to the NQM. 

,4 See ref. [ 14] for a review. 

However, this was to be expected in the Skyrme 
model, according to which ( A u + A d + A s ) = 0  be- 
cause the baryon is an SU(3) soliton and all the pro- 
ton spin is due to its slow rotation V in eq. (2) [ 18 ]. 
This phenomenological success inspires us to take the 
Skyrme model more seriously and invoke it for a 
model of  baryon production in hard collisions. 

We adopt the standard QCD picture of  the initial 
perturbative stages of  development of  the final state 
in a hard collision, according to which the initial 
"hot"  partons radiate gluons and Clq pairs, populat- 
ing the final state with "cool" partons close to mass- 
shell. To leading order in as = 12 n/( 3 3 - 2Nq) In ( Q 2/ 
A 2), where Nq is the number of  light quark flavours, 
the multiplicity of "cool" partons with virtuality Qo 
is [19] 

n ( ~ o ) = 8 ( l n ( Q 2 / A 2 ) ) a  
9 \In(Q2/A 2) 

exp{ [ ( 2 CA /n b ) ln ( Q2 /A 2) ] 1/2 } 
×exp{ [ ( 2CAhzb )ln( Q2 /A2) ] l/2 } , (3) 

where 

a= - ~ [ 1 + ( 2Nf/3nb )(1 - CF/CA) ] , 

b =  (11CA -- 2Nf)/127C. (4) 

The leading perturbative corrections to the multi- 
plicity n (Q/Qo) (3) have been calculated, as has the 
distribution of "cool" partons in phase space [ 19 ], 
but we will not use them there. Assuming following 
the analysis ofref. [20] that Qo=2A andA=0.2  GeV, 
eq. (3) predicts 6.7 (11.4) gluons at x/~= 10 (30) 
GeV. 

We follow ref. [20] in assuming that these "cool" 
partons are in one-to-one correspondence with col- 
our-singlet clusters that hadronize non-perturba- 
tively. For the reasons discussed above, we assume 
that the confinement associated with hadronization 
is simultaneous with spontaneous chiral symmetry 
breaking. I f  each cluster hadronizes independently, 
as is conventionally assumed, this means that each 
cluster chooses independently and at random a local 
vacuum expectation value for the chiral dlq conden- 
sate field U, just like the formation of a domain in a 
ferromagnet. Superimposed on the condensate value 
will be the excitations corresponding to the pseudos- 
calar mesons, ~ i - n ,  Ka, q8, just like quantized spin 
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waves. So far, our ignorance of non-perturbative dy- 
namics prevents us from calculating the populations 
of  these excitation levels, so we do not know the av- 
erage number of pseudoscalar mesons per cluster. 
However, topological arguments can be used to cal- 
culate the average number of baryons per cluster, as 
we now argue. 

- ' , - - -  \ / ' \  ---7-- 

/ \ / \ \ 
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3. Description of the fragmentation model and results 

Our problem of baryon production is analogous to 
the cosmological problems of string and monopole 
formation in the early Universe, to which a solution 
was proposed by Kibble in 1976 [ 9]. He pointed out 
that as the Universe cooled through the temperature 
of some phase transition where a symmetry was 
spontaneously broken by the formation of a Higgs 
VEV, domains of similar orientations could be 
formed. The sizes of  these domains were restricted 
by causality to be no larger than the horizon size: 
d< 2ct where t is the age of the Universe. Since the 
directions of  the Higgs VEVs in adjacent domains 
would be uncorrelated, they might mismatch at the 
boundaries, leading to the formation of topological 
defects such as strings or monopoles. Kibble [ 9 ] pro- 
posed the following strategy for estimating the prob- 
ability that a defect would be formed at any given 
point, illustrated by the string and monopole cases. 

One considers a triangulation of the physical me- 
dium (a plane to discuss strings, fig. la, 3-space to 
discuss monopoles, fig. lb)  with each vertex repre- 
senting the surrounding domain. To answer whether 
a defect forms at the junction of the domains in the 
middle of any given triangle (tetrahedron in the case 
of monopoles) one considers the random and inde- 
pendent directions of  the Higgs VEVs at the vertices 
(on a circle S ~ in the case of  strings (fig. la) ,  on the 
surface S 2 of a sphere in the case of monopoles). Each 
pair of  vertices is then connected by the shortest path 
(in S% fig. 2, or $2), and these are in turn connected 
by the minimal surfaces in the S 2 case. I f  the resulting 
path in S ~ or surface in S 2 has non-zero winding num- 
ber as in fig. 2 one believes that a defect (string or 
monopole) is formed in the center. As can be seen in 
fig. 2, a string is formed if the direction of the Higgs 
VEV at the vertex 3 is between the points opposite to 
the vertices 1 and 2, because then the shortest paths 

~ 5 

1 2 

el 

Fig. 1. (a) A decomposition of the plane into triangles (2-sim- 
plices ), whose vertices are assigned values in U (1) indicated by 
arrows: closed for the "excited" vertices 1, 2, 3, and open for 
"background" vertices. (b) An elementary tetrahedron (3-sim- 
plex) used in the analysis of  monopole formation. (c) An ele- 
mentary 4-simplex used in the analysis of baryon formation. 

between pairs of  the vertices 1, 2 and 3 taken cycli- 
cally goes around the circle. The average angle be- 
tween vertices 1 and 2 is rt/2, and the possible range 
of the azimuthal angle is 2zt, so the probability of 
forming a defect is /. For monopole formation the 
Higgs VEV at the fourth vertex has to be in the anti- 

1 

Fig. 2. Illustration of  how the shortest paths between the pairs of 
excited vertices (1,2), (2,3), (3,1) of  fig. la yield a non-zero 
winding number configuration (string). 
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podes of  the minimal surface area defined by the di- 
rections of  the vertices 1, 2 and 3. The average area 
spanned by three random points on a sphere is ]- i2_8_ i 

of the surface area of  the sphere, and so the monopole 
formation probability is also ~. 

We generalize this argument to discuss the produc- 
tion in high energy collisions of  baryons, which cor- 
respond to non-trivial components of  Ha(SU(2)) .  
Now we must triangulate a sphere in four-dimen- 
sional space, S 3, which requires five vertices forming 
a 4-simplex with tetrahedra as boundaries. Each of 
the vertices is assigned a random and independent 
direction in the group SU(2) .  In the following we de- 
scribe the procedure [ 21 ] which we adopted to deter- 
mine the winding number first for the case of an 
isolated simplex and then for more complicated 
configurations. 

To compute the winding number on isolated 4- 
simplex we first label the vertices on the simplex with 
i=  1, 2, 3, 4, 5 as in fig. lc. This 4-simplex has five 
boundary tetrahedra: [2, 3, 4, 5 ] +, [ 1, 3, 4, 5 ] _, [ 1, 
2, 4, 5 ] +, [ l, 2, 3, 5 ] _, [ 1, 2, 3, 4 ] + where the signs 
denote their orientations relative to the volume of the 
4-simplex. To each vertex i we assign a value U(i) of 
the U field in the SU(2) space, which we represent 
by 4-vectors, U u, g-=x, y, z, t. We also define an arbi- 
trary direction U(0) not associated with any partic- 
ular vertex of the 4-simplex. For each boundary 
tetrahedra we first determine the net orientation of 
its U-directions defined by 

O(i,j,k,l)=sign(exyztUx(i)Uy(j)Uz(k)Ut(l)). (5) 

We also compute the net orientations of  the tetrahe- 
dron under consideration with the U direction at each 
vertex in turn replaced by the arbitrary direction 
U(0): O(i,j, k, 0), O(i,j, O, l), O(i, O, k, l) and O(0, 

j, k, l). I f  all these net orientations are equal, and equal 
to that [ O(i,j ,  k, l) ] of  the tetrahedron under consid- 
eration, then the tetrahedron makes a contribution 
O(i, j, k, l) to the topological quantum number over 
the 4-simplex. The sum of the contributions from all 
five boundary tetrahedra, weighted by their orienta- 
tions relative to the volume of  the 4-simplex, gives 
the topological quantum number of the field U de- 
fined on the 4-simplex. When the U(i) are chosen at 
random we find that the average probability of  form- 
ing a topological defect in the 4-simplex is 1, in 

agreement with the simple counting rule introduced 
above. 

To study the formation of topological defects in 
high-energy events, we have to model a U field exci- 
tation extended in space. We do this starting from a 
cubic lattice in four dimensions. The field Uis now a 
function of the four lattice indices il, i2, i3 and i4. As 
an exercise, consider first a 2 X 2 X 2 X 2 hypercube 
defined at vertices (il, il + 1 ), (&, i2+ 1 ), (i3, i3+ 1 ), 
(/4, i4+ 1 ). To compute the winding numbers of the 
field U on this cube, we have first to slice it into 4- 
simplices using the procedure given in ref. [21], 
which divides such a cube into 16 4-simplices. We 
then compute the winding number of  U on each 4- 
simplex, and add together the winding numbers from 
all 4-simplices, distinguishing between positive and 
negative contributions since we are interested in the 
total number of  baryons and of antibaryons. This 
procedure may be iterated if there is more than one 
hypercube. 

By comparison with the early Universe, jet final 
states are quite inhomogeneous. They correspond to 
a small region of excited chiral field (typically g 10 
fm long and ~ 2 fm broad) which is surrounded by 
non-excited space in which the chiral field assumes 
some constant background value (of  the open arrows 
in the string example in fig. la) .  Since the size of each 
excited domain is ~ 1 fro, it is important to investi- 
gate finite-size effects which may cause the baryon 
density to depend on the size and shape of the excited 
region. Baryons may be generated not only on 4-sim- 
plices contained entirely within the excited region, but 
also on those with one vertex in the background 
region. 

To return to our example of a 2 X 2 × 2 X 2 hyper- 
cube, if we choose random values of U at each of its 
vertices and do not consider 4-simplices involving 
vertices in the surrounding background field, we find 
on average one baryon or antibaryon, as expected 
from the calculated probability of ~ for a baryon or 
antibaryon to be produced on each of the 16 active 4- 
simplices. However, if  we include 4-simplices involv- 
ing vertices in the surrounding background field, we 
find on average 3.5 baryons or antibaryons. This is 
simply due to the fact that there are 40 4-simplices 
with one background vertex, and each of these has 
the same probability of  ~6 to produce a baryon or an- 
tibaryon. We have computed the average baryon 
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Table 1 
Predicted number  of  baryons or antibaryons for several shapes 
of excited region. 

Shape Number  of  Number  of  
B or 13 active simplices 

2 × 2 × 2 × 2 no background 1 16 
2 × 2 × 2 × 2 with background 3.5 56 
2 × 2 ×  2×  1 with background 0.625 10 
3 X 2 × 2 ×  1 with background 1.25 20 
4 X 2 X 2 X  1 with background 1.875 30 
5 × 2 X 2 × 1 with background 2.5 40 
6 × 2 × 2 ×  1 with background 3.125 50 
3 × 3 × 3 × 1 with background 5.0 80 

numbers for several shapes of  the excited region and 
found that the number of baryons or antibaryons is 
always given by 

NBo~a = ~ '  (E~ q'E4), (6) 

where E5(4~ is the number of  4-simplices with 5 (4) 
excited vertices. Examples of results for different 
shapes of excited region are shown in table 1. 

The fourth space dimension has no physical inter- 
pretation but is introduced simply to compactify ~3 
into a sphere S 3 and thus be able to define the wind- 
ing number. Therefore we assume that physical states 
do not extend in the fourth coordinate direction. This 
assumption has two important consequences; it leads 
to exact baryon-number conservation and to a strong 
phase space correlation between baryon and antibar- 
yon production. We illustrate this mechanism with 
the example of  a 2 × 2 × 2 × 1 excited region sur- 
rounded by a background field. In fig. 3 we show a 
subdivision of this cube into tetrahedra, with the 
fourth dimension ignored for clarity. Let us concen- 

6 7 

5 

2 

0 1 

Fig. 3. Subdivision of a 3-cube into 5-tetrahedra: [0, 1, 3, 5 ], [0, 
2, 3, 6], [0,4,  5, 6], [3, 5,6, 7], [ 0 , 3 , 5 , 6 ] .  

trate first on the tetrahedron given by the vertices [ 0, 
1, 3, 5], where the indexing scheme is shown in fig. 
3. This tetrahedron is given on the lattice by the 
coordinates 

(il ,i2, i3, i4), ( i l + l ,  i2, i3, i4), 

( it + l, i2 + l,  i3, i4), ( it + l,  i2, i3 + l, i4). (7) 

In a 4-cube with the minimal subdivision into 4-sim- 
plices this tetrahedron can be on the boundary of just 
one 4-simplex, namely that whose fifth vertex is 
(i~ + l, i2, i3, i4+ 1 )~5. On a lattice, however, the tet- 
rahedron (7) can also form a second 4-simplex with 
the fifth vertex reflected in the hypersurface 
i4=const., i.e. (i, + 1, i2, i3, i 4 -  1 ). According to our 
assumption the field U is randomly chosen on ver- 
tices (7) and assumes some common background 
value on the fifth vertex and its reflection. This means 
that the topological quantum numbers on the two 4- 
simplices are equal and opposite, because they share 
the same field directions but have, due to the reflec- 
tion, opposite orientations. This result extends to any 
configuration with just one value of i4. This means 
that all configurations have baryon number con- 
served locally, baryon and antibaryon production are 
tightly correlated. The space distance between the 
baryon and corresponding antibaryon cannot be big- 
ger than a lattice size and their separation should also 
be of the same order of magnitude. 

An important feature of table 1 is the fact that con- 
figurations with similar numbers of  excited vertices 
may give very different numbers of baryons or anti- 
baryons. For example, the jet-like 6 × 2 × 2 × 1 con- 
figuration gives 3.125 baryons or antibaryons, whilst 
the more isotropic 3 × 3 × 3 × 1 configuration gives 5 
baryons or antibaryons. Another example is the jet- 
like configuration of fig. 4, which has eight excited 
vertices but has E~ + E4 = 4 and therefore only yields 
41 baryon or antibaryon, whereas the 2 × 2 × 2 × 1 con- 
figuration in table l has E5 + E4 = 10 and therefore 
yields ~ baryons or antibaryons. This observation 
gives a qualitative explanation of the larger baryon to 
pion ratio in quasi-isotropic Y decays, as compared 

~5 We note that the use of this minimal  set ofsimplices is a strong 
physics assumption because a priori it is possible to connect 
the tetrahedron (7) with all eight vertices of  a hypercube with 
/'4+1. 
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~ . . . . . . ~  - -  w . _ . s  " 

identical 
point 

Fig. 4. A configuration of eight excited vertices that has E s + E 4 = 4  and hence yields ¼ baryon or antibaryon on the average. 

to continuum events dominated by two-jet clq final 
states ~6. 

Asymptotically we expect the number of  baryons 
to be proportional to the number ofgluons produced 
in high energy collisions. However, at the presently 
accessible energies the number ofgluons is still rela- 
tively small. Therefore we expect, as indicated by the 
results of table 1, that the number of  baryons will in- 
crease more strongly with energy than the number of  
gluons. This is confirmed by data [ 3 ]. Finally, from 
the number of  gluons given by eq. (3) and the prob- 
abilities to form a baryon from table 1 we can predict 
the number of  baryon and antibaryon production in 
e+e - events. We obtain ~0.52 (1.2) baryons or an- 
tibaryons at x/~= 10 (30) GeV which fits well to the 
observed values of  0.58 (1.18) [3]. Obviously, we 
consider these numbers only as order-of-magnitude 
predictions since we are still several steps away from 
a fully-fledged baryon fragmentation model. 

So far we have only considered the two-flavour case 
where Utakes values in SU(2), and have not touched 
on the three-flavour case where U takes values in 
SU (3). The geometry of SU (3) is considerably more 
complicated than SU (2). Homotopy classes of  SU (3) 
can be computed by exploiting the fact that locally 
S U ( 3 ) ~ S S x S U ( 2 )  [22]. However, in this reduc- 
tion of the structure group, geodesics are not mapped 
on geodesics, so the probability of  finding a non-zero 
SU(3) winding number is not the same as the prob- 
ability of finding a non-zero SU(2) winding number. 
Thus a further investigation in SU(3) is necessary. 
Notice, though, that numerically the topological sus- 

ceptibility of gauge fields on a lattice in SU(2) and 
SU (3) are quite similar [ 23 ]. Hence we conjecture 
that the extension to SU (3) will not greatly increase 
the baryon-number probabilities. 

This is just one of many improvements needed to 
convert our topological approach into a fully-fledged 
fragmentation model. Other important steps are the 
combination of this philosophy with a perturbative 
QCD Monte Carlo for parton showers and the estab- 
lishment of  a criterion for deciding when two cells 
are close enough to be connected in a single simplex. 
A combined perturbative and chiral non-perturba- 
tive QCD Monte Carlo should also allow one to study 
the momentum distribution of baryons, which we 
would expect to be more similar to the momentum 
distribution of the original partons than to that of 
mesons. Although these and many other issues re- 
main unsolved, we hope that our topological philos- 
ophy will stimulate sufficient new thinking about 
baryon production to result in a new calculational 
method for fragmentation models. 
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~6 An unwarranted extrapolation of  this approach could even ex- 
plain the now discredited Centauro events. If in a dense con- 
figuration of"cool"  partons our assumption of  a minimal  set 
of  simplices would not be valid the number  of  simplices could 
greatly exceed the number  of  vertices. This would lead to events 
dominated by baryon-ant ibaryon production. 
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