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A vectorized code for calculating the topological charge of an W(2) lattice gauge field is presented. The program is based 
on the combinatoric algorithm of Phillips and Stone. The present version works for hypercubic lattices with the gauge field 
stored according to the three-dimensional checkerboard scheme. Other storage schemes and simplicial lattices can be 
accommodated with minor modifications. 

PROGRAM SUMMARY 

Title of program: QUBIC 

Catalogue number: ABHQ 

Program obtainable from: CPC Program Library, Queen’s 
University of Belfast, N. Ireland (see application form in this 
issue) 

Computer: Cray X-MP/48; Installation: Hiichstleistungs- 
rechenzentrum HLRZ, c/o KFA, Postfach 1913, D-5170 
Jtilich, Fed. Rep. Germany 

Operating system: COS 1.16 

Programming language used: FORTRAN 71 

High speed storage required: size dependent; for a NS’NT 
lattice the largest COMMON block occupies 16 * NS3 * 4 * 27 
words 

’ Present address: Theoretical Physics Group, Fermilab, P.O. 
Box 500, Batavia, IL 60510, USA. 

* Present address: Instituut voor Theoretische Fysica, Valcke- 
nierstraat 65, NL-1018 XE Amsterdam, The Netherlands. 

3 Present address: Deutsche Bundeswehr, Flensburg, Fed. 
Rep. Germany. 

4 Present address: Gruppe Theorie der Elementarteilchen, 
Htihstleistungsrechenzentrum HLRZ, c/o KFA, Postfach 
1913, D-5170 Jttlich, Fed. Rep. Germany. 

Number of bits in a word: 64 

Number of lines in combined program and test deck: 1232 

Keywords: lattice gauge theory, topology, instantons; fiber 
bundles, characteristic classes, second Chern number: vector 
processor 

Nature of the physical problem 

Four-dimensional SU(N) gauge fields are characterized by a 
topological charge [l], known as the second Chem number to 
mathematicians. This feature, not shared by Abelian gauge 
fields, is conjectured to be significant for the peculiar proper- 
ties of quantized non-Abelian gauge theories. For example, the 
topology of the gauge field is known to be relevant to the 
resolution of the “U,(l) problem” [2], and the role of topology 
in the confinement mechanism needs clarification. 

Method of solution 

The problem of non-Abelian gauge fields is nonperturbative, 
and the most successful approach has been numerical simula- 
tions of the corresponding lattice gauge theory. For lattice 
gauge fields the topological charge can be obtained by 
reconstructing the underlying topological object, the coordi- 
nate bundle, from the lattice gauge field (31. In the case of 
SU(2), the algorithm of Phillips and Stone reduces the 
computation of the topological charge to combinatorics [4]. 
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The present program uses this algorithm to compute the 

topological charge of a NS3 xNT hypercubic lattice [S]; it is 

designed to be appended to the potential user’s existing 

simulation programs. The test code sets up a configuration 

with Q = 1, to assist the user in installation. 

the Cray X-MP/48 to determine the topological charge of a 

lo4 lattice. Despite considerable INTEGER arithmetic and 

several BLOCK-IF’s, QUBIC attains a performance of 47 

Mflops. 

References 

Restrictions on the program 

(a) The lattice size parameters NS and NT must be even. 

(b) The lattice must have periodic boundary conditions. 

(c) The user must provide program(s) to generate a sequence 

of SU(2) lattice gauge fields; QUBIC then determines the 

topological charge. 
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Typical running time 

Compiled with the CFT compiler QUBIC needs 9.14 CPU-s on 
151 

LONG WRITE-UP 

1. Introduction 

Most modern theories of particle physics incor- 
porate non-Abelian gauge fields in one way or 
another. Several models are patterned in some 
way after quantum chromodynamics (QCD), the 
leading candidate theory of the strong interac- 
tions. In these models nonperturbative aspects 
play a dominant role: for example, the quanta of 
the fundamental fields ought to be confined, and 
the physical particles are analogous to mesons and 
baryons. Confinement is inaccessible to perturba- 
tion theory, which is more or less similar to Abelian 
theories (like QED). 

The most successful and systematic nonper- 
turbative approach to field theory is the formu- 
lation on a spacetime lattice [l]. A special ad- 
vantage of this framework is that it is amenable to 
numerical simulations [2]. However, the complex- 
ity of the models makes it imperative that efficient 
codes for supercomputers be developed. This paper 
describes a program - QUBIC - that measures 
the topological charge of lattice gauge fields with 
gauge group SU(2). The program is designed to be 
attached to users’ other simulation programs of 
SU(2) lattice gauge theories; in conjunction with 
nontrivial methods to be described elsewhere, the 
program can be used for SU(3), the gauge group 
of QCD, and other SU( N). Although we have run 
primarily on a Cray X-MP, the code is standard 
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FORTRAN 77, and hence portable. We have suc- 
cessfully run the test package on a Fujitsu VP100 
and an IBM 3084. The present version and its 
predecessors have been used successfully in 
numerical simulations [ 3,4]. 

The structure of the program description is as 
follows. Sections 2 and 3 summarize some of the 
physical and mathematical background needed to 
appreciate the program. The specific algorithm 
employed is due to Phillips and Stone, and section 
4 summarizes their ref. [5]. As it stands this al- 
gorithm applies to simplicial lattices; section 5 
shows how to obtain a simplicial lattice from a 
hypercubic one. QUBIC is explained thoroughly 
in section 6; in particular, many technical details 
that were left out in section 4 appear here, so that 
the user can compare the theory to the code. 
Section 7 contains the results of test runs on two 
vector processors. The test package comes with 
subroutines to create a Q = 1 lattice gauge field; 
the construction is described in the appendix. 
Reasonable questions from users may be addre- 
ssed to one of us (A.S.K.) by computer mail: 
ASK@FNAL.BITNET. 

2. Topology of non-Abelian gauge fields 

This and the following section are very brief. 
For a more thorough discussion, see ref. [6]. 
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2.1. Instantons, tunnel@ and the &vacuum 

Non-Abelian gauge fields are described by a 
gauge potential A, taking values in a Lie algebra. 
The associated field strength FPy is given by 

FPy = a,&# - a,A, + [A,, 41 f (2.1) 

The dynamics are dictated by the Yang-Mills 
action 

S = &ld4x Tr{ &F,,}, (2.2) 

with the trace taken in the fundamental represen- 
tation. Here we restrict the discussion to g u (N) 
and the corresponding real, compact Lie group 
SU( N). 

One feature that distinguishes SU(N) gauge 
theory from QED is the existence of the topologi- 
cal charge 

Q = - &/d4x Tr{ Fpy*Fpy}, 
(2.3) 

Within each charge section the inequality, 

/d4X Tr(( c,, + *&)*I 2 0, (2.4) 

implies that the action is bounded below by 

S2 ]Q18T2/g2. (2.5) 

The inequality is saturated by solutions of the 
(Euclidean) equations of motion, called instan- 
tons. These are self-dual or anti-self-dual [7], FPy 

= + *FPy. For example, the one instanton solu- 
tion has a gauge potential 

A,= 
r* 

Pg;laPg,, 
r*+ p* 

(2.6) 

where the size p of the instanton is an arbitrary 
scale, and 

g, = (x,+ia*x)/r, r’=xz+x*. (2.7) 

Note that the map g, cannot be reached by con- 
tinuous deformations from the trivial map g, = 1. 

Now consider the classical vacuum state 10) 
characterized by A, = 0 (modulo gauge transfor- 
mations). Gauss’ law requires that IO) be in- 
variant under infinitesimal gauge transformations, 
but it says nothing about homotopically nontrivial 
transformations such as g,. Hence, there is an 
infinite sequence of classical vacua 

In>=VlO), (2.8) 

where TI is the unitary operator implementing the 
gauge transformation g,, and n is any integer. 
Due to tunnelling caused by the instantons, the 
quantum vacuum is described by a superposition 
of the 1 n), and since T, commutes with the Ham- 
iltonian, one finds [8] 

10) = Ce-isnln). 
n 

(2.9) 

The vacuum parameter 8 is a new and unexpected 
feature of QCD. If it is nonzero, the path integral 
is modified by the substitution S -+ S + it9Q. To 
understand the &vacuum one needs a nonper- 
turbative method to compute Q; for recent prog- 
ress in this area, see ref. [9]. 

2.2. The U,(l) problem and the Witten-Veneziano 
formula 

Topologically nontrivial gauge fields become 
relevant to physics through the resolution of the 
U,(l) problem [lo], which revolves around the 
flavor-singlet axial, i.e. U,(l), current: 

(2.10) 

On the one hand, the symmetry generated by J: 
ought to be spontaneously broken, like the flavor- 
nonsinglet symmetry SU( Nr) *. On the other 
hand, there is no meson in nature which can be 
interpreted as the associated Goldstone boson - 
the candidate 9’ (for N, = 3) is much too massive. 
The first crucial step towards the resolution of the 
U,(l) problem is the chiral anomaly [ll]. In the 

* N, is the number of “light” flavors. 
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quantum theory, JP5 is no longer conserved, but 
rather 

a,J,‘= -2N,q, q = - $+{F,,‘F,“). 
71 

(2.11) 

The topological charge density appears on the 
right-hand-side of the (non)conservation law! 
Consequently, the anomaly explicitly breaks the 
U,(l) symmetry [12], Goldstone’s theorem does 
not apply to JP5, and the n’ can assume the role of 
a run-of-the-mill meson. 

The importance of topologically nontrivial fields 
is made more quantitative by the Witten-Vene- 
ziano formula [13,14]. In a certain large N limit, 
they find 

Xp”c.‘h=L$(,:,+,;-2&), (2.12) 

where the topological susceptibility is given by 

/ 
(Q'> xt= d4x(q(xhd0)) = 7' 

(2.13) 

v = 
J 

d4x = volume of spacetime, 

and the superscript “quenched” indicates that the 
susceptibility to be inserted into eq. (2.12) is that 
of the pure gauge theory. Using the real world 
(N = 3) masses and decay constant f, in eq. (2.12) 
yields xt quenched = (180 MeV)4. This number should 

not be taken too seriously, because it is not clear 

how large various corrections might be. 

3. Fiber bundles 

3.1. Other expressions for the topological charge 

For computations of the topological charge the 
expression in eq. (2.3) is not especially useful. In 
particular, the implication that Q depends on 
local properties of the field strength FPy is illusory. 
In fact, the integrand of eq. (2.3) is apparently a 
total divergence: q = -(1/161~~) Tr{ F,,*F,,} = 
a,s2,, where 

fi,= _-L 8T2 eSvpo Tr{ &( a,& + %$A,)} f (3.1) 

and the gauge potential is assumed to be in some 

smooth gauge. However, the Chern-Simons form 
Sz,, can develop singularities, leading to a nonzero 
topological charge. The situation is similar to a 
closed surface with nonzero extrinsic curvature, 
for which there is no smooth choice of coordinates 
without singularities. Similarly, there is no smooth 
choice of gauge without singularities for a non- 
Abelian gauge field with nonzero topological 
charge. 

These problems of curvature are best handled 
by the formalism of fiber bundles. See ref. [16] for 
a review oriented towards physicists. In this for- 
malism one considers the spacetime volume to be 
a union of cells 

M=P= ucLI; (3.2) 
a 

the 4-torus is convenient because of the eventual 
lattice simulations, but in the following all we 
require is aM = 0. In each cell c, one can pick a 
smooth gauge potential A:‘. On the overlaps caP 
= c, n cD the gauge potentials are related by 

A’*’ = 0 
P aLJ ($+@‘)r+,, uap=u;J. (3.3) 

The group-valued transition functions uap con- 
stitute the coordinate bundle. On double overlaps 
C 

47 
=~,nc,nc,, they must obey the cocycle 

condition: 

u my = uolpr&. (3.4) 

All of the information needed to determine the 
topological charge is encoded in the transition 
functions. This is shown by breaking the integral 
over M into a sum of integrals over the cells. Then 
eq. (3.1) can be applied and integration by parts is 
possible, because the Chern-Simons term fir) is 
nonsingular in c,, by hypothesis. On caP one then 
forms the gauge variation ti:) - 52Lp), and after 
considerable rearrangement one finds [15,17] 

(3.5) 
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The expression for Q can be simplified even 
further in terms of the local section, which is a 
map g,: ac, -+ SU( N), obeying 

g&p’ = uCXp (3.6) 

on cap. In terms of the g, one finds 

Q= CQw 
a 

where 

Q,: _L/ 
241r’ ac, 

d3x, cpvpo Tr { b,‘“)@“)bi”)} , 

b’“’ = g,‘a,g,. 
I* (3.7) 

In eq. (3.7) the right-hand-side is an element of 
the homotopy group II,(SU(N)) = Z. 

3.2. Efficient computation of the homotopy classes 

Of the various formulae for the topological 
charge, eq. (3.7) is the most efficient to implement 
numerically, because it reduces the problem to the 
computation of homotopy classes of maps defined 
locally. This provides hope that the homotopy 
classes can be determined combinatorically, al- 
though a practical algorithm exists only for SU(2). 
In contrast, eq. (3.5) yields an integer after the 
sum over all cells, and the fractional contributions 
must be determined by sufficiently precise 
numerical integrations. Alternatively, the expres- 
sion in eq. (3.5) can be reduced to local integers 
[18], but this involves explicit searching for singu- 
larities, which is also slower than a combinatoric 
method. 

For the group SU(2) the homotopy group of 
interest is II,(S3), because of the isomorphism 
SU(2) = S3. In this case, as for all II,( the 
homotopy class is given by the winding number, 

the number of times the map wraps around the 
sphere S”. The winding number can be computed 
as follows. Pick an arbitrary “probe” y E SU(2), 
and let x denote points on ac, such that g,(x) = y. 
Then the winding number is given by 

Q,=xsign z ; 
x /I I I/ x 

(3.8) 

the summand is the orientation of the map g,(x) 
relative to ac,. The result is independent of the 
probe y, because each point of the target space is 
covered equally often (counting algebraically). 

The meaning of eq. (3.8) is best explained in an 
R4 notation. An element of SU(2) can be repre- 
sented by a unit 4-vector, u = u4 + ia l u, u* + uz 
= 1, and, since XE acuc c,c R4, x and 5 are 
automatically four-vectors. Then 

II II 

Jacobian determinant 
s = for the variable 
ax transformation x * g,. 

(3.9) 

In the description of the program, we will gener- 
ally speak of SU(2)-elements in the R4 and S3 
language, because the geometry is simplest in this 
language *. For example, I] ag,/ax ]I is positive if 
the four-vectors g,(x) and x have the same 
handedness, and negative otherwise. 

3.3. Topology of lattice gauge fields 

At first sight, the title of this subsection seems 
to be a contradiction in terms. The configuration 
space of lattice gauge theory is the product space 

GxGx...xG . 

one factor for each link 

(3.10) 

Since this is a discrete space, the natural topology 
is trivial. However, the natural topology is not the 
correct topology, if one wants to construct the 
continuum quantum field theory from the lattice 
theory. A correct topology for lattice gauge theory 
is one which reproduces the continuum topology 
for sufficiently smooth lattice gauge fields. Liischer 
realized [15] that this is best achieved by recon- 
structing the coordinate bundle from the data of 
the lattice gauge field. In other words, one pre- 
scribes a set of transition functions, defined in 
terms of the link matrices. Equivalently, one can 
prescribe a set of local sections. 

* The major exception will be when we refer to matrix multi- 
plication, which is clearest in the matrix language. 
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4. Phillips and Stone algorithm 

The algorithm that most elegantly embodies the 
above concepts is due to Phillips and Stone [5]. 
For SU(2) it is very fast. The essential feature is 
that the section maps certain polyhedra D c ac, 
into SU(N) polyhedra. Let D have vertices x, 
and its image g,(D) c S3 have vertices y, = g,(xi). 
For SU(2) the whole procedure can be embedded 
into R4, as discussed in section 3.2. Then the 
question “3x: g,(x) = y?” can be answered by 
relatively straightforward geometry. x need not be 
determined explicitly, because the relative orien- 
tation of g,(x) to ac, is dictated by the relative 
orientation of the y, to the x,, and by some 
macroscopic features of the y,. 

This remainder of this section leans heavily on 
ref. [5], although most aspects of mathematical 
rigor (existence, continuity, etc.) are left out. Many 
details that directly affect the computation are 
deferred to section 6, so that the algorithm and 
code can be compared. 

After introducing some notation, this section 
explains how Phillips and Stone construct transi- 
tion functions. Their algorithm is based on two 
principles: it is inductive in the spacetime dimen- 
sion, and the transition functions are chosen to be 
“as close as possible” to the lattice gauge field. 
The last subsection explains how to obtain the 
local sections from the transition functions. 

4.1. Notation 

The lattice A is composed of sites (Y, j3, y,. . . . 
The links of A form a complex of simplices u = 
(cup . . . ). The dimension of u is d if the number 
of sites between the angle brackets is d + 1. We 
will write 7 6 u if all of the vertices of r are also 
in a; clearly d, s d,. If r = u is to be precluded, 
then we write 7 4 u. For example, a four-dimen- 
sional lattice consists of 0-simplices (a) (the sites), 
1-simplices (c@) (the links), 2-simplices (@y ) 
(triangles), 3-simplices (@yS) (tetrahedra) and 
4-simplices (afly&). 

The algorithm requires a local ordering o of the 
vertices in each simplex. Thus, when we write 
u=(012... d), we imply that the vertices are 
o-ordered from left to right. For r + u the relative 

ordering in 7 must be the same as in u. Moreover, 
if r 4 u and r-~ p, then the ordering that r in- 
herits from u must be the same as that inherited 
from p. 

The cells of the discussion of section 3 will be 
the dual cells c,. The aim is to construct transition 
functions on the overlaps caP = c, n cp. For fur- 
ther intersections of simplices we write c+ .._ y = 
c,ncpn ... n cy . The algorithm works indepen- 
dently within each simplex u, so it is convenient 
to write cz = c, n u, etc. If 0 = (c@) then c’& is 
the midpoint of (cub), denoted by pap. 

Convenient coordinates for simplices are 
“barycentric coordinates”, t,, t,, . . . , t, for the 
d-dimensional simplex u = (012 . . . d). An arbi- 
trary point x is given by 

d 

x= Cx.t I 1) 

i=O 
(4.1) 

where x, denotes the position of site (Y, and the t, 
obey the constraint Citi = 1. In terms of these 
coordinates, the simplices and dual cells are given 

by 

u = (012.. . d)= {xlOst,sl,Vi}, 

c:= {x(0+, t, )... It,; (P),(y) )... <a; 

P, Y>... +a}, (4.2) 

c, = u,c:. 

Within cz the algorithm uses modified barycentric 

coordinates s,, = t*/t, E [0, l] for h f (Y and (X) < 
u. In these coordinates cz is a (hyper)cube. The 
face czp has sp = 1, in the modified barycentric 
coordinates of c,” *, and hence is a cube of one 
dimension lower. It turns out to be useful to 
divide && into two pieces: 

d-l 

&gd= u C&d= u {face with s, = l} (4.3) 
IX=1 d 

and 

a’& = &&\&& = U {face with S, = 0} . (4.4) 
(I 

* Since c& = c&, this face also has S, = 1, in the modified 
barycentric coordinates of cj. 
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The parallel transporter on link (a/?) will be 
denoted by uaB. On longer paths, parallel trans- 
porters are products of u,~, which will be abbrevi- 
ated by uaP ___ y = uaBuP* . . . uey. 

4.2. Transition functions vmp 

The algorithm is inductive. Let 7 -C u, and let 
d, (d,) be the dimension of simplex 7 (a). Then 

%&P)l, = %/3(C&>~ (4.5) 

where the right-(left-)hand-side is given by the d, 
(d,) dimensional version of the algorithm. Thus, 
we present the prescription of ref. [5] in increasing 
dimension. 

4.2.1. d= I 

At the midpoints of the link (c$) the transi- 
tion function is given by 

%p(P,p) = UCXP. (4.6) 

This corresponds to choosing the smooth gauge 
(x - x~)~A~) = 0, called “radial gauge”. 

4.2.2. d = 2 
Now the local ordering o plays a role. Set 

u = (012). When cr and /3 are o-adjacent, the 
transition function remains constant on cEg: 

u0i(s2) = uol and ui2(so) = u12. (4.7) 

The arguments of the vap refer to the modified 
barycentric coordinates. For uo2 there are two 
constraints, vo2(s1 = 0) = uo2 from eq. (4.6) and 

Uo2(% = I) = uo12 from eq. (4.7) and the cocycle 
condition eq. (3.4). Then on c& 

Uo*(%) = aol2(~1)~ (4.8) 

where goi is the geodesic from uo2 to uoi2: 

~012(~*) = ~02(~2012Y. (4.9) 

4.2.3. d= 3 

Set u = (0123). On the faces 7, = u\(i) the 
transition functions are already prescribed. For (Y 
and p o-adjacent, uaa remains constant on c$. 
On c& and CL (i.e. when one vertex is o-between 

(Y and /?) the interpolation is as in eq. (4.8): 

%p(S,, %> = BCX&V>~ (4.10) 

where y is the o-intervening vertex and S is the 
remaining vertex. 

On c& the interpolation must be two-dimen- 
sional, because vo3 is prescribed already at po3 
and on i3ic&. The interpolation follows by exploit- 
ing the natural conical structure of c& with po3 as 
apex and aic& as base. Let x E a%& Then the 
line segment G is mapped to the shortest geo- 
desic from uos(poJ) = uo3 to vo3(x) = voI(x) 
uY3(x), y = 1, 2. In particular, a”c& is mapped to 
the geodesics from uo3 to uo13 and to uoz3. The 
resulting map will be denoted 

Uo3(% s2) = bo123(%, s2>, (4.11) 

which, geometrically, is two geodesic triangles 
hinged at si = s2. 

4.2.4. d= 4 

Set u = (01234). Again, for (Y and /3 o-adja- 
cent, uaa remains constant on c$. Also, as for 
d = 3, if only y o-intervenes OL and p, then the 
algorithm prescribes geodesic interpolation in sy 
and is constant in ss and s,. If y and S are 
o-between (Y and p, then the two-dimensional 
interpolation described in section 4.2.3 is em- 

ployed, 

%p(S,, sg, SC> = boly&, %). (4.12) 

On c& the conical structure c& =po4 * a’& is 
once again employed. The cocycle condition im- 

plies that uo4(coO14) = ~~i(c&~)~i~(c&~) and 
vo4 ( c& ) = uo3 ( c& ) v34 ( c& ) are both composed 
of two geodesic triangles, whereas vo4(c&) = vo2 
( c~~~)v~~(c&,) is the product of two one-dimen- 
sional maps like eq. (4.8). As before, for x E a’& 
the line segment po4x is mapped to the shortest 
geodesic from u,,(p,,) = uo4 to vo4(x). Now the 
image 

vo3(c&) = fOi234(S1> s2> s3) (4.13) 

splits into four geodesic tetrahedra, and a pyramid 
with base vo4(c&). 

4.3. Local sections g, 

Let us point out a few properties of the Phillips 
and Stone transition functions that are relevant to 
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the construction of the local sections. On #c& the 
cocycle condition determines the transition func- 
tion in terms of transition functions which are 
already prescribed by interpolations introduced 
for lower dimensional lattices. Moreover, the use 
of the conical structure guarantees that also on 
a”cO Od only lower dimensional interpolations are 
required. Consequently, but not obviously, the 
section for the d-dimensional lattice A can be 
obtained from the d + l-dimensional lattice A. A 
is obtained from A by adding one new vertex x, 
which is a nearest-neighbor to all (Y E A. On the 
new links (ax) a new parallel transporter is de- 
fined u,~ = 1, Va. In the ordering of the vertices 
of a simplex, x is taken to be the last vertex. 

Let the transition function for A be denoted by 
V, and for (I = (@y&) c A write 2 = (c@ySzx) 
c A. From the inductive nature of the algorithm 

Kp = %PY if LY, /3 # x. Now consider the transition 
functions V at double overlaps of the form c$~. 
Note that c& in A has the same modified bary- 
centric coordinates as c& in A. By the cocycle 
condition 

u ap = c,v,p = v,#3J1~ 

which is precisely eq. (3.6). Hence, 

(4.14) 

g, = v ax (4.15) 

is a section for the bundle defined by the uaP for 
A. 

For d < 4 the maps V are given by the maps g, 
b and f described in section 4.2. These maps are 
continuous and (piecewise) differentiable, so that 
the resulting section g = V is defined on all of cz 
and not just on acz. This implies that the winding 
numbers are all zero: there are no nontrivial 
SU(N) bundles over spacetimes with d < 4. 

In four dimensions the maps V define a section 
on all of cz, unless (Y is the o-first vertex of u. On 
a’c,“,, VOX is given (through the cocycle condition) 
by products V&b&, i=1,...,4. These have non- 
trivial dependences on three modified barycentric 
coordinates, and hence the possibility that 
V,,( &&) = - 1 has nonzero measure. In this case, 
the geodesic from V,,( pox) = 1 to - 1 is not well 
defined. Under these conditions, the section has 
nonzero winding number. 

The computation of the winding numbers will 
be discussed in section 6. The polyhedra D men- 
tioned above are determined by the map f on 

a”c;,, and by maps of the form uf, fu, g lo and 
8 g on alcix. The forms gb and J$g describe two 
geodesic prisms, whereas f , uf and f u describe 
four geodesic tetrahedra and a pyramid. The 
central part of QUBIC, therefore, is a set of 
subroutines, which determine the existence and 
number of points 5, as well as the orientation of 

g&K>. 

5. Hypercubic lattices from simplicial lattices 

The algorithm of Phillips and Stone relies on 
the geometry of a simplicial lattice, but most 
lattice gauge theory simulation programs use hy- 
percubic lattices. To extend the algorithm to hy- 
percubic lattices, it suffices to define a simplicial 
lattice gauge field that is as close as possible to the 
hypercubic lattice. This is done in two steps. First 
the hypercubes must be “sliced” into simplices in 
a way that fills space without any gaps; we choose 
the minimal procedure. Second one must assign 
parallel transporters to the new links created dur- 
ing the slicing step. Here we state only the results; 
for a more thorough discussion see ref. [3]. 

Let us label the comers of a hypercube from 0 
to 15, as shown in fig. 1, using hexadecimal nota- 
tion. The minimal triangulation requires 24 

Fig. 1. Illustration of the minimal triangulation of a four-di- 
mensional hypercube. 
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plaquette diagonals: (03), (05), (06), (09), (OA), 

(OC), (35), (36), (39), (3A), (3F), (56)> (59), 
(5C), (5F), (6A), (6A), (6A), (9A), (9C), (9F), 
(AC), (AF), (CF); and one body diagonal: (OF). 
The hypercube is then sliced into the following 
simplices: 

(01359), (0235A), (0456C), (089AC), 

(3567F), (39ABF), (59CDF), (6ACEF), 

(0359F), (036AF), (056CF), (09ACF), 

(0356F), (039AF), (059CF), (06ACF). 

(5.1) 

Note that the orientation of these simplices, rela- 
tive to the hypercube, are +l, -1, +l, -1, +l, 
-1, +1, -1, +1, -1, +1, -1, +1, -1, +1, 

- 1, respectively. 
In slicing the whole lattice, one must take care 

to treat compatible the 3-cubes at the intersection 
between neighboring 4-cubes. Having sliced a 
given hypercube, one cannot translate it to one of 
its nearest neighbors; instead one must reflect 
about the common 3-cube. Successive reflections 
in all four dimensions will build up a 24 block, 
which can then be translated throughout space- 
time. This, incidentally, is the origin of the re- 
quirement that the lattice size parameters NS and 
NT be even. 

The last step is to define parallel transporters 
for the new links. For the 24 plaquette diagonals 
one chooses the element of SU(2) such that paral- 
lel transport around each triangle is “half” that 
around the plaquette, i.e. 

uo3 = [ 
-1 -1 l/2 

u01”13u23 ‘02 1 u02”23. (5.2) 

For the body diagonal there are now three “grand 
plaquet tes” across which we can interpolate: 
[0, 3, F, C, 01, [0, 5, F, A, 0] and [0, 6, F, 9, 01. One 
wants to pick the matrix that yields, on the whole, 
the smallest possible parallel transport around 
closed loops, which implies that one should apply 
a formula of the form eq. (5.2) to the grand 
plaquette with the largest parallel transport. 

Of the two steps, only the second needs to be 
explicitly implemented on the computer. The first 
step is, however, reflected in the names of varia- 
bles, e.g. in EVAL. 

6. Description of program 

This section provides a brief description of the 
various subroutines. The structure of the program 
is sequential, as one can see from a glance at the 
code for subroutine QUBIC. (See table 1 for an 
excerpt.) The complexity lies not in the flow, but 
in the actual computations themselves. Indeed, the 

subdivision by subroutine is guided by the concep- 
tual nature of the tasks, rather than dictated by 
flow control. 

The program assumes that the lattice gauge 
field is stored in common block LINKS0 accord- 
ing to the three-dimensional checkerboard scheme, 
with NCHECK colors. This implies that NS be a 
multiple of NCHECK as well as of 2; 
NCHECK = 2 is the most natural choice. 

The program is restricted to NS3 x NT 
with periodic boundary conditions. In the 
ing we will occasionally speak of, e.g. 
which is to be understood modulo NT. 

6.1. MAIN 

clearly 

lattices 
follow- 
IT&- 1, 

The are two installation dependent aspects: the 
random number generator RANF, and the elapsed 
CPU-time function SECOND. Users of other 
computers than the Cray must change these 

Table 1 

Excerpt of FORTRAN code from Ql illustrating the structure 

of the program 

ICHERN = 0 

DO 100 IT = 1, NT 

DO 100 ICHECK = 1, NCHECK 

TIME2 = SECOND0 

CALL HCUBE(ICHECK,IT) 

TIME3 = SECOND0 

TIMING(3) = TIMING(3) + TIME3 - TIME2 

CALL INTERP 

TIME4 = SECOND0 

TIMING(4) = TIMING(4) + TIME4 - TIME3 

CALL EVAL 

TIMES = SECOND0 
TIMING(S) = TIMING(S) + TIMES -TIME4 

CALL CHRGE2 

TIME6 = SECOND0 

TIMING(6) = TIMING(6) + TIME6 - TIME5 
100 CONTINUE 
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accordingly. (Note that RANF appears in an 
EXTERNAL statement.) Both of these aspects are 
irrelevant to production runs. In particular, the 
random numbers are used only by Ql to construct 
the test configuration. 

over, in production runs users will probably want 
to erase these lines. 

6.4. HCUBE 

6.2. Ql 

Although the intent of this program is to de- 
termine the topological charge of lattice gauge 
fields generated in the course of a Monte Carlo 
simulation, it is useful to have access to a config- 
uration with Q # 0. The Q = 1 configuration which 
is described in the appendix is created by Ql. 
Neither this subroutine, nor those called by it, 
have been optimized. Ql has two arguments. 
ISTOER is a flag: for ISTOER = 1 the ideal con- 
figuration described in the appendix is deformed 
slightly, to avoid run-time errors in later 4 x 4 
determinants. RNDM is the user’s favorite gener- 
ator of a single random number, uniform on the 
interval (0, 1). 

HCUBE gathers link matrices from timeslices 
IT and IT + 1 of the array UO into the array U. 
This subroutine has not been fully optimized - 
readability and flexibility take priority here. The 
time spent in HCUBE is not great, so the latter 
concerns outweigh efficiency. 

Some users prefer (or are constrained to) stor- 
age schemes other than the three-dimensional 
NCHECK-colored checkerboard. They will need 
to modify HCUBE. Retention of the general DO- 
loop structure and the indexing of U is imperative. 
The assignments to JX, JY, JZ and JT must also 
be left alone. Modifications must be restricted to 
indices labelling UO - in the present case JSLICE 
and JCHECK. Indices for other schemes must be 
formed out of the spacetime lattice coordinates as 
presented in table 2. For example, if the gauge 
field UO is declared as 

6.3. QUBIC COMMON/LINKSO/ 

QUBIC is the controlling subroutine for the 
measurement of the topological charge. It contains 
outer loops over NT timeslices (labeled by IT) and 
the NCHECK checkerboard colors (labeled by 
ICHECK) (cf. table 1). The strategy is that 
HCUBE gathers all link matrices needed for 
evaluation of the Q, for fixed IT and ICHECK. 

UO(NU2,4,NS,NS,NS,NT), (6.2) 

then UO should be referenced as UO(IU2,1,IX,JY, 
JZ,JT) when “collecting the links in the l-direc- 
tion”. 

The user is invited to modify QUBIC to suit his 
needs. In particular, those who use asynchronous 
I/O to reduce the core memory demands ought to 
insert the appropriate (system dependent) calls 
here. Since the common block LINKS0 will then 
contain only a subset of the lattice, the declaration 

The orientations of the hypercubes and 4-sim- 
plices are also computed in HCUBE. Recall from 
section 5 that eight of the simplices within a 
hypercube are positively oriented and eight are 
negatively oriented (with respect to the hypercube). 
Furthermore, the alternating pattern of the sliced 
hypercubes introduces another orientation factor. 
These two orientation factors are coded into 
IRIENT. 

COMMON/LINKSO,’ 

UO(NSLICE,NU2,4,NCHECK,NT) (6.1) 

must be amended in HCUBE and inserted into 
QUBIC. Such users are advised that HCUBE 
requires timeslices IT and IT + 1. See also the 
remarks in section 6.6. 

Table 2 
For each direction p in the lattice, the array indices for UO 
must be constructed from the tabulated variables 

The remark concerning the timing function 
SECOND in section 6.1 also applies here. More- 

P Variables 

1 IX, JY, JZ, JT 
2 JX, IY, JZ, JT 
3 JX, JY, IZ, JT 
4 JX, JY, JZ, KT 
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6.5. INTERP and PLAQ 

The construction of the minimal simplicial 
lattice from a hypercubic lattice, as described in 
section 5, calls for 24 plaquette diagonals and one 
body diagonal. HCUBE was designed so that the 
contents of LINKS2 can also be referred to by the 
more mnemonic nomenclature in INTERP. The 
arrays Unm are parallel transporters from site n 
to m, where n and m label the corners of the 
hypercube. The notation is that of fig. 1. INTERP 
calls PLAQ in a rather transparent way to con- 
struct the new parallel transporters of the simpli- 
cial lattice. The call 

CALL PLAQ(A,U03,UOl,+ l,U13,+ l,U23, 

-1,uo2,- l), (6.3) 

corresponds to 

uo3 = [ 
-1 -1 l/2 

u01”13u23 u02 1 u02”23 9 

A = cos-1 [Tr( uolu13G%i)/2] ; 

(6.4) 

eq. (6.4) is executed on a vector of length NSLICE, 
corresponding to the NSLICE hypercubes gathered 
into LINKS2. 

6.6. EVAL 

EVAL gathers the parallel transporters of the 
sliced hypercubes (stored in LINKSl) into a 
canonical ordering for the individual simplices. 
The parallel transporters of the simplices are 
passed via COMMON block LINKS2 to CHRGE2 
for the computation of the winding numbers. 
LINKS2 is the largest COMMON block in the 
program (unless NT 2 42), and it can pose mem- 
ory problems for large lattices. We have coded 
EVAL in a transparent, albeit brute force, manner 
in anticipation of users who will need to perform 
some sort of restructuring here. For example, one 
may want to devise a scheme with a loop over the 
16 different simplices. 

6.7. CHRGEZ 

CHRGE2 codes the information of table 4.1 in 
ref. [5]. The orientation factor IPS gives the rela- 

tive orientation of the polyhedron D. Since the 
same polyhedra occur over and over again, but 
with different y,, these are handled by subroutines, 

described below. 
Users who work with simplicial lattices can 

discard the subroutines described above and call 
CHRGE2 directly. They should change the 
parameter NCELL in CHRGE2, in the other 
subroutines in this subsection, and in DCELL 
(section 6.8) to suit their needs. (NCELL is the 
number of simplices processed at a time.) These 
users must also compute the orientations of the 
simplices, i.e. IRIENT. 

Especially for smooth configurations, the poly- 
hedra D can become quite “small”. It is therefore 
of paramount importance that the operations 
performed in the subroutines called by CHRGE2 
are carried out in 64-bit arithmetic. Users who 
work with 32-bit words should therefore take care 

that this part of the program is changed to double 
precision. 

Below we shall see that many of the arithmetic 
operations are in 4 x 4 determinants. Many of 
these involve the probe y. Since the winding num- 

ber Q, is independent of y, we choose y = 
(0, 0, 1, 0), which reduces the determinants involv- 
ing y to 3 x 3. This feature is built into all of the 
subroutines called by CHRGE2. 

6.7.1. SIMPLX and SIMPLI 

The most common structure in the algorithm is 
the tetrahedron, or 3-simplex. A tetrahedron has 
four vertices, whose images are given by yi, y,, y, 
and y,, and four faces, which are the geodesic 
triangles defined by three out of the four y,. 
g,(D) contains the probe if 

sign det(yl, .Y,, y3, y4) 

= sign det( Y, y2, y3, y4 > 

= sign WY,, Y, Y,, y4) 

= sign det(y,, y2, Y, y4) 

= sign Wy,, Y,, Y,, Y>, (6.5) 

because det(a, Y,, y3, y4) and Wb, y2, Y,, y4) 
have the same (opposite) sign if a and b are on 
the same (opposite) side of the spherical triangle 
defined by y,, y3 and y,. If eqs. (6.5) hold, then 
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D yields a contribution to Q,, equal to the orien- 
tation factors of D (IRIENT(IC) 7 IPS) multi- 

plied by 

(6.6) 

which is the orientation of g,( 0). 

great circle with cQ is determined by the zeroes of 
a certain quadratic form (see ref. [5] for details). 
The number of real zeroes is the number of inter- 
sections. Moreover, if the zero is positiue, then the 
probe is inside the cone defined by the four trian- 
gular faces. 

Frequently it turns out that y, = (0, 0, 0, l), in 
which case the determinants in eqs. (6.5) can be 
reduced further. SIMPLl handles this situation. 

6.7.2. PYRAMD and PYRAMl 
The pyramid has the structure of a cone from 

the vertex x0 (with image yO) to a square base 

R = 1x,, x2, x3, ~41 *. The sides of the cone are 
four triangular faces. The cone structures arises 
from the mapping g,(D). From section 4, for 
xR E R, the line segment xOxR is mapped to the 
geodesic from g,(x,) =y, to ga(xR). The pyra- 
mid D contains the probe y whenever one of 
these geodesics g,(x,x,) passes through y. 

The orientation of the section at the probe is 
IHZ * IO: IHZ is minus the slope of the quadratic 
form, evaluated at the zero at hand, and IO is the 
relative orientation of the y,, relative to the x,. If 
both real zeroes are positive, then the two IHZ are 
opposite, and the pyramid gives no net contribu- 
tion to Q,. 

In general, g,(R) is not flat, but can be curved 
as illustrated in fig. 2. Nevertheless, the edges of 
g,(R) can be extended to define a surface in S3 
denoted by cQ. The strategy is to determine the 
number of times the great circle through y, and y 
can intersect cQ; this can be up to two. The 
description is most natural in coordinates defined 

by y,, y,, y, and y4. Then the intersection of the 

The second DO-loop determines whether there 
is exactly one real positive root of the quadratic 
equation. It exploits the logic functions OR and 
XOR, which are bit-wise OR and exclusive-OR, 
respectively. Although almost all dialects of FOR- 
TRAN 77 have these functions, the names are not 
standard. For example, on Fujitsu and IBM 
machines OR and XOR are called IOR and IEOR, 

respectively. 
PYRAMl handles the common case y, = 

(0, 0, 0, I). 

6.7.3. PRISM2 and PRISM3 
The prisms have two triangular bases and three 

square sides. The vertices of g,(D) are y,, y,, y3, 
y,, ys and y,. The simplest way to determine the 
position of the probe relative to g,(D) focuses on 

* Strictly speaking, R is a square only in the “modified one triangular base, denoted 
barycentric coordinates”, cf. ref. [5]. s,(A2). 

X 
1 

X 

0 
2 

X 
4 

X 
3 

A2 and its image 

R 

Fig. 2. g,(R) lives in S3, which is a curved space 
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For the case handled by PRISM2, the section 
has the form g lj: 

g,(D) =g,(Q,(A2)* (6.7) 

where g,(d’) is the geodesic from uo2 to u0i2, and 
g,(A’) is the geodesic triangle * with vertices y,, 
y, and y6. Let z = uo2i0y. The probe is inside 
g,(D) only if y and z are on opposite sides of 
g,(A2), i.e. only if 

sign det(y, yl, y5, y6) 

g,(A’) is the geodesic triangle with vertices yl, y, 
and y,. Now let z =yu,,. Then y E g,(D) under 
the circumstances of eqs. (6.8) and (6.9) with the 
replacements 

y5 CJY~ and y6 f)y3. (6.13) 

Indeed, one subroutine could handle both types of 
prisms, but we have written two, so that CHRGE2 
renders table 4.1 of ref. [5] more faithfully. 

6.8. Utilities 

= -sign det(z, Y,, ys, ye). (6.8) 

If eq. (6.8) holds, one of y and z is between the 
surfaces defined by the images of the two triangu- 

lar bases. If 

There are two simple utility subroutines: 
MULT2C and DCELL. 

6.8.1. MULTZC 

sign det(y, ~1, y5, ~6) A call of the form 

= sign det(y, z, y5, ye) 

= sign det(y, ~1, z, ~6) 

= sign det(y, yl, y5, z), (6.9) 

then y lies between the two surfaces, and further- 
more y E g,( 0). 

CALL MULT2C(W,U,J,V,K,NMULT) 

carries out the SU(2) matrix multiplication (J, K 
= *1> 

w= UJVK 

The orientation of g,(x) is determined by two 
factors. First one has the orientation relative to xl, 

x2, xg and x6: 

sign det(y,, ~2, ~5, ~6). (6.10) 

Second, because of the intrinsic curvature of S3, it 
is possible that g,(A2) n u0,2,,g,(A2) f 0. The 
orientation of g, changes at this intersection. 
Hence one has an additional orientation factor 

for vectors of length NMULT. Note that J and K 

are scalars: the choice of SU(2) matrix or its 
inverse is assumed constant throughout the vector. 

6.8.2. DCELL 

A call of the form 

sign det(y, y2, y3, y4) sign det(y,, y2, ~3, ~4)~ 
(6.11) 

which is positive (negative) if y and y, are on the 
same (opposite) side(s) of uO12,,g,(A2), the geo- 
desic triangle defined by y,, y, and y4. 

For the case handled by PRISM3 the situation 
is similar. Now the section has the form b g : 

g,(D) = ga(A2MA1), (6.12) 

CALL DCELL(DET,Yl,Y2.Y3,Y4) 

computes 4 x 4 determinants: 

DET=det(y,, y2, y3, y4) 

for vectors of length NCELL. DCELL is called 
seldom, because most of the 4 x 4 determinants 
have been reduced to 3 X 3, or even 2 x 2, de- 
terminants, and the code for such small determi- 
nants appears directly where needed. 

7. Test results/performance 

where g,(A’) is the geodesic from 1 to u34, and Typical output from the test package is dis- 
played in table 3, in this case from the Cray 
X-MP/48 in Jiilich with the CFT compiler. The 
output may not seem very informative, but we 
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Table 3 Table 6 

COMMON blocks appearing in QUBIC Output of the test package, giving times (in s) from a Cray 

X-MP/48 

LATTICE SIZE IS NS = IO, NT = 10 

CREATED A FIELD WITH CHARGE 1 

PERTURBED THE FIELD A LITTLE BIT AWAY 

FROM IDEAL 

LINKS0 

LINKS1 

contains hypercubic lattice gauge field 

contains part of simplicial lattice gauge field 

being processed 

TOPOLOGICAL CHARGE Q = 1 

ELAPSED TIME IN CPU: 

FOR Ql : 4.81106189E+OO UNOPTIMIZED!!! 

FOR QUBIC : 9.13974316E + 00 TOTAL 

FOR HCUBE : 1,57520124E+OO 

FOR INTERP : 3.74265257E - 01 

FOR EVAL : 9.27934496E - 01 

FOR CHRGE2 : 6.26228003E + 00 INCLUDES SUB- 

LINKS2 contains gauge field sorted into simphces 

CHARGE topological charge and orientation factors 

COORDS useful arrays used in HCUBE 

TIMES used for timing 

Table 7 

Important variables appearing in QUBIC 

SUBROUTINES uo 
U 

contains hypercubic lattice gauge field 

contains part of simplicial lattice gauge field 

being processed 

remind potential users that the package is meant 
to be built into a larger simulation of SU(2) gauge 
theory. Then all one really needs out of QUBIC is 
the topological charge Q of the sequence of Monte 
Carlo generated configurations. 

We have tested the package on several mac- 
hines. For two supercomputers the performance is 
listed in table 4. The listed Mflops number is 

V’S 

ICHERN 

IPS 

IRIENT 

LA, LB, LC 

TIMING 

contains gauge field sorted into simplices 

the topological charge Q 

orientation of D with respect to the simplex 

orientation of the simplex with respect to A 

useful arrays used in HCUBE 

used for timing 

Table 4 

computed from the run time and operation count 
of QUBIC only. On the Cray, we have used 46-bit 
INTEGER arithmetic, which is considerably fas- 
ter than the default 64-bit arithmetic. 

Timings for two supercomputers, for a lo4 lattice 

Computer Location Time for MfIops 

QUBIC 
8. Variable lists 

Cray X-MP/48 HLRZ, c/o KFA, 

Jtilich, FRG 9.2 s 49 

Fujitsu VP100 Universitlt Kaisers- 

lautem, FRG 4.3 s 105 

Table 5 

Parameters appearing in QUBIC 

Tables 5, 6 and 7 contain lists of parameters, 
COMMON blocks, and important variables in 
QUBIC. Among the parameters, NU2 and 
NCEPH must not be changed. NCELL may only 
be changed in conjunction with some restructur- 
ing, e.g. of EVAL, cf. section 6.6, or for a simpli- 
cial lattice. 

NS number of sites in the space directions 

NT number of sites in the time direction 

NCHECK number of colors in the (three-dimensional) 
checkerboard 

NSLICE number of sites in a timeslice on a particular 
checkerboard color = NS3/NCHECK 

NU2 number of REAL words needed to store an 

SU(2) matrix = 4 

NCEPH number of simplices in a sliced hypercube = 16 

NCELL number of simplices processed by CHRGE2 
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Appendix. A lattice gauge field with Q = 1 

For installation of QUBIC it is useful to have 
access to a lattice gauge field with Q = 1, by 
construction. It follows from the general discus- 
sion of section 3, that “all” one needs to do is to 
introduce a nontrivial transition function at the 
overlap of two cells. One such construction, in- 
spired by the instanton solution, was given in ref. 
[19]. There the nontrivial transition function is 
defined on the surface of a hypercube situated in 
the “middle” of the 4-torus. Here we employ an 
even simpler construction of Ltischer [20], where 
the transition function is defined on a surface of 
constant time. 

First some notation. Consider the 4-torus of 
size L3T and take the fundamental domain of the 
coordinates to be 

-L/21xi< L/2, i= 1,3; 

- T/2 I xq 5 T/2. (A.1) 

The spacelike components form the vector x, and 
writeZ=x/L, z= 1~1. 

We wish to construct a gauge potential with the 
following boundary conditions: 

‘4,(x7 -T/2) = g(x)[a, + A,(x, T/2)] g-‘(x), 

(A-2) 

as well as strictly periodic in the spacelike direc- 
tions. The winding number of g is then equal to 
the topological charge. Consider the following 
map : 

g: u3 + SU(2) = s3 

x ++ exp[ia* zj(z)J, 

where 

(A-3) 

zf(z) = nz(2 + 11z2 - 72z4 + 112z6), z I l/2 

= 27r, z21/2; 

(A.41 

the polynomial has been chosen so that zf(z) is 

twice differentiable, even at z = l/2. As x varies 
over the domain indicated in eq. (A.l), g(x) ranges 
over SU(2) exactly once - i.e. the map has unit 
winding number. 

To pick a smooth gauge potential in the Q = 1 
sector, we start with A,(x, T/2) = 0, and hence 
A,(x, -T/2) = g(x)a,g-‘(x), A,(x, -T/2) = 0. 
For x4 E (- T/2, T/2) we take 

A!(x) =h(x,)g(x)a,g-‘(x), 

h(x4) = Jj[l -sin! ?I] 
(A.51 

and A4(x) = 0. 
The potential A, is defined on the continuum 

torus. Now we need to set up the lattice gauge 
field, i.e. a set of parallel transporters defined on 
the links of a lattice embedded inside the torus. 
Neglecting transition functions, parallel transport 
is given by 

u(x, Y) = P cxp( JYdx, A,), 
X 

(A.6) 

where the integration is taken along some path 
connecting x and y, and P denotes path-ordering. 
A lattice gauge field consists of link matrices given 
by the parallel transport from x to y =x _t pa 
along a straight-line path. These will be denoted 

U,(x) := U(x, x + pa). 

It is useful to visualize the cells of section 3 as 
the timeslices of the lattice. Then all transition 
functions are trivial, ~,,,+a, = 1, except for 

‘T/2.- T/2 = g -l. With nontrivial transition func- 
tions, parallel transport is no longer given by eq. 
(A.6) but by a product of path-ordered exponen- 
tials (within cells) and transition functions (be- 
tween cells). Hence, for the present case, the tran- 
sition function only needs to be taken into account 
for the link matrices U4(x, T/2). Since A, = 0 
everywhere, the result is * 

u,(x, T/2) =&Y(x). (A.71 

The other link matrices in the lattice gauge field 
do not notice the transition function, and thus are 
given by numerical integration of eq. (A.6). Since 

* Note that the naive conclusion U, = 1 is just plain wrong, 

and it leads to a lattice gauge field with Q = 0. 
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A, = 0 everywhere, U4(x, x4 # T/2) = 1. For the 
spacelike links, we cut the path (of length a) into 
Ncut smaller paths (of length 6 = a/N,,,) and com- 
pute the parallel transport there as follows. The 
time dependence is contained in an x-independent 
factor, so we must consider the integral 

I,” = J rfi(k+1)6dx, g(x)a,g-l(x), no sum on i. 
x+ikS 

(A.8) 

This can be approximated by 

I;= [g(x+?G)g-‘(x+?(k+l)?q 

-g-‘(x+i(k+l)S)g(x+ikq]/2 

+U(lP). (A.9) 

On the short paths we then have 

f? = exp( A(x,) (A.lO) 

from which we obtain the full parallel transport 

Kut - 1 
U,(x) = I-I yk. 

k=O 
(A.ll) 

Consistent with path-ordered the qk with smaller 
k appear to the left. 
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