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Abstract. We extend the previously constructed linear system for N = 16 super- 
gravity in two dimensions by including the unphysical gravitino degrees of 
freedom. This theory has a residual N = 16 "superconformal" invariance that 
can be bosonized to local E 9 transformations. The modifications to the linear 
system described here suggest a further extension to an infinite hierarchy of 
fields and associated gauge transformations related to E 9. 

1. Introduction 

It has long been known that when one dimensionally reduces a supergravity theory, 
the resulting theory often has a symmetry under a large, non-compact group [1]. 
This symmetry acts non-linearly, but it can be linearized by the introduction of a 
local gauge symmetry with respect to the maxiaml compact subgroup, H, of G 
[2]. To accomplish this one introduces unphysical fields that can be gauged away 
by using the local H-invariance; the original physical theory is thus recovered by 
passing to a gauge slice. One particularly interesting aspect of this occurs when 
the supergravity theory is reduced to two dimensions. There one finds that G 
becomes an affine Lie group, G ®, and H becomes an infinite dimensional subgroup, 
H ® [3-5]. The field equations of a supergravity theory reduced to two dimensions 
are, for the bosons, those of a non-linear a-model based on a coset G/H. The 
equations of motion of the fermions are also non-linear as a consequence of the 
four-fermi terms intrinsic to higher dimensional supergravity theories, and the 
nonlinear couplings to the scalars. In spite of this apparent difficulty, some, and 
possibly all, such models are completely integrable by virtue of the large, affine 
Lie group symmetry, G ~. This was shown for maximal supergravity in [5], and 
in this paper we will briefly describe a number of models that can be obtained by 
consistent truncation. 
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Our main purpose here, however, is to investigate the rSle of local super- 
symmetry in these theories, and how it can be related to an H ~ gauge trans- 
formation. We believe that the existence of such gauge-transformations is the main 
feature that distinguishes the locally supersymmetric models discussed here from 
similar models with fermions (with or without rigid supersymmetry) which are 
also integrable but do not couple to two-dimensional gravity [6]. A related 
difference is that for the latter models there is no restriction on the coset space 
G/I-I, whereas this is no longer true in locally supersymmetric theories. For N = 16 
supergravity, the coset space is uniquely determined to be Es/SO(16 ). In [5] the 
integrability of maximal supergravity in two dimensions was demonstrated by 
fixing all the gauge invariances, and in particular, fixing the local N =  16 
supersymmetry by gauging away part of the gravitino. In Sect. 2 of this paper we 
restore conformal supersymmetry to the theory by re-introducing the y-trace part 
of the gravitino. We give the new field equations and the supersymmetry 
transformations of the model. In Sect. 3 we extend the results of [5J by showing 
how the equations of motion of the matter fields and gravitinos are equivalent to 
the integrability conditions of a linear equation for an E 9 - /~s  matrix, where/~s 
is the affine (Kac-Moody) extension of E s. This shows that the full supergravity 
theory, and not just its matter sector, is integrable. We then show how the 
supersymmetry transformations of the original model are equivalent to fight 
multiplication of the E 9 matrix by a particular matrix that lives in the pure gauge 
subgroup, H ~ - SO(16) ~. The section concludes with a brief discussion of how to 
include the conformal factor, and thus two-dimensional gravity, by passing t o  E 9 

with a central extension along the lines suggested in [4]. 
In Sect. 4 we discuss possible truncations of the maximal supergravity model 

and the E 9 integrable system down to models with fewer supersymmetries, and 
smaller affine symmetry groups. Section 5 contains some further discussion of the 
action of E9 on the solutions of the maximal supergravity theory, and in particular 
how it acts as a group of B/icklund transformations. We finish by describing some 
conjectures about how one might linearize this E9 action by introducing more 
fields into the original supergravity system, extending it to an infinite hierarchy. 
We present evidence that suggests that if such a hierarchy could be found, the 
theory might be completely solvable. 

2. N = 16 Supergravity in Two Dimensions 

The N = 16 supergravity in two dimensions [5] may be obtained by dimensional 
reduction from the corresponding theory in three dimensions. The three dimen- 
sional theory was constructed in [7], and in order to get at the two dimensional 
theory we will briefly summarize the relevant results, as well as notation and 
conventions. Three-dimensional world and fiat indices are denoted by m, n,. . .  and 
a, b . . . .  respectively, whereas Greek letters kt, v . . . .  and c~, fi,.., stand for curved and 
flat two-dimensional indices (in fact, only the latter will be employed after Eq. 
(2.10) below). We use a metric signature of (+  - - )  and take the gamma metrices 
to be 70 = o 2 , ] 1 1  : i63 and ~)3 : ial. Define 73 = i72 = --i'~ 2 SO that y~¢ = e~¢y 3 with 
e01 = - e  °1 = + 1. The physical states of the three-dimensional N = 16 theory 
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constitute an irreducible N = 16 supermultiplet with 128 bosons and 128 fermions 
transforming as inequivalent fundamental spinor representations of S0(16). As 
with any extended supergravity theory, the N = 16 theory has a rather complicated 
structure in the scalar sector, and the actual construction is greatly facilitated by 
exploiting the rigid Ea(+s) invariance of the theory. The 248 Es generators are 
split into 120 generators X I S =  - X  Jx and 128 generators ya in accordance with 
the decomposition 248 ~ 120 @ 128 of Es under SO(16) .  They obey the commutation 
relations 

I X  I J, X KL] = • I L x J K  ~- ¢~JKxIL __ ¢~IKxJL __ (~3LxIK ' 

[ X I J  y A ]  = - -  2--AB*Xt"IS V~,  [yA, yB] = a'lr'IJAB zxvIJ" (2.1) 

Here, the indices I, J , . . .  = 1 . . . . .  16 and A, B . . . . .  1 .... ,128 (or/i,/~,... = 1 .. . .  ,128) 
label the vector representation and the fundamental spinor (or conjugate spinor) 
representation of SO(16), respectively. 

The rigid Es invariance of the theory can be linearly realized in the usual 
manner by introducing a local S0(16) invariance. Consequently, the scalars Co(X) 
are properly described as elements of the coset space Es(+8) /SO(16) ,  and the 
"composite" SO(16) gauge field Qm is obtained from the E s Lie algebra decompo- 
sition 

~o lOm~o=Q, ,+~ ,  _ * n H v H  A A - - m  - -  ~ z m  ~" + P r a y  . (2.2) 

In addition to the physical fields, the N = 16 theory contains a dreibein em" and a 
gravitino ~0~ transforming in the 16-dimensional vector representation of SO(16); 
these fields do not correspond to physical degrees of freedom. Modulo higher order 
fermionic terms, which we will not consider in this paper, the Lagrangian of 
three-dimensional, N = t6 supergravity reads [7] 

~W = - -  ¼eR  + ! . . . .  vy, I GA Jtl -L. 1 mnpA p A  
2 ° W m . ~ n W p :  ~ e g  . , m a n  

2;?~:~,,,z,~ ~_=,~.,.m.,..~,-.x . A  
--~e: z y y ~ . . A A r m  + " " .  (2.3) 

The quantity Pm a has been defined in (2.2), and the fully covariant derivatives 9m 
are given by 

I ~,.~.=(C3m 1 .b I OXJ,I.S "J- 4 (J)mab 7 )~tn + :¢.:m ~ n ,  

~ m Z  A = (~3., _i_ i co ..b~ .~i _ 1 ~x~Fxa .~ (2 .4 )  4 mabY }Z "t- ~rt~m ABZ " 

The dimensional reduction of this Lagrangian to two dimensions involves some 
novel features in comparison with the dimensional reduction of other theories 
down to dimensions higher than two. One first drops all dependence on the third 
coordinate and then tries to simplify the field equations as much as possible by 
choosing suitable gauge conditions. For the dreibein, a natural choice is: 

(? 
where local S O ( l ,  2) invariance and two-dimensional diffeomorphism invariance 
have been exploited to bring era" into triangular form and to diagonalize the 
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zweibein euL The field Bu is auxiliary in two dimensions and leads to higher order 
fermionic terms upon elimination; we will therefore put Bu--0  in the sequel. 
Substituting (2.5) into 

g2.b c = 2 e t Z e b l " ~ m e , o  

Ogabc = ½(-- 12bc~ + 12cab + "Q~bc), (2.6) 

we easily obtain the reduced components of the spin connection 

0)2~t2 = - -  (2)22at = 2 -  l p -  10~d0 ' (2.7) 

where ~--e~a0 a and e)~# z =o)2~a=0 modulo higher order fermionic terms. 
Substituting these expressions into the three-dimensional Einstein action and 
discarding total derivatives leads to the result 

- ¼ e R ( e ,  o) = - ½p0UV0u(2- ~ 8,2). (2.8) 

In this equation 0~ = (det g)-~/2g, ~ = 2-2g,~ has unit determinant. Although this 
part of the metric can be gauge fixed to the fiat world-sheet metric, it is advisable 
to preserve it here since we will need to vary the action with respect to 0,~ to 
obtain some of the equations of motion (see (2.18) below). We only put 0u~ = t/~ 
in the equations of motion. Observe that (2.8) would just be the Euler number 
density if it were not for the extra field p. 

In the fermionic sector, we make use of the local N = 16 supersymmetry to 
impose the gauge condition (with f i a t  indices) 

O~ = ( ?~ ' ,  O~). (2.9) 

This gauge choice is associated with the diagonalized form of the zweibein in that 
2 and p are the "superpartners" of O ~ and ~ respectively (see (2.27) and (2.29) 
below). We can now make a substantial simplification in the derivatives of the 
spinors. By writing out the Lorentz covariantizations explicitly one sees that the 
effect of e~,p~ in (2.4) can be entirely absorbed by redefining the spinor fields 
according to 

Z A ~ ) ~ I I 2 z  A, ~/s~21120' , ~t/2--'t~Lll2ol. (2.10) 

The factor 2 then occurs only in (2.8) and disappears entirely from the remaining 
part of the Lagrangian. Note that this re-definition is the same as the one employed 
in two dimensional conformal supergravities to demonstrate the decoupling of the 
conformal factor (see, for example [8]). This disappearance of 2 shows that, without 
the field p, the theory would be conformally invariant in the ordinary sense. 
Furthermore, one need no longer distinguish between curved and flat two- 
dimensional indices since the effects of two-dimensional gravity are contained 
entirely in 2. 

After these preliminaries we can now write down the equations of motion of 
two-dimensional, N = 16 supergravity. With the SO(16) covariant derivative defined 
by 

O a~t I ~ O,t//:; -I- Qlaa OJ, 
± 1 , ' ~ I s r t z  (2.11) D~,Z ;~ =--- O~,Z A ~ ~ ~ ,  ~ a~, 
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they read (up to higher order fermionic contributions) 

p -  1/2 D(pl/2z¢t ) = 1 .3 .~.J,Z r t  DA (2.12) 
- -~ /  Y ~ 2 1 A A r ~ ,  

l . ~ . A  r - ' l  r~A DO ~ = ~ '  z ~a~ir , ,  (2.t3) 

p - 1D,(p0 ) - -  r x  - -  ½ ( P  - 

+ ½(2 -~0~2)?~7,0~ (2.14) 

for the fermionic fields, while for the bosons the3, are 

I _ ~ I J  I J  B 

U0,p = 0. (2.16) 

The equations of motion of the conformal factor are: 

-- ~--~ -- -- i~AT~D~z A, (2.17) 

(p-  ~ 0(~p)(2- ~Ot~)2) -- ½r/,a(p- a~?rp)(2- aOr2) = T,¢ -- gq~aT~ ~, (2.18) 

where 

T~t~___ 1pApA i_A D ~i l r l  3 

- ~ 2 ~ '  Z(~,Z r~)IAA.  (2.19) 

Equation (2.18) is obtained by varying guy; similarly, (2.14) contains the variation 
with respect to the 7-traceless gravitino mode that has been gauged away as in 
(2.9). Contracting (2.14) with ;~', we get the equation corresponding to the variation 
with respect to ~d, namely 

p -  ' D(pO I) = O, (2.20) 

which no longer contains L From (2.17) and (2.18) it may appear that 2 obeys two 
equations, a first order one and a second order one. In fact, one can show that 
(2.18) implies (2.17). To do so it is most convenient to write (2.18) in light-cone 
coordinates as 1 

~+p(2-1~+).) = p r +  +, 0_p(2-1~_2) = p T _  _. (2.21) 

It is equally straightforward to express the remaining equations of motion in 
light-cone notation. Acting on Eq. (2.21) with O_ and O+ respectively, and using 
O+O_p = 0, leads to 

(O +p + ~ _ p ) ~  + (2- ~a_2) = a_(p  T+ +) + O +(pT_  _), (2.22) 

To further evaluate the right-hand side of (2.22) one has to make use of the other 

1 a± -= 1/V/3(0o ___ 3~), etc. 
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equations of motion; for instance, one uses (2.15) in the form 

O _ p P +  = - O + p P _  - p D + P _  - p D _ P +  + . . . .  (2.23) 

In addition, one must use the second integrability relation in (3.1) (see below) 
in the form D + P  A _ = D _ P  A . It is then a matter of straightforward, though 
tedious, calculations to show that (2.17) is a consequence of (2.18) provided that 
(~+ + 3_)p 5 0 .  Therefore the conformal factor is only subject to a first order 
equation. 

It was already noticed in [5] that the gauge conditions (2.5) and (2.9) admit a 
residual "superconformal" invariance in very much the same way that the 
orthonormal gauge has such an invariance in string theory. That  is, the diagonal 
form of the zweibein is preserved by "holomorphic" diffeomorphisms whose 
generators satisfy the conformal Killing condition (alias the Cauchy-Riemann 
equation) 

0~# + ap~ = t/~#a~. (2.24) 

Similarly, (2.9) is preserved by local N = 16 supersymmetry transforms. After 
rescaling the supersymmetry transformation parameter according to 

d ~ 2 - 1 / 2 d ,  (2.25) 

the condition on e becomes (modulo higher order fermionic terms) 

;:7~Dpd = 0. (2.26) 

These give rise to an N = 16 "superconformal" algebra 2 as the commutator of 
two super-symmetry transformations leads to a diffeomorphism with parameter 
~ ' =  igly°'e2, which is easily seen to obey (2.24) provided that (2.26) holds. (This 
also remains true if the higher order fermionic terms are included in (2.26).) The 
full set of "superconformal" transformations is 

i g l  , ,t,x ! / . o  1,5.Uo = gxz/~FXA~ i y A  (2.27) P - l b P  = - -  f a y ' z ,  

and 

1 . e . , I r - I  D A  
6 0  t = ½°:~(D~ + 2-10~2)J, 6$~z = - 2737~(p- lOop)d, 3Z ~i = ~y ~ IA f l l -oz .  (2.28) 

The conformal factor transforms according to 

2 - 1 6 2  = i g l q / .  (2.29) 

We note that in order to derive these transformation rules from the corresponding 
ones in three dimensions one must take into account the redefinitions (2.10) and 
(2.25) as well as the compensating rotations necessary to restore the "conformal 

2 One should note that this algebra is a soft, local algebra in that it has field dependent structure 
"constants." For example, the commutator of two supersymmetries results not only in the usual 
diffeomorphism, but also in another supersymmetry transformation whose parameter is proportional 
to the gravitino. (It is, of course, only the global two-dimensional superalgebras that are subject to the 
constraint N =< 4 [9].) 
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gauge" (2.5). For  later convenience, we note that (2.27) implies 

6P~ = D~S a, 6Q~J ~- ~ I-'IJz__ aB.~pa CB~, (2.30) 

with S a =- gXzA F~A. 
This residual invariance may be used to go to "light-cone gauge", where ~ = 0 

and p becomes one of the coordinates. The "transverse" degrees of freedom are 
then just the 128 + 128 physical degrees of freedom, and one recovers the equations 
of motion presented in [5]. On the basis of these similarities, it has already been 
suggested there that N = 16 supergravity may give rise to a new kind of superstring 
akin to Liouville theory in which the conformal factor also does not decouple. 
However, in N = 16 supergravity, left and right movers can no longer be treated 
separately due to the existence of solitonic excitations which involve non-trivial 
mixing of left and right movers. (This theory, of course, also admits purely left to 
right moving solutions.) The analogy is also apparent if one puts p = const.: then 
(2.14) and (2.18) would reduce to the usual Virasoro constraint and super-Virasoro 
constraint in the gauge ~P2 = 0, respectively. However, for our model, putting 
p = const, leads to a trivial solution for the following reason. The metric on the 
scalar manifold is the positive definite part of the Caftan- Killing form, rather than 
the usual (indefinite) Lorentz metric of string theory. Therefore, requiring that p 
be constant implies the vanishing of T+ + and T_ _ by (2.21), which in turn implies 
that the solution must be trivial, that is, ~ = 1. It is interesting to note that the 
appearance of the Virasoro constraint as an equation of motion is peculiar to theories 
coupled to two dimensional gravity. Thus, in a rigidly supersymmetric theory, 
requiring p to be constant can lead to non-trivial solutions since (2.21) is absent. 

3. A Linear System with N =  16 Supersymmetry 

According to the general theory of non-linear a-models, the decomposition (2.2) 
implies the following integrability conditions on Q~ =-±ouviJ2 ~ ~ and P~ =-payA: 

a~Q~ - OaQ~ + [Q~, Qp] = - [P~, P , ] ,  

D~P~ - DpP~ = 0. (3.1) 

It is well known that in two dimensions one can modify (2.2) so that the equations 
of motion follow from the integrability condition [10, 4]. For this purpose, one 
replaces the matrix ~/f0(x)~E8 by an element ~//'(x, t) of the affine (Kac-Moody) 
extension E 9 =/~8 of E8, where t is the spectral parameter. In our case there is the 
additional complication that the equations of motion involve the field p. This can 
be dealt with by making the spectral parameter x-dependent [4]. The function t 
satisfies the first order equation 

or, equivalently, 

1 + t 2 2t ~ 
(3.3) 
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Being subject to a first order equation, the function t = t(x, w) also depends on an 
integration constant w (if p = const., we would have to t = w). To derive the results 
described below one needs further relations between t and p that are most easily 
deduced from 

~9 f- l + t 2 ' ~  O.--"'" t+ t2"~ / l- t2\ ~1 1 - t 2 \  

~tp~)=-~tp~-~--  ) ,  O~tp---~J=O~tp~ ) (3.4) 
by taking linear combinations of appropriate powers of the functions inside the 
parentheses. In this fashion one derives, for instance, the identity 

( l- t2)  4 -=4~, p-2 (12t2pJ" (3.5) 

In [5] a linear system was presented for the equations of motion of the physical 
degrees of freedom, i.e. (2.12) and (2.15) with O~ = 0. We will now extend these 
results to the situation where ~ ~a 0 so that the remaining equations are implied 
by the linear system. In this way the content of N = 16 supergravity is encoded in 
a single x-dependent and t-dependent Ea matrix ~(x ,  t). The result can be expressed 
as 

where 

and 

-iO~ ~ _ i A u v -  ~ ~a vA 

O1J _ OH + a~(t)i~Tfl-.ssZ + gq (t)i~737~FHZ + 8~q(t)~fft217~Os] 

Jr 8al(t)lff[2Iy3}'~@ Jl Jr a2(t)itff[~y~'~ ] + 82(t)lff[2i%'37~ l 

(3.6) 

(3.7) 

pa = bi(t)pa + ~l(t)pa + b2(t)iF~a~7,Za + "~2(t)iF]S~737~Z;~ (3.8) 
with the coefficient functions: 

2t 2 
ax(t) = (1 - t2) 2' 

16t2(1 + 6t 2 + t 4) 
a2(t) 

( 1  - t2) 4" ' 

l + t  2 
bl( t )= 1 - - t  2' 

+ 6t 2 + t4), 
b2(t ) --- 2t(1(1 _ t2) 3 

The integrability condition 

t(1 + t  2) 
a~(t)=(t _t2)~, 

t3(1 + t  2) 
~2(t)= --64 (t --t2) 2'  

2t 
b l ( t ) -  l _ t 2 ,  

.t2(1 + t  2) 
b2(t) = ~ ( i  T_~j~ " (3.9) 

2~9t,(~/?-l~?p]~>) + [ ~ - 1 0 j >  ' ~ - 1 0 p ~ ]  = 0 (3.10) 

is then satisfied if and only if the equations of motion (2.12), (2.13), (2.15) and (2.20) 
hold. This can be verified by means of a somewhat tedious calculation where 
relations such as (3.5) play an important r61e. (The part of this calculation that 
involves the physical fields was already explained in [5].) The crucial point here 
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is that terms with different t-dependence must separately cancel. To give the reader 
a flavour of how this calculation goes, let us consider the tP2O2-terms in (3.7). 
Acting on these with D, 3 and antisymmetrizing in the space-time indices, we get 

Dt,( ia2( t ) ~t~y ¢lOJz I + i~z( t )~k tgy3y pj~bsz~) 

= ½ie~( -- ~ ( p  - 2a2(t)) + ~a(P - 2gt2(t)))P2~37~ffls21 

+ ie,~p - 1 ( _  ia2(t)~b[~/3D(P0121 ) _ igt2(t)~D(p~b~l)). (3.11) 

The first term in parentheses vanishes by (3.5) and the second is proportional to 
the equation of motion (2.20). Since there are no other terms of this type, this 
contribution vanishes altogether if the equations of motion are satisfied. One can 
also easily verify that the linear system of [5] is recovered if one sets ~ = 0 in 
(3.7) and (3.8) since these expressions contain neither )~0 nor ~ terms. We have 
not completely analysed the higher order fermionic terms, but we are confident 
that these will work out. For example, the consistency of the 0~Z) 2 terms has already 
been checked in [-5]. 

As one can see, the inclusion of unphysical fields leads to poles of yet higher 
order at t = + 1. Equations (2.12)-(2.15) are still invariant under the superconformal 
transformations (2.27) and (2.28), and one therefore anticipates a similar invariance 
for the linear system (3.6). In fact, local N = 16 supersymmetry can be bosonized 
in such a way that the transformations (.2.27) and (2.28) can be expressed as a single 
Kac-Moody  variation of the matrix V.  We find 

~ -  ~6~/~ = ½SU(t )X w + SA(t)Y a (3.12) 

with 

S Is = _ 8~l(t)g[l~t + 8a1(t)g[~73~J2 ], 

s A = b l ( t ) r ~  e ' z  ~ - ~ ~ ( t ) r ~  e'~ 32~. (3.13) 
To prove the equivalence of (3.12) and (3.13) with (2.27)-(2.29) is again rather 
laborious. Starting form 

6(¢ >- lt?~t~) = a~(~- l&/~) + [ ~ -  l a ~ ,  ~ -  ~6"~] (3.14) 

one evaluates the left- and right-hand sides in different ways. Namely, on the 
left-hand side one substitutes (3.6) and performs the variations directly on the 
original fields using the relevant supersymmetry transformations (2.27)-(2.29). On 
the other hand, the right-hand side can be evaluated by means of the expression 
(3.12) for ~/?-16"¢? in conjunction with (3.13). To compare the results one has to 
make repeated use of the equations of motion (2.12)-(2.15) (this is because the 
linear system is, by definition, on-shell). We again demonstrate this calculation 
with an example. On the left-hand side of (3.14) we vary the )~z-terms in (3.7). 
Ignoring higher order fermionic terms, this leads to: 

5(ial(t)ZT~Fxs)~ + igtl(t)Z737~FlsZ) = (FXSF~)~B(--at(t)(~AeKP~ + ~73e~f f~)  (3.t5) 
- ~t tt~t~A ,3~KpB + ~AeKffB~" ~ 

1 ~. I~ ,L  g ct Z. c~11" 

3 The SO(16) covariantization is automatically produced by the commutator in (3.10) 
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To this we must add (still on the left side) 

~QiS 1 trrrls~. ~r,Aon (3.16) 
- -  ~ , . t  x l A B  c, ~ a ~ .  

The sum must now be compared with the corresponding terms from the right-hand 
side in (3.14) obtained by substitution of (3.12). One contribution comes from the 
commutator in (3.14), and is 

1 I ' K I - ' I J  2 - K  A B - -2  - K  3 f t ' B  " " -3 (  )Ae(bt(t)e Z f~ - bl(t)e 7 Z P~ + bl(t)bl(t)(-gry3)(ApB _[_ JC, ZA~B)). 
(3.17) 

Combining this with the foregoing terms on the left-hand side, and using (3.9), we 
are left with 

4F~i( - al(t)gJlVPy~xAP~ + 81(t)gSly3VayJ~APg). (3.18) 

This term must now be further compared with the gD~O2-terms obtained upon 
substituting S~S(t) from (3.12) into 8,(~-lfi~>) in (3.14). The resulting expressions 
are then found to agree with (3.18) by virtue of (2.14). Note that the v-trace part, 
(2.20), of (2.14) is not sufficient to establish this equivalence. The other variations 
are dealt with similarly. There are two further pecullirities that should be 
emphasized. First, condition (2.26) for the superconformal parameter e x is needed. 
Secondly, full agreement is obtained only if one varies the spectral parameter 
according to 

2t _~ ~ 1 + t 2 x 3 I 
t -  lt~t = ~ e  ~//2 -- ~ g  V ~2- (3.19) 

To establish (3.19) one inserts the expression (2.27) for p-~6p into the defining 
equation, (3.12), for the x-dependent spectral parameter, t, and then solves for &. 
It may seem strange at first sight that the spectral parameter t varies under local 
supersymmetry, but this is simply a consequence of the fact that p, on which t 
depends, is not inert under supersymmetry. Again, we have not considered higher 
order fermionic terms. 

In cases previously studied, the linear system was invariant under a trans- 
formation generalizing the usual symmetric space automorphism of the finite- 
dimensional, underlying Lie-algebra. This remains true for (3.6)-(3.8), which are 
invariant under the map 

z°~ :~/~(x, t)-o(~f~r)- ~( x,1),  (3.20) 

sending the generators X to X and Y to - Y, and exchanging t with 1/t. Similarly, 
~ - 3 6 ~ "  is invariant with respect to (3.20). Thus both ~ - 1 8 ~  and ~/?-1~5~ 
belong to the z®-invariant subalgebra of E 9. This subalgebra we call SO(16) ~. 
Consequently, one can interpret (3.14) as an SO(16) ~° gauge transformation with 
gauge parameter ~ - ~ M  ?. In this way local N = 16 supersymmetry has become 
part of E 9. 

The reader may have noticed that there are two equations of motion that are 
not given by the integrability conditions of the linear system. These equations 
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correspond to the variation of the dimensionally reduced action with respect to 
~7,v and the 7-traceless part, ~,, of the gravitino, ~ ;  that is (2.18) and the 7-traceless 
part of (2.14). To derive these equations from the linear system, one possibility is 
that one may have to make a further extension of the system by including ~,  and 
0~,~. Alternatively, Breitenlohner and Maison have proposed (for the purely bosonic 
a-model) to include 2 by considering pairs (~ ,  2) with multiplication rule [4] 

(~/%1, 21)° ( ~ 2 , 2 2 )  = ( ' ~ 1 ~ 2 ,  21/~2 exp ~(~/~ ~, "/72)), (3.21) 

where O(V~,  ~2)  is a group two-cocycle. This cocycle is only determined up to 
a coboundary which can be absorbed into a multiplicative redefinition of 2. The 
generalization (3.21) correctly implements the central extension of the K a c - M o o d y  
algebra at the level of the K a c - M o o d y  group. Thus, the central extension of E 9 
is directly associated with 2. From (3.21) and the general properties of group 
two-cocycles (see, for example, the appendix of [4]), one derives that 

( ¢ ,  ~)- *o O~(;P, )3 = ( ~  -~ ~ > ,  ,%- t O~2 - 12'(¢, ¢ -  ~ ~ ¢ ) ) ,  (3.22) 

where £2' is the mixed cocycle [4]. Postulating z ~ invariance of (3:22) one concludes 
that the central term in (3.22) must vanish (because z ~  = - ~ ) ,  and therefore [4] 4 

2-  ~Q~,% = I2'(~?, ~/7- ~ ~3j7). (3.23) 

For the bosonic a-model, one can show that (3.23) is indeed a consequence of 
(2.18) with T~¢ replaced by the purely bosonic energy-momentum tensor. We have 
so far not been able to perform a similar check for the model considered here, 
where T,a has the extra fermion terms given in (2.19), mainly because it appears 
quite difficult to generate terms such as ~7+D+L Nevertheless, the invariance 
argument leading to (3.23) is the same, and we suspect that (3.23) is also true here. 
Moreover, it seems that when one fully supersymmetrizes this central extension one 
might well obtain the 7-traceless part of (2.14). 

4. Truncations 

Having obtained a locally supersymmetric integrable system based on E8{8)/S0(16) 
it is certainly an interesting question as to how many more such systems there are, 
based on some coset G/H. A fairly natural generalization, and almost certainly 
not the only one, is to take H to be essentially on orthogonal group and to 
extend it to G via a spinor representation. This leads one to consider, for 
example, E7/S0(12)x SU(2), E6/SO(IO ) x U(1), F4/Spin(9), S0(8,1)/S0(8), and 
SU(4, 1)/S(U(4) x U(1)). These can all be obtained by elementary truncation of the 
E8/S0(16 ) model (some of these possibilities were already suggested in [3]). 

Consider G = E7 and H = SO(12) x SU(2). One has SO(12) x SU(2) x SU(2)~  
E 7 × SU(2)~Es, and SO(12) x SU(2) x SU(2)= SO(12) x SO(4)~ SO(16). Thus the 

4 This simple formula can be solved explicitly. One has 2 = exp ½g2(~ 7", z~/?-  1) because 0~(~ 7", z ~  > -1)= 
-- 292'(~,~Y~-~ ~ ) if z~(~/?-1~/?) = • 1 0 ~  [4] 
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SO(16) spinors decompose according to 

128 ~(32, 2, 1)@ (32', 1,2), 
, , (4.1) 

128 (32,2, 1) G)(32, 1,2). 

Let a and ti denote indices transforming in the 32 and 32' representation of SO(12), 
and let #1, vl, .- ,  and #2, v2 . . . .  denote doublet indices of the two respective copies 
of SU(2). To pass to E7 we will truncate away the second copy. The spinors, i f ,  
and the bosons Pff decompose according to 

ZA = (Zaul, flu2), pac~ ---- t - -  P a # l  , --~P~"2~J, (4.2) 

and we set p~u2 = 0, )~,,2 - 0. 
One also restricts ~b t, 0~ and QtS to be singlets under the second SU(2). This 

means that ~ = ~bI= 0 for I = 13 . . . .  ,16, and Q~J= 0 unless I , J  = 1,2,. . . ,  12 or 
I, J = 13,...,  16 and the skew index pair [IJ] is self-dual with respect to the SO(4) 
e-tensor. It is elementary to verify that the result is not only consistent with the 
field equations (2.12)-(2.16), but also with the supersymmetry transformations (2.27) 
and (2.28) provided that e t = 0 for 1 = 13,..., 16. This therefore defines an N = 12 
theory. The results of Sect. 3 can similarly be truncated to obtain an equivalent 
linear system in terms of/~7. The supersymmetry transformations can also be 
realized by the truncated version of (3.12). 

To obtain the E6/SO(IO)x U(1) model one observes that S0(10)x U(1)x 
SU(3)---~ E 6 × SU(3)--+ E 8 and SO(10) x U(1) x SU(3)~SO(IO) x S0(6)~S0(16),  
and then one merely truncates to the SU(3) singlets to obtain an N = 10 model. 
Similarly, F 4 x G 2 ~ E s and Spin (9) x G2 -o Spin (9) x Spin (7) -o Spin (16). Thus, 
truncation to G2 singlets leads to an N = 9 model based on F4/Spin(9). By 
considering a triality rotated embedding of Spin (7) into Spin (8) such that the 
vector of SO(8) is the spinor of Spin (7), and then embedding this in SO(16) and 
hence in Es, one can obtain an N = 8 model based on S0(8, 1)/S0(8) by truncating 
to the Spin (7) singlets. This last model corresponds to the dimensional reduction 
to two dimensions of the lowest member of the N = 8, SO(8, n)/SO(8) x so(n) models 
constructed in three dimensions in [7]. It seems highly likely that the dimensional 
reduction of the entire series will correspond to integrable systems. Presumably a 
similar series of models may be obtained from SU(4, n)/S(U(4) x U(n)). 

One can, of course, continue this series of truncations, or truncate in a different 
manner to obtain yet more models. It would be interesting to know the complete 
list of such integrable, locally supersymmetric theories. 

5. Outlook: A New Hierarchy? 

The N = 16, two dimensional supergravity theory can be considered as a non-linear 
coset-space a-model with some rather unusual features, some of which have been 
exhibited in the foregoing sections. Unlike a-models in higher dimensions, the 
two dimensional theory involves infinite dimensional groups whose r61e and 
significance are as yet not completely understood. In the case at hand, the basic 
object in the theory is an E 9 matrix ~(x ,  t) that bosonizes the theory and contains 
not only the information about the physical degrees of freedom, but also unphysical 
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ones such as the gravitino components ~i and ~ .  This matrix is highly constrained 
by Eqs. (3.6)-(3.9) which put the theory on the mass shell. In the triangular gauge 
(see [3-5]), ~ (x ,  t) is analytic as a function of t in a neighborhood of t = 0, or 

~ (x, t) = exp ( ,~o t" 4),(x) ).  (5.1) 

In this gauge there is a non-linear, and non-local, action of E 9 given by 

~/?(x, t) ~ g -  1 (w)'I2"(x, Oh(x, t). (5.2) 

Here, g(w) is an arbitrary rigid Eg-matrix where w is the integration constant 
appearing in the solution t = t(x, w) of (3.2) (clearly, g must depend on w rather 
than t if it is to be x-independent); h(x, t) is the SO(16y ° transformation needed to 
restore the triangular gauge (5.1). We can now see that E 9 acts as a group of 
B/icklund transformations. Namely, the integrability condition (3.10) states that 
the SO(16y ° gauge-field 

d=  - ¢ - 1 0 ,  ¢- (5.3) 

has vanishing field-strength: 

~ a  = 8~da - gad~ + [s¢~, d a ]  = 0. (5.4) 

From (5.2), it follows that ~ a  is invariant under g(w) and transforms covariantly 
with h(x, t). Therefore, the mass-shell condition (5.4) is preserved under (5.2), 
and thus the transformation (5.2) shifts ~ along the manifold of solutions. 
Unfortunately, the action of E 9 o n  the original fields of the theory is rather implicit 
and cannot be used to explicitly solve it in its present form. Another difficulty is 
also apparent from the fact that d ~  is not just constrained to be an element of 
SO(16) ~ but is further constrained to have the particular t-dependence prescribed 
by (3.6)-(3.9). Inserting (5.1) into (3.6)-(3.9) and comparing terms of ascending 
order in t, one sees that the fields ~b, are all related by duality to the (finitely many) 
physical fields which must in addition satisfy their respective equations of motion. 
If it were not for these extra constraints we could simply solve (5.4) by putting 

~(x ,  t) = 9 -  l(w( t, x))h(x, t), (5.5) 

where h(x, t) brings the E9-matrix g-  1(w) into the triangular gauge. The nontrivial 
x-dependence of ~ is generated by the requirement that it be triangular with 
respect to t = t(x, w) rather than w; hence we write g(w) = g(w(t, x)). One can also 
easily determine the monodromy matrix associated with the foregoing "solution"; 
it reads 

Jd (w) = ~t~ ~° ~ -  1 = g-  l (w)rg(w), (5.6) 

where ~ is the finite dimensional automorphism corresponding to r ~, and we can 
replace r ~ by • because w is invariant under t ~  1/t as one can see from (3.2). It 
is interesting to observe that if t = w = const (or equivalently p = const) one can 
choose h in (5.5) to be independent of x, and thus ~ is a constant matrix. This is 
consistent with our earlier observation that p = const, leads to a trivial solution. 
We emphasize the hidden dependence of ~/? on the field p = p(x) which, apart from 
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satisfying (2.17), can be chosen arbitrarily. For  c3~p ¢ O, p can be transformed to 
coincide with one of the coordinates by the action of the conformal group; this 
was the "gauge" used in [4] and [5]. In the present formulation no such gauge 
has been chosen, and thus there is still an action of the conformal group on ~t > in 
addition to Eg. 

For  "¢? of the form (5.5), d ~  will no general have a more general t-dependence 
than (3.6)-(3.9). It is therefore an obvious and important question as to whether 
one can weaken the conditions (3.6)-(3.9), and perhaps even linearize the action 
of E 9. One might be able to accomplish one or both of these goals through the 
introduction of infinitely many gauge degrees of freedom, and then characterize 
the non-linear sub-manifold of solutions as some kind of gauge slice. We believe 
that the results of this paper constitute a first, and rather suggestive step in this 
direction. By adding the gravitino degrees of freedom and thereby enlarging the 
linear system given in [5] we were able to slightly relax the constraint on ~U- 1 ~ 
in that the t-dependence of (3.6)-(3.9) is more general than that of the original 
linear system. To compensate for the unphysical degrees of freedom, we had to 
invoke local N = 16 supersymmetry whose "bosonized" version is the special 
S0(16) ~° gauge transformation with parameter ~-16"~7~ given by (3.12). This 
suggests that there may be yet further extensions of this system with yet more 
general t-dependence. In terms of the original fields, we are looking for an extension 
of the N = 16 supergravity with infinitely many "gravitinos" and possibly other 
gauge fields. 

One method of extending the linear system is suggested by exchanging the 
familiar spectral parameter, t, for a new variable, 0, defined by: 

1 -~ t 2 2t 
c - cosh 0 -= 1 - t 2 ; s -= sinh 0 - 1 - t 2" (5.7) 

The inversion t ~ t / t  then becomes 0 ~ 0 + ire or s ~ - s, c ~ - c, and the functions 
in (3.9) reduce to 

al = i s 2 ,  al = ½CS, a 2 = -- 4s2(2s 2 + 1), a 2  = - -  8CS3' 

bl = c, bl = s, b 2 = s(2s 2 -k- 1), b2 = 2csZ. (5.8) 

The expansion of ~ - 1 0 ~ >  given by (3.6)-(3.9) therefore represents the first few 
terms of a z~-invariant Fourier series in these hyperbolic functions. One can 
obviously extend the linear system by adding in all the terms of a v~°-invariant 

A Fourier series to (3.6)1(3.9) with an infinite set of fields P(,), and an infinite set of 
fermion bilinears in A )~,), ~z~,) and ~,~, and perhaps even other fields as Fourier 
coefficients. The resulting linear system for ~U and its integrability conditions will 
almost certainly yield an infinite hierarchy that extends (2.12)-(2.15). Preliminary 
calculations suggest that the fields Z{,) should ha~/e p-weight n + ½, while P(~) 
should have p-weight n + 1, ~[,) weight n, and O~c,) weight n + 1. By this we mean 
that the field equations of a field of weight m involve a "connection" rap- ~ O,p. 
For  example, the fields in (2.12)-(2.15) have the weights assigned above, with n = 0. 
One of the pieces of evidence for this conjecture is that the coefficient functions in 
(3.9) can be largely determined by the differential identities that they are required 
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to satisfy. I f  one is to get higher order  terms in the Four ier  series one mus t  generate  
higher identities. One  such identi ty is 

. [- ~/" 2t \a a - l -  / "  2t \a-I 

for any real n u m b e r  a, f rom which one sees an obvious  correlat ion between the 
p-weight  and  higher powers  of cosh 0 and  sinh 0. This extension has the advantage  
that,  apa r t  f rom the fact that  h(x, t) must  be chosen to ensure that  ~ ( x ,  t) in (5.5) 
is in t r iangular  gauge, there are no further constraints  on g(w) and h(x, t). Thus  an 
a rb i t ra ry  E 9 matr ix  yields a solut ion of this system. I f  one could then show that  
all solutions were of the form (5.5), this would show tha t  the group  E 9 acts 
transitively, tha t  is, there is a solut ion cor responding  to every element of  E 9, and 
all such solutions can be "reached" f rom the trivial one ~/? = 1 by an E 9 
t ransformat ion.  

P resumably  the super symmet ry  (3.12)-(3.13) will extend to an even larger 
symmet ry  on this hierarchy. Moreover ,  the SO(16) ~ gauge symmet ry  will also act  
on the system. These two symmetr ies  will be closely interrelated, but  it is by no 
means  clear how m u c h  of the infinite hierarchy could be gauged away. One  might  
also hope  that  the presence of the extra  fields would restore local SO(16) ~° 
invariance,  and  thus enable  one to explicitly linearize the E 9 symmet ry  of the 
theory. This might  arise through some infinite dimensional  analogue of the more  
familiar  finite d imensional  s i tuat ion with coset o--models. If there were an infinite 
tower  of new physical  degrees of f reedom in the hierarchy it would be rather  
suggestive of  some intrinsically three-dimensional  structure, of which N = 16 
supergravi ty  would just  be a two-dimensional  slice. We  suspect that  this new 
structure would  be very different f rom the original three-dimensional  supergravi ty  
of  [7]. 

We believe that  our  results have also somewhat  clarified the significance of E 9 
in the two-dimensional  N = 16 supergravi ty  theory. Amongs t  the impor tan t  open 
problems,  besides finding the hierarchy, are the full quant iza t ion of the theory and 
the possible extension of E9 to Elo (such an  extension was first conjectured in [3]). 
Fo r  further speculat ions in this direction see [5]. 
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