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We investigate an extension of the standard model of strong and electroweak interactions 
with classical, nonlinearly realized, conformal invariance. The corresponding Goldstone boson, 
the dilaton, acquires a small mass due to the conformal anomaly. In curved space, the dilaton is 
identified with the conformal factor of the metric tensor which also contains the graviton. The 
corresponding action is invariant only under restricted coordinate transformations which preserve 
the volume. The theory has no cosmological term and the curvature of the ground state is 
determined by the vacuum expectation value of the dilaton field, which is an arbitrary integration 
constant of the gravitational field equations. 

1. Introduction 

Scale and conformal invariance play a central role in particle physics and 
quantum field theory*. In string theories, which may lead to a unified description of 
all interactions, they appear as exact symmetries of the fundamental two-dimen- 
sional field theory [2]. In four-dimensional field theories conformal invariance is 
mostly of interest as an approximate symmetry, or as nonlinearly realized, "hidden" 
symmetry [3]. In both versions scale invariance has been extensively studied in 
connection with hadron physics [3,4]. In this paper, we will argue that "hidden" 
scale invariance may also be of interest as an approximate symmetry in connection 
with the standard model, the current theory of particle physics. 

In the standard model of strong and electroweak interactions, the chiral nature of 
the fermion representation does not allow direct mass terms. Hence, the standard 
model lagrangian is classically invariant under dilatations, except for a single term, 
the mass parameter in the Higgs sector which, via the S U ( 2 ) ×  U(1) breaking 
vacuum expectation value, sets the scale of all particle masses. In many extensions 
of the standard model, such as supergravity models** the Higgs mass term itself is 
also a consequence of spontaneous symmetry breaking. 

* For a recent review and references, see ref. [1]. 
**  See, for instance, ref. [5]. 
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Motivated by the approximate scale invariance of the standard model, we will 
investigate in the following a fully scale invariant extension which is obtained in the 
usual manner by introducing a Goldstone boson, the dilaton. This means that we 
consider the standard model as an effective low energy lagrangian of a more 
fundamental theory in which scale invariance is broken spontaneously. The appear- 
ance of dilatons is in fact a generic feature of all theories which are obtained 
from higher dimensional theories through compactification, in particular string 
theories [2]. 

Classical scale invariance implies that the Higgs potential of the theory with 
dilaton has a flat direction along which the vacuum expectation values are undeter- 
mined. The conformal anomaly lifts this vacuum degeneracy. It also generates a 
small mass for the dilaton, which becomes a pseudo-Goldstone boson, and deter- 
mines the vacuum energy density. 

A field theory with dilaton is almost identical to a theory where the dilaton is 
replaced by a conformally flat gravitational background field. This raises the 
question of the physical meaning of the dilaton in the presence of a gravitational 
background field, i.e., in curved space-time. We will discuss this problem in detail, 
in particular with respect to the conformal anomaly, and this will lead us to a 
version of Einstein's theory of gravity in which the invariance under diffeomor- 
phisms is restricted to those coordinate transformations which preserve the volume, 
or alternatively, to a Brans-Dicke theory [6]. 

Many authors have speculated that in theories with dilatons, i.e., with sponta- 
neously broken scale invariance, the cosmological constant might vanish. This 
would be analogous to the solution of the strong CP-problem of QCD in theories 
with axions, i.e., with spontaneously broken Peccei-Quinn symmetry [7]. Particu- 
larly interesting is the analogy between conformal anomaly and axial anomaly in 
both cases, and in recent work [8-10] the effect of the conformal anomaly on the 
cosmological constant has been studied. As we will see, the ground state curvature is 
indeed related to the vacuum expectation value of the dilaton field. However, 
spontaneously broken scale invariance does not lead to flat space-time as uniquely 
determined ground state. 

The paper is organized as follows. In sect. 2, which is partly based on ref. [9], we 
discuss the standard model with dilaton, i.e., its minimal scale invariant extension. 
In particular, we derive the dilaton mass, which is generated by the conformal 
anomaly. Sect. 3 deals with dilatons in curved space-time. First we consider the 
classical theory with general coordinate invariance, and subsequently the effect of 
the conformal anomaly. Then we discuss the theory with restricted coordinate 
invariance, where the dilaton is identified with the conformal factor in the metric, 
and, as an alternative, the Brans-Dicke theory. Gauge fixing and ghost lagrangian 
are discussed in sect. 4. Sect. 5 deals with the ground state curvature, and in sect. 6 
we summarize our results. In the appendix, we discuss an ambiguity in the 
definition of the renormalized effective action in curved space-time. 
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2. The scale invariant standard model 
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Quarks and leptons form a chiral representation of the electroweak gauge group 
SU(2) × U(1). As a consequence, direct fermion mass terms are not allowed, and the 
standard model lagrangian is almost entirely invariant under dilatations. This 
classical scale invariance is only broken by the mass parameters in the Higgs sector 
of the lagrangian which, including the electroweak gauge interactions of the Higgs 
doublet, reads: 

L = L g a u g  e + L M ,  (2.1a) 

Lgaug e - -  ~ W IWI" ~ - LR n~ ~ (2.1b) 

L M = - D~qo* D"q~ - Vo(ept~), (2.1c) 

Vo (qotqo) = a 4 q- ]12qgtq9 q- (X/2)(~*~) 2, (2.1d) 

where a and /z are parameters of mass dimension 1, and D,, WJ~ and B~. are the 
gauge covariant derivative and the SU(2) and U(1) field strengths respectively. 

It is well known how to obtain a scale invariant extension [3] of the lagrangian 
(2.1). One introduces a dilaton field o(x) and multiplies the mass parameters in eq. 
(2.1d) by the appropriate exponential power of the dilaton field: 

a 4-+ ~ 4 =  a 4 e 4o/ f  ' t%2 ---, ~t2 = l~2 e 2 o / f  ' (2.2) 

where f is the dilaton "decay constant". The derivative couplings of the dilaton 
field are not uniquely determined by the requirement of global scale invariance. We 
choose couplings to the Higgs doublet which, in a gravitational background field, 
yield maximal symmetry, i.e., invariance under local Weyl transformations: 

3o (x )  = f A ( x ) ,  3 ¢ ( x )  =A(x)~(x). (2.3) 

Together with the usual dilaton kinetic term [3] this yields for the scalar fields the 
lagrangian: 

LM(Cp,  o )  = -- ~e2"/fo#~O~o -- (D~ - O ( o / f ) ) q ) t ( D  i' - O ~ ( o / f ) ) 9 ~  

- a 4 e4O/ /_  bt2 e 2 o/jq~tep _ ( X / 2 ) (  cFtcF )2. (2.4) 

The action (2.1), with (2.1c) replaced by (2.4), is invariant under dilatations, 

= = + x .  

8w#= 8B.= (2.5) 
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and the corresponding Noether current S, is conserved: 

8fd4xL=Safd4xO~'S. ,  (2.6a) 

O ~S~ = 0. (2.6b) 

The couplings of the dilaton field are nonrenormalizable. Hence, the lagrangian 
(2.4) corresponds physically to a low energy effective lagrangian which is valid only 
for distances larger than l / f ,  i.e., for energies below the mass scale at which scale 
invariance is spontaneously broken. In the following, we will therefore treat o(x) as 
a classical background field and compute quantum corrections only for the other 
matter and gauge fields which have renormalizable interactions. This is analogous to 
the treatment of quantum field theory in a gravitational background field. 

It is convenient to use instead of the fields q0 and o the fields 4~ = e ~/J9~ and o in 
terms of which the lagrangian defined by eqs. (2.1) and (2.4) becomes 

L = --e4°/f['ot~x'Ov'r':'-4°/f[~l/IZtl/l/l 1 .~ t 4..,~..X. + ~B,~Bx.) 

+ l~,,e-2olfO,oO,o + n.~e 2o//D,q~* D, ,  + V0(,*~)]. (2.7) 

In this lagrangian the couplings of the dilaton field to other fields are identical to 
those of a conformally flat metric: 

~ v =  n ~ e  2~//. (2.8) 

The only difference lies in the sign of the kinetic term: it is negative for the dilaton, 
corresponding to a physical degree of freedom, whereas the Einstein lagrangian for 
the gravitational field yields a positive sign for the kinetic term of the conformal 
factor. 

From eq. (2.7), one immediately reads off the equation of motion for the dilaton 
field: 

1 
De °/f = f~ e "/iT~*u, (2.9) 

where T~ is the energy-momentum tensor of the Higgs field: 

T.~ = -e2°/f(Dt~gp t D/p +D/p* D~? ) + "%.v(e2°/ f l l  )~r Dx~b* D/p + e4°/f vo( ~p~(? )). 

(2.10) 
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We note that eq. (2.9) is identical to the equation of motion for the scalar field in 
the Brans-Dicke theory [6]. 

In order to find the ground state of the theory, we have to solve the equations of 
motion for constant field configurations ~ = 00, o = %. From eqs. (2.7) and (2.9) 
one easily obtains: 

o . . . . . .  ,, 

e 4~/; = 0, (2.11a) 
Ogd 

= 4e  4m'//  (2 .1  lb) T",I+=, . . . . . .  o Vo( q,*oeOo) = O. 

In the case/,2 < 0 eq. (2.11a) has the usual, SU(2) × U(1) breaking solution 00 =g 0. 
Eq. (2.11b) has a solution with finite o 0 only, if the potential vanishes at the 
minimum. This determines the constant a 4 in V o as/ ,4/2)t ,  i.e., one has 

V(q~tq~) = (X/2)(0t0 4- ~2/X)2 (2.12) 

for the classical Higgs potential. Then the vacuum expectation value % of the 
dilaton field is undetermined, corresponding to the "flat direction" of the potential 
which is always associated with classical scale invariance [11]. 

In ref. [9], it has been shown that this vacuum degeneracy is lifted by quantum 
corrections. The complete one-loop effective potential reads [9]: 

(2.13) 

where V(0t0) is the complete Coleman-Weinberg potential [12] with coupling 
constants defined in a minimal subtraction scheme (z -- 0tq~): 

1 I V(Z) =a44-/J,2Z4- (X/2)Z24- (~)2 ~(P t2 + xz)a(ln (/x2 M44- ~kz) 2 

+~(p2+3~z)2(ln ( /~2+3;kz)2)  ( g2z )1 M4 1 4- 3g4z2 In 2M 2 2 

+3(g2+g'2)2z2( ln(g2+g'2)z )] 
' ( 2 . 1 4 )  2M 2 2 " 

A(z) is the contribution to the conformal anomaly [13] without derivatives, which 
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can be read off from V(z): 

ACz) =MOV(z)/OM, (2.15) 

where M is the renormalization mass on which V depends logarithmically. 
The conditions for an extremum of the potential (2.13) read: 

e 4°°/fodp. to (V(qS+qS)-A(q~t~b)f)q,=q,0 =0 '  (2.16a) 

e4%/f(lT(dPt0+0)--A(f;~0)(f-l-1)) =0. (2.16b) 

If the parameters of the potential, which depend now on the renormalization mass, 
satisfy the condition 

2•( m)a4C m )  - /x4C M) 
~4(m) = O(~k, g4 g,4), (2.17) 

a solution of (2.16) exists [9] with finite o o which, by means of a redefinition of the 
parameters a and ~, can always be arranged to be at % = 0. Then one easily obtains 
from (2.13) the dilaton mass to leading order in 1/f [9]: 

m 2 =  -- ( 4 / f  2) A (qS;qSo) 

= (1/Sqr2f2)(6m~v + 3m 4 + m ~ ) .  (2.18) 

The general expression, which includes contributions from fermion loops, is given 
by the supertrace of the mass operator d{ (for the effect of mass scales beyond the 
standard model, see ref. [23]): 

m 2 = ( 1 / 8 v r 2 f  2) Str J/{ 4 

= 1/87r 2f 2 (bos~onsm4- ferm~ions rr/4 ) " (2.19) 

In the standard model the t-quark contributes - 4 m r  4 inside the bracket of eq. 
(2.18). For o o = 0, the Higgs mass is given by 

2 a2vl mH = 4z-q-SS-2 t 
Oz ]++=+~+0 

(2.20) 
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which satisfies the Weinberg-Linde bound [14] 

2t3  

v~GI: (6m4w + 3m4) ,  mfi  (2.21) 

where G v is Fermi's constant. From eq. (2.19), we conclude that the one-loop 
stability of the vacuum requires fermion masses to be smaller than the largest boson 
mass in the theory. 

From eq. (2.13) one also obtains an important relation between the vacuum 

energy density and the conformal anomaly. The equation of motion for a yields 

with a 0 = 0: 

1 t v(,;,0, o0)= (q,o,o) 

= - ~ f 2 m ~  < 0. (2.22) 

This means that, contrary to ordinary field theories in flat space, in theories with a 
dilaton field the vacuum energy density is not an arbitrary parameter. In particular, 
if the gravitational field is coupled to matter in the usual manner, flat space- t ime 
cannot be a solution of Einstein's equations since the ground state curvature is 
proport ional  to the vacuum energy density, which does not vanish. However, the 
relation between curvature scalar and trace of the energy-momentum tensor follows 
from the variation of the action with respect to the conformal factor of the metric. 

Since for constant fields the couplings of dilaton field and conformal factor are 

identical and an extremum of the action exists with a = o 0 = const, in flat space, one 
might expect that in theories with dilatons the usual relation between ground state 
curvature and vacuum energy density should be modified. We will pursue this 
question in the following sections. 

Quan tum corrections break the conformal invariance of the classical action. From 
eq. (2.13) one easily derives that the divergence of the dilatation current is given by 
the conformal  anomaly: 

O~'S~= A .  (2.23) 

If a theory contains the Goldstone boson of an anomalous symmetry, the symmetry 
can be restored by means of a local term, the corresponding Wess-Zumino  term 
[15]. In our case, this term is 

/ ' W Z  = -- f d4X e4a/f/~((l)~'(]~)(o/f), ( 2 . 2 4 )  

i.e., one simply subtracts the anomaly term in eq. (2.13). The resulting effective 
action is scale invariant, but physically unacceptable unless the constant term of the 
potential (2.1d) is fine-tuned such that V(~te~) vanishes at the minimum, i.e., 
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V(qSt0q~0) = 0. Otherwise, the only constant solution of the equations of motion is 
obtained for o 0--* - o e .  We conclude that in theories with dilatons the conformal 
anomaly should be kept. This is required for the existence of the ground state, 
unless one accepts fine-tuning of the constant term in the effective potential. 

3. Dilatons in curved space-time 

The extension of the model considered in the previous sections to curved space 
appears to be straightforward. The gravitational background field is incorporated in 
the standard manner by replacing in the lagrangian (2.7) the flat-space metric ~/~, by 
an arbitrary metric tensor g,,: 

v/g L =  ~/g(5 e(2°/f)op.°Ov 0 -  __ g ~ggv LM), 

1 gX v'r[,~rlT~,l + 

(3.1a) 

(3.1b) 

The corresponding action is invariant under general coordinate transformations and 
global Weyl transformations: 

3 o ( x )  = f A ,  3 G , ( x  ) = 2 a g ~ ( x ) .  (3.2) 

Demanding Weyl invariance also for the kinetic term of the gravitational field one 
obtains for the complete lagrangian 

v/-gL = !/g-(LG + LM), (3.3a) 

Lc, = - 5~ e2~/fR - ~,g~ e2°/fo~oO~o , (3.3b) 

where L M is the lagrangian (3.1b) for Higgs and gauge fields, R is the curvature 
scalar, and 1/8~r~ = G N is Newton's constant. ~ has mass dimension 2 and is 
therefore multiplied by e 2"/f. 

The gravitational part of the lagrangian, which is given by (3.3b), is identical to 
that of the Brans-Dicke theory [6], with the identifications X = (~/2) e2"//, w = 
f 2 / 4 ~ ,  where X is the Brans-Dicke scalar field. However, contrary to the 
Brans-Dicke theory, in the lagrangian (3.3) the field o(x) couples also to other 
scalar and gauge fields. As these interactions depend only on the product 

~,, = g,~e 20/f. (3.4) 
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the lagrangian (3.3) can be rewritten in the form (cf. (3.19)) 

-v/g-L = V~-(Ic/2R, + ~(1 +6~/f2)~"O~oO,o+~,~"D~,O*D),~+ Vo(,t4))) 
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-= (3 .5)  

Here the "dilaton" has become a free field because in eq. (2.4), the interactions 
between o and q0 have been chosen to yield local Weyl invariance. In the more 
general case of global Weyl invariance only, additional derivative couplings between 

and o occur which, however, are not important for the following discussion. 
The action corresponding to the lagrangian (3.5) is invariant under general 

coordinate transformations with respect to the metric ~,,, and the dilaton appears 
as Goldstone boson of the Weyl transformation (3.2): 

o(x)~o(x)+fA. (3.6) 

This corresponds to the fact that dilatations can be viewed as special coordinate 
transformations with an accompanying global Weyl transformations which acts 
trivially on the new metric ~ .  

Quantum corrections will in general break the invariance of the !agrangian (3.5) 
under general coordinate transformations and global Weyl transformations because 
of the conformal anomaly. However, the quantum effective action is only defined up 
to local terms which may be nonrenormalizable with respect to the interactions of 
dilaton and gravitational fields. In the case of local Weyl invariance this ambiguity 
has been discussed by Bonora, Pasti and Tonin [16]. Requiring general coordinate 
invariance one is led to the effective potential (cf. ref. [8]): 

(3.7) 

On the other hand, since the couplings of g,~ and o to other fields depend only on 
the product ~ ,  = e2°//g,,, a straightforward calculation yields [9]: 

~ V(~tq), a, 1/~- ) = g~- e4° / f (V(~*~) -  A(~*eO)(a/f+ ¼ In fg-))  

= (3 .8)  

In eq. (3.7) general coordinate invariance is maintained and Weyl invariance is 
broken whereas in eq. (3.8) Weyl invariance is kept and general coordinate invari- 
ance is broken. 
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In the latter case, the local symmetry is restricted to coordinate transformations, 
under which the volume element 7rg transforms as a scalar field. This means that 
the gauge parameter ~, which appears in the Lie derivatives 

8~ = e" 0,,/,, (3.9a) 

8g~,, = e x Oxg~ + O~,eX gx~ + O~eX g~,x (3.9b) 

67tg- = Oj,(fge ~ ) (3.9c) 

has to be transverse: 

One then has 

O,e" = 0. (3.10) 

87Cg = ~" O~fg . (3.11) 

The transversality condition (3.10) selects volume preserving diffeomorphisms. 
Both definitions for the renormalized effective potential, eq. (3.7) and eq. (3.8), 

are physically unacceptable if the kinetic term is given by eq. (3.3b). In the first case 
one easily derives from the equations of motion 

6~/6o  = 0, (3.12a) 

g"~ 6~/8  g ~ --- 0, (3.12b) 

that the ground state (~0, %) has to satisfy 

e4°o//z~ (ffto~o)=0. (3.13) 

At least in the standard model, where the vacuum expectation value of the anomaly 
does not vanish, this would lead to o 0 ~ - oc. In the second case, given by eq. (3.8), 
one concludes from eq. (3.5) that, in addition to the free field o, the theory contains 
a massive ghost corresponding to lnv~ which, since general coordinate invariance is 
broken, is an unacceptable physical degree of freedom. This problem can be evaded 
in a particular class of gauges [17] where the anomaly term /~lng~- can be 
interpreted as radiative correction to the gauge fixing lagrangian. However, in this 
"vo lume gauge" the separation between physical dilaton and the conformal factor 
in the metric is not very transparent. 

All these problems are avoided if dilaton and graviton are described together by 
the symmetric tensor field g,~* and a lagrangian whose local symmetry is restricted 
to volume preserving diffeomorphisms. The kinetic terms for graviton and dilaton 

* This corresponds to the construction of graviton and dilaton states in string theories [18]. 
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are given by 

= 1 
--v@-LG= 2 + g~'* o /-- l /4n F1 /4  

7T~ l/2 ° , l / g  a w g  (3.14) 

Here the field o has been iden t i f i ed  with (f/4)lnVrg - which transforms inhomoge- 
neously under dilatations 8 x  ~ = e ~ = X x " :  

8((f/4)ln~/g) = X ( f +  x ~ o~,(f/4) In V~-). (3.15)  

The lagrangian (3.14) is uniquely defined by demanding invariance under the 
transformations (3.9) with 

0~e~ = c, (3.16) 

where c is an arbitrary constant. The condition (3.16) defines a subgroup of the 
group of general coordinate transformations which contains volume preserving 
transformations satisfying eq. (3.10) and global dilatations. This invariance deter- 
mines the couplings of g~ to other fields to be the same as in the case of general 
coordinate invariance, i.e., one obtains for the matter and gauge part of the 
lagrangian (3.1b). Since there is only one "dilaton field", namely ln v/g, the 
conformal anomaly can only be incorporated in the form (3.8) and we obtain as 
complete lagrangian 

~gL  = / /g (L(~  + Lp4 + LAN), (3.17a) 

-~R f2 1 q / ~ t / 4 q  / - - 1 / 4  
, - 1 / 2  ~ g g  ~ w g  ' (3.17b) 

2 2 Cg 

LM = --l~°tx~cler(|/~7]|AlfI4+5 6 t " , ~ "  x~ + Bu~Bx , )  _ gU~ D ~t D~ 9 _ ~(~t~)  , (3.17c) 

LAN = ¼Z&( ~'+4')ln f g ,  (3.17d) 

where V is given by eq. (2.14). We emphasize that the particular form of the 
potential for v/g has its origin in the identification of ( f / 4 ) l n  x/g with a physical 
dilaton field. 

The lagrangian (3.17) is only invariant under restricted coordinate transforma- 
tions defined by eqs. (3.9) and (3.10). With respect to these transformations v/g is a 
scalar field (cf. (3.11)), and it is instructive to express the lagrangian (3.17) in terms 
of o = ( f / 2 ) l n  1/~ and a metric ~,~ with determinant ( - 1): 

g,~ = e="/ /~, ,  det (~, , )  = - 1. (3.18) 
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Using the identity 
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1 t̂~v ^ ^t~' ] R=e  -2°/y / ~ + 6 ~ - O ~ ( g  V/~O~o)+6g O~pO~o (3.19) 

one easily finds 

-1/-gL=vF~[2e2°//R+l(1-6~22)~pe2°/fat~oO~{J 

+ e 4 ° / f ( v ( , t ~ ) -  A(~)*~)o/f)]  + A(X/~ - 1). (3.20) 

Here A (x) is a Lagrange multiplier field which enforces the constraint (3.18) for the 
metric tensor ~ .  

The theory of gravity contained in the lagrangian (3.20) is known [19,20] to be 
classically equivalent to Einstein's theory of gravity which is invariant under general 
coordinate transformations. The only difference concerns the role of the cosmologi- 
cal constant. Clearly, in the theory defined by (3.20) a cosmological term has no 
meaning, it simply redefines the Lagrange multiplier field A(x). However, as 
discussed in refs. [19, 20], the cosmological term reappears as an integration constant 
of the equations of motion which determines the ground state curvature. We will see 
in sect. 5 that in our particular model with dilaton, this constant is related to the 
vacuum expectation value % of the dilaton field o(x). 

The lagrangian (3.20) can be viewed as a general covariant theory in a special 
class of gauges for the gravitational field, which is defined through the constraint 

= 1. In the following section, we will discuss the complete gauge fixing and ghost 
lagrangian for this theory. 

So far we have discussed the possibility to extend the concept of the dilaton as a 
physical degree of freedom, which transforms inhomogeneously under dilatations, to 
curved space-time. This turned out to be possible, at least within a theory whose 
general coordinate invariance is restricted to volume preserving transformations. 
However, this whole ansatz may not be relevant for effective low energy lagrangians 
of more fundamental theories, such as string theories. All essential features of the 
flat space model described in sect. 2 are also reproduced by a theory with general 
coordinate invariance where Weyl invariance is restricted to the matter part of the 
lagrangian. In this case, the lagrangian (3.1b) for Higgs and gauge fields would be 
supplemented by the non-Weyl-invariant kinetic terms 

- -  i ' ~ ' 0  ~ ' ~  ~ . v Lo + (3.21) 
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In this case, the anomaly term in eq. (3.7) does not lead to the unwanted condition 

(3.13). 
The lagrangian given by eqs. (3.1b) and (3.21) defines precisely a Brans Dicke 

theory [6] which appears to be the correct effective field theory for graviton and 
"di laton" arising in string theories [18]. We will come back to this model in sect. 5. 

4. Gauge fixing for restricted coordinate invariance 

In ref. [17], we have shown that the condition 

(4.1) 

can be part of a complete gauge fixing of a general covariant theory. The necessary 
three additional conditions may be chosen as (cf. ref. [21]) 

C~(~,  ) = 3~C~( ~, ) - O~C,( ~, ) = 0, (4.2) 

with 

1 
C~(~) = - !//~ ~,~ O x ( 1 / ~ x  ) . (4.3) 

The corresponding gauge fixing lagrangian reads 

L~F = -- ( a / 4 )  C"~C~ - ( / 3 / 2 )  C 2 , (4.4) 

where indices are raised with the flat metric ~,v. In the limit/9 ---, oo the second term 
in (4.4) becomes a constraint, 

1 2 - -- ,  - a c ,  ( 4 . s )  

where A is the corresponding Lagrange multiplier field which also occurs in eq. 
(3.20). 

The ghost system* can also easily be obtained from ref. [17]. It contains 5 ghosts 
and 5 anti-ghosts, u", v, fi", and ~ where v and ~ enforce the transversality of the 
vector ghosts u ~' and ~ .  The nilpotent BRS operator s acts on scalar and vector 
fields as the Lie derivative where the gauge parameter e ~ is replaced by the ghost uC 
For the metric tensor, the Lagrange multiplier field and the ghosts, the BRS 

* An alternative ghost  system has been constructed in ref. [21]. 
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transformation reads: 
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(4.6a) 

s A  = u ~ O~A , (4.6b) 

s u "  = u ~ O,u  ~ , (4.6c) 

s v  = 0, (4.6d) 

s h  ~ = i a  O~C ~ , (4.6e) 

sg  = - i A .  (4.6f) 

The ghost lagrangian is given by 

L o l l  = igt~sC, + i~t ~ cg v + iOsC.  (4.7) 

It is identical to the ghost lagrangian for the "volume gauge" with finite fl (cf. eq. 
(4.4)). One easily verifies the invariance under BRS transformations for the sum of 
ghost and gauge fixing lagrangians: 

with 

sfd4x ( L G F  + LGH ) = 0, 

L G  F 1 r ,u. v ..'~ = - a a ~  % ~ - A C .  

(4.8) 

(4.9) 

We note that on the anti-ghosts 
"on-shell", i.e., for 

fir and ~ the BRS operator is nilpotent only 

s O~C ~ = 0, (4.10a) 

s A  = u ~ OvA = 0. (4.10b) 

The first equation follows from the ghost equation of motion, the second equation is 
equivalent to the covariant conservation of the energy-momentum tensor [20] and 
follows from the equation of motion for the metric tensor in the case of restricted 
coordinate invariance. 

We have seen that gauge fixing and ghost lagrangians of a theory with restricted 
coordinate invariance are identical with those of a theory with general coordinate 
invariance in a particular class of gauges where the volume element is fixed through 
the constraint V~ = 1. So far, we have employed the field variables ff,~, o and the 
Lagrange multiplier field A. However, knowing the ghost lagrangian and the BRS 
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algebra, a description in terms of the variables g,,  = e2"/J~,,,, o and A is more 
economical, because the fields o and A can then be eliminated by means of their 
equations of motion. The part of the lagrangian which depends on o and A is given 
by (cf. eq. (3.20)): 

Lo,A= ). (4.]1) 

The equations of motion for o and A read: 

where 

e4O//= ~ - ,  

n o  + + ( 4 / f ) A  e 40//= O, 

(4.]2) 

(4.13) 

1 
D =  ~ -  0, (v/-gg"" 0~). (4.14) 

They determine both fields in terms of the metric tensor: 

Hence one obtains 

o =  ( f / 4 )  In 1/~-, (4.15) 

(4.16) 

f2 1 q F_l/4 q U _ I / 4  
L,..,= --~-g~'~ ,--1/2 °~vg o~/g + 413(~*~)1n~ (4.17) 

which, together with curvature scalar and matter part L M, yields the complete 
lagrangian (3.17). Eq. (4.16) is important for the BRS algebra. After eliminating the 
field A eqs. (4.6b) and (4.6f) become 

s~= +(i/4)V~(~ + / 2 [ ] l n ~ l J 4 ) .  (4.18t 

(4.19) 

In order to obtain the last equation from (4.6a) one has to use the transversality of 
u ~" which follows from the equation of motion for 15. In sect. 5 (cf. eq. (5.5)), we shall 
see that the necessary condition s2O = 0 is indeed satisfied for solutions of the 
gravitational field equations. 

For the complete graviton-dilaton lagrangian including the gauge fixing term, we 
can now identify physical states and masses as poles of the propagator matrix. From 
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the kinetic term (cf. (3.17), (4.4)) 

(~  1 0 /-i/4~ ~-I/4] 1 2 .~ G g g  ) _ o~4 C""C 

one obtains in an expansion around flat space, 

for the quadratic part in h #u 

gp.~ = ~#~ + K -  1/2h# ~ , 

y - 1  
i 2 ) 2  l X ~-0o 

(4.20) 

(4.21) 

where 

1 1 1 ) 
(2) - -  _p(0} ~ 4 ( X  - -  

+ (~,. OxO , + O,O~x.)/I5 - 40.O~Oxcg./D 2 . (4.23b) 

Pu(°1~ = O , O.Oa O~/E~ 2 . (4.23c) 

m 2 = _ A 0 / 8 V  ~ = - -  4A o /S  2.  (4.23d) 

The propagator (4.23) agrees with the one obtained in ref. [21]. It has two poles, at 
k 2 = 0 and at k 2 = - m  2, where m is precisely the dilaton mass (cf. eq. (2.18)) which 
we have calculated in flat space in sect. 2. 

(4.23a) 

Here we have added a "mass term" for hax which, as we have seen in sect. 2, arises 
after spontaneous symmetry breaking. A0=,l(~¢0q~o) is the vacuum expectation 
value of the anomaly. 

From the lagrangian (4.22) one obtains, after a straightforward calculation, the 
propagator: 

f~ 1 X 2 1 a 0 ( h a ) 2 ,  Y -  (4.22) 
4~ ( O ~ c g x h ~ - O ' O  hxF') + 3~-~- 16~ 



W. Buchmiiller, N. Dragon / Dilatons 2 2 3  

In order to verify that the two poles of the propagator correspond to two different 
states of spin 0 and 2, we consider the plane waves 

( a )  

k 2 = _ m 2 (4.24a) 

k 2 = 0, (4.24b) 

where ~,(~)(k) is the polarization tensor of a graviton with polarization a in volume 
gauge. The two gauge conditions (4.1) and (4.2) become for the field h~,,: 

h ~  = O, O~8Xhx~ - O~OXhx~ = 0. (4.25) 

They are fulfilled by the polarization tensors of the two graviton states which satisfy 
(cf. ref. [22]): 

~ = O, k"(u  ,, = 0. (4.26) 

Using the expressions (4.23b) and (4.23c) for the projection operators P(:) and p(0) 
one easily verifies the relations 

h ( , • ) • * p ( 2 )  /~(B)x,_ (~(,o*~.(#)~,~ 

h(a)~v*D(2) ~ X ~ _  • ~,~x,'-" - -  O, 

h ( ~ ) u ~ * p ( o )  D x ,  _ 0 • ~ X ~  - -  , 

. ~  ~. = ] .  

(4.27a) 

(4.27b) 

(4.27c) 

(4.27d) 

Hence the propagator (4.23) describes indeed a massless graviton and a massive 
scalar particle, the dilaton. It remains to be shown, however, that there are no 
additional states in the physical sector of the Hilbert space. Because of the higher 
derivatives in the lagrangian (4.22) this is not obvious. We have performed such an 
analysis for a similar theory where conditions (4.2) are replaced by equations which 
contain an auxiliary field and only first-order derivatives. In this case we found that 
the physical Hilbert space indeed contains no additional states (cf, [17]). 

We conclude that it is possible to describe graviton and dilaton together by means 
of the symmetric tensor g~,~ and an action with smaller gauge invariance. The 
corresponding lagrangian (3.17) is invariant only under coordinate transformations 
which preserve the volume. This description of graviton and dilaton is reminiscent 
of the construction of these states in string theories [18]. 
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5. Vacuum curvature 

Vacuum states of the theory are characterized by stationary points of the effective 
action for which scalar fields and curvature have constant values. The relevant part 
of the action (3.17) reads 

S=fd4xvrg - ~ R - @  2 1 0 F-1/4q F-1/4 -- g/~F ~ - 1 / 2  .V 'g O~ v V 'g 

-g"~ 0,0'0~,~- P(q¢o) + ¼a(,¢~,)ln v~), (5.1) 

where the potential V(~q~) is given by eq. (2.14). Let us first consider the variation 
of the action under the infinitesimal coordinate transformation 

g~,~ ~ guy + 8g~,~, 

8g~ = Oj, e' gx~ + O,eX gux + e x cgxg~, ~ , (5.2) 

where e" = x" - x'". Since only the second and the last term of the action (5.1) are 
not invariant under the transformation (5.2) one obtains with 

By@ : ~" O.v~ + ~ 0 S  (5.3) 

after partial integration (cf. eq. (4.14)) 

8S= -¼ fd4xO, (v /g (A  + f2[]lnv/gl/a))e ". (5.4) 

For solutions of the equations of motion 8S vanishes for arbitrary e" and we obtain 
from (5.4) 

0~, (!//g (A + f2g]ln !~-1/4)) = 0. (5.5) 

This is precisely the condition (cf. (4.19)) which is required so that the BRS operator 
is nilpotent on-shell. 

Variation of the action (5.1) with respect to g,~ yields the equations of motion for 
the gravitational field: 

R , , , -  ~g~,,,R = ( f 2 / ~ ) ( _  c9 in ~/-gi/a O~ In f g l / 4  

+ (1/~)(r. - }g.o(1 + In v~-)zl (0'¢))),  (5.6) 
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where  T,~ is the e n e r g y - m o m e n t u m  tensor of  the scalar field: 

= _  i ~, a _ ~ o _ ~ ( ~?ep 

F r o m  eq. (5.6) one obtains for the curvature  scalar 

R ( f 2 / g ) ( g ~ " r  0 h ' F-l/4 "I = - l n g g  G l n ' / 4 - D l n  1/4, 

- ( 1 / ~ ) ( r . ~ -  (1 + In fg-) A (~*q~)). (5.8) 

The  equa t ion  of mot ion  for the scalar field ~ reads: 

DO -- -~,(V(qS+q,) - ¼A(qStqS)ln v/g) = 0. (5.9) 

V a c u u m  states of the theory are given by solutions of eqs. (5.8) and (5.9) for 
which the scalar fields e? and l /g ,  and the curvature  scalar R take constant  values. 
The  s p a c e - t i m e  with constant  curvature  is de Sitter space whose metric has the 
canonical  form*:  

r 

with 

x 2 = ~ , ~ x ~ x  ~ , (5.10b) 

R = - 12e. (5.10d) 

One  easily obta ins  f rom eq. (5.10) 

1 
g =  - d e t ( g , ~ )  - 1 - ex  a" (5.11) 

It  is possible  to pe r fo rm a coordinate  t ransformation,  which leaves the Ricci scalar 
R invariant ,  such that the new metric tensor g ~  has constant  determinant :  

d e t ( g ~ )  = d e t ( G ~ ) ( d e t  ( o x / 0 x ' ) )  2 - e 4~, a = const .  (5.12) 

* See, for instance, ref. [22]. 
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A non-s ingular  t ransformat ion  satisfying this condit ion is easily constructed.  After  

some  algebra  we obtain: 

x~'=¢X(x'2)x '~, (5.13) 

3 2 4 a /  ,2X 2 (5.14) (2 + e ) k ( x ' 2 ) x ' 2 ) ¢ l  - e ) t ( x ' 2 ) x  '2  = 2 - ae e t x  ] . 

Fo r  small  x '2 one has 

X ( x  '2) = 1 + O(e2%x '2 ) .  (5.15) 

The  final expression for the t ransformed metric tensor reads: 

e s'~ - X4(x '2) x£x~, (5.16) 
g~v(X')  = ~ k ( X ' 2 ) ' l J p . v  -I- ~ k 3 ( X , 2 )  X '  2 . 

This  metric,  whose de terminant  is constant  by construction,  describes a s p a c e - t i m e  
of cons tan t  curvature  R '  = - 1 2 e .  

For  cons tan t  scalar fields ~0 one has 

T u , =  4V(~*0~0) • (5.17) 

Inser t ing  (5.16) into eqs. (5.8) and (5.9) one obtains  the ex t remum condit ions 

V(dp*o,o)- 3~e- a(¢o,o)(a + ¼)=0,  (5.18) 

0 _ e# = % 0~ , - (V(~*q~) -  A (~*~) a )  = 0 .  (5.19) 

These  equat ions  are almost  identical to the corresponding equations (2.16) in flat 
space,  with c~ = %/f. The only difference is the appearance  of the addit ional  
cons tan t  3Ke, i.e., eq. (5.18) corresponds to eq. (2.16b) in flat space with a modif ied 
cons tan t  in the effective potential  (cf. eq. (2.1d)): 

a 4 = a 4 - -  3xe. (5.20) 

Wi th in  the model  discussed, the only constraint  on the constant  a E is eq. (2.17) 
which s tems f rom the requirement  of the existence of a solution of eqs. (2.16) with 
finite values of  4'0 and %. If one does not allow for an accidental cancellat ion 
be tween  the two terms a and 3~e, one obtains  for e the constraint  

lel </*4/K , (5.21) 

which cor responds  to the naive expectation.  
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So far we have studied the ground state curvature in the model with restricted 
coordinate invariance. As we have discussed in sect. 3, an alternative model for 
"di latons" in curved space is the Brans-Dicke theory. From eqs. (3.1b), (3.7) and 
(3.21) one obtains the equations of motion 

R = - o,Lo a.o + (5.22) 

f K]o = T ~  - e4°//A (~b*~), (5.23) 

0 _ 
D,;b+ ' -/O oOuep-ea°/ST~(V(4~*q~)-A(eo*e~lcr/f)=O, (5.24) 

where the energy-momentum tensor depends now on e~ and o: 

f , .  = a,++ 0.+ + - O,++ O . , )  

+ g~,, e4°/f( V(~*O) - a (@*e~) o / f  ). (5.25) 

For  constant fields (~0, %) eqs. (5.23) and (5.24) are identical to the flat space 
equations (2.16). Eqs. (5.22) and (5.23) imply 

R o = - ( l /K)  en°',/YA (qSgC)o), (5.26) 

i.e., the ground state curvature is uniquely determined, and its size is given by the 
vacuum expectation value of the anomaly. This unwanted result can be avoided if 
one eliminates the anomaly term in the effective potential by adding the 
Wess-Zumino term (2.22). Then, eqs. (5.22) and (5.23) yield R 0 = 0. However, 
the existence of a constant solution o 0 requires fine-tuning of the constant in the 
effective potential as discussed in sect. 2. 

Eq. (5.26) has recently been derived by Coughlan et al. [10] in a general analysis 
on the role of dilatation symmetry for the cosmological constant problem. We agree 
with the main conclusion of the paper that spontaneously broken scale invariance 
does not automatically, i.e., without any fine-tuning of parameters, lead to vanishing 
ground state curvature. Nevertheless, the presence of dilatons in a theory has some 
interesting implications for the cosmological constant problem: In a Brans-Dicke 
theory, vanishing curvature is equivalent to the existence of a constant solution 
(q~0, %) of the equations of motion, which is usually required as ground state. In 
theories with restricted coordinate invariance, where the dilaton is identified with 
the conformal factor of the metric tensor, for a certain range of parameters in the 
potential there always exists a constant solution (@0, %) with vanishing curvature, 
which, however, is not the unique ground state. Furthermore, the scalar potential, 
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which occurs in both models of dilatons in curved space, has turned out to be 
interesting with respect to the cosmological time dependence of the vacuum energy 
density of the scalar fields, as recently discussed by Wetterich [23], and Ratra and 
Peebles [24]. We will discuss this issue, as well as phenomenological constraints on 
light scalar particles [25] in more detail elsewhere. 

6. Summary 

The starting point of this paper was the scale invariant standard model where 
dilatations are realized nonlinearly by means of a Goldstone field, the dilaton. 
Quantum corrections break the classical scale invariance, and a unique ground state 
exists without fine-tuning of parameters in the effective potential. The dilaton 
acquires a small mass which, like the vacuum energy density, is determined by the 
vacuum expectation value of the anomaly. 

The extension of this model to curved space time is not unique. The main result 
of this paper is a description of the dilaton as part of the metric tensor which also 
contains the graviton. The corresponding action is invariant only under restricted 
coordinate transformations which preserve the volume. This is reminiscent of the 
construction of dilaton and graviton states in string theories. The dilaton is 
identified with the conformal factor of the metric and transforms inhomogeneously 
under dilatations which remain an anomalous global symmetry also in curved space. 
This theory is known to be classically almost equivalent to Einstein's theory of 
gravity with an additional scalar field. The only difference concerns the curvature of 
the ground state which is no longer determined by a parameter of the lagrangian. It 
rather appears as integration constant which is related to the vacuum expectation 
value of the dilaton field. We have also constructed BRS invariant gauge fixing and 
ghost lagrangians for the restricted gauge invariance and explicitly evaluated the 
propagator of the dilaton-graviton system. 

Although our treatment of dilatons in curved space appears to be theoretically 
consistent, it is not clear that it is relevant as part of an effective low energy 
lagrangian of a fundamental theory. An alternative is a theory with general 
coordinate invariance and anomalous global Weyl invariance. Here the "dilaton" 
becomes the Goldstone boson of the global Weyl symmetry. However, this theory is 
only consistent if the vacuum expectation value of the conformal anomaly vanishes, 
which is not the case in the standard model. Another interesting alternative is the 
Brans Dicke theory where only part of the action is invariant under Weyl transfor- 
mations. Even in the absence of the conformal anomaly graviton and "dilaton" 
kinetic terms break Weyl invariance. In the Brans Dicke theory the vacuum 
expectation value of the anomaly leads to a nonvanishing ground state curvature. 

The dilaton field plays an important role for the vacuum energy density and 
therefore also for the curvature of the ground state. The direct relation between 
dilaton vacuum expectation value and ground state curvature in models with 
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restricted coordinate invariance appears particularly interesting. This will be dis- 
cussed in more detail elsewhere. 

We are indebted to M. Kreuzer, R,D. Peccei and C. Wetterich for helpful 
discussions throughout the course of this work. 

Appendix 

In ref. [9] we have obtained expression (3.8) for the effective potential in a 
gravitational background field (cf. eqs. (2.14, 2.15)): 

f g  V( q,t~, o, v'g-) : vfg -e 4o//( p(~,~) _ A( ~+~)( o / f  + ¼ in v/g)). 

On the other hand gravitational background field calculations using dimensional 
regularization yield in the case o = 0 [26, 27]: 

(A.1) 

i.e., the term z~(4~tq,)ln v/g does not appear. 
The difference between (3.8) and (A.1) can be easily understood as follows. Let us 

consider for simplicity a single scalar field ~. The starting point of the calculation in 
dimensional regularization is: 

So[~, g] = - fd"xv~(~g~O/~O/o+ Vo(~)). (A.2) 

In the special case of a conformally flat metric, 

the action (A.2) becomes: 

Soil ,  g] = - f d "x  e"~(½ e 2~n,~-%~ a/, + vo(e~)). (A.3) 

For constant fields ~ the one-loop correction is given by ref. [26]: 

s l [ ' / ' ,g ]  = -  1 2 f d . x e , , . [  1 
(4~-) J [ n - 4  

- - +  7E - l n 4 T r + l n  ~U-~ ]]  

4 
n(n - 2) ' " "'tm2~'~P))2' X (A.4) 
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where 

VIA Buchmfiller, N. Dragon / Dilatons 

m2(0) = OZVo( (p)/O0 2 , ( A . 5 )  

and ~'E is Euler's constant. After renormalization one obtains the Coleman- 
Weinberg effective potential: 

1 )2 m2(9) 
s~R~[eo, g] - (S~r)2 f d 4 x v ~ ( m 2 ( 9 )  In M-----5-- 

- -fd~xf~Vt(q,). (A.6) 

In the case of an additional dilaton field the classical action reads in four 
dimensions (cf. (3.1b)): 

So[eO, o , g l = -  fd4xv~e4°/J(½g"'e-2°//OA, O/o+Vo(O)). (A.7) 

There are four different ways in which this action can be continued to n dimensions. 
They correspond to broken or unbroken Weyl and general coordinate invariance. In 
the case of a conformally flat metric the result of ref. [9] corresponds to the choice 

~o[0, o, g] =-fd~xe4'~+°//'(~n"~e-2~+°//~O/~O~q,+ G,(+)), (A.8) 

i.e., the conformal factor in the metric and the dilaton field are treated symmetri- 
cally. From eqs. (A.4) and (A.8) one obtains*: 

s~R)[eO,o,g]= -- fd4xv~e4°/Z(Vl(~,)-A~(O)(o/f + ¼1nvrg)), (A.9) 

where 

A I ( * )  = M O V ~ ( O ) / O M  (A.IO) 

is the conformal anomaly. In eq. (A.9) general coordinate invariance is broken by 
the anomaly. 

An alternative continuation to n dimensions, which maintains general coordinate 
invariance, reads for conformally flat metric: 

£o[~,o,g]= -fd"xe'°+4°//(~n~e 2<~+°//>0,,/,0~,/,+ Vo(~)). (A.11) 

* The same result is obtained in a direct evaluation of the one-loop correction to eq. (A.8) [28]. 
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The corresponding one-loop correction is given by 
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s(R)[ep, o ,g]  = - f d 4 x ! / g  e 4 O / / ( V l ( ~ ) -  Al(e~)o,/f). (A.12) 

As discussed in sect. 3 this asymmetric treatment of the conformal factor in the 
metric and the dilaton field is only consistent if the vacuum expectation value of the 
conformal anomaly vanishes. 

Of course, it is also possible to maintain Weyl and general coordinate invariance. 
All four options differ only by local Wess-Zumino terms, and it is a physical 
question which symmetries one requires the renormalized effective action to have. 
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