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A numerical method based on the Jordan-Wigner representation of anticommuting variables is developed in 3+ 1 dimensions
for Wilson fermions. Detailed tests are performed in the case of free fermions. The application to interacting quantum field

theories is discussed.

Anticommuting Grassmann variables can be dealt
with numerically in the Jordan-Wigner representa-
tion [1]. Although this fact is well known for a long
time, relatively little is known about the possibility
of using this representation in Monte Carlo simula-
tions of fermionic quantum field theories. The exten-
sion of its applications in (14 1)-dimensional
systems [2] to interesting higher-dimensional models
seems difficult, due to the appearance of the appear-
ance of sign factors and complex matrix elements [3].
Recently Duncan suggested a new method for the nu-
merical simulation of higher-dimensional fermionic
quantum fields based on the Jordan-Wigner repre-
sentation [4]. The method was tested for free stag-
gered fermions [5] in 2+ 1 dimensions. In the present
letter some modifications are suggested which are
relevant for applications in (34 1)-dimensional in-
teracting systems. Detailed tests are performed with
free Wilson fermions [6] and the inclusion of inter-
actions with bosonic fields is discussed on the exam-
ple of a simple scalar-fermion theory with Yukawa
coupling.

The Grassmann algebra (m, n=1,2, ..., N)

s
{CTN> C11}=5H1J11 {CIII7 C,,}:{C,”, C:‘I}:O (1)
is realized in the Jordan-Wigner representation by
=08V o Dat

ch=0{"Va{P.o{" Vol . (2)

Hereg/”, n=1, .., N, j=1, 2, 3 denote Pauli matri-
ces which commute for different »:
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[G/(m) 3 O')(‘.”) ] =215111‘r1€,jk10‘;m) (3)
and, as usual
o.=1(0, tig,) . (4)

It can be shown that every representation of the
Grassmann algebra in a separable Hilbert space is
unitarily equivalent to this. For a quadratic Hamil-
ton operator one needs the relation

cte,=cap(m, n), (5)
where p(m, n) =p(n, m) is given by

plm,m)=1, p(m m+l)y=—1,

pim, mtk)=—g{tg{m+D gimtioi) (6)

For a Dirac fermion field the anticommuting vari-
ables can be denoted by ., where aa=1, 2, 3, 4 is
the Dirac index and x the lattice point in 3-dimen-
sional space. The Hamilton operator for free Wilson
fermions with mass m is

,
H=Y vimpy.— Y (WioPw.+wipwer)
AN 2 RS

i
+3 ZA (Wl capy — vl ) . (7)
The summation >, goes over the three orthogonal di-

rections. £ is the unit vector in direction k and in a
2®2 block notation the Dirac matrices f, o, are

1 0 0 o
(o 0) =0 T): ®)
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In the continuum limit the second term in the ham-
iltonian, which is proportional to the Wilson param-
eter 0 <r< 1, removes the additional lattice fermion
species form the spectrum. r=0 corresponds to “‘na-
ive” lattice fermions. Using eq. (5) one obtains the
hamiltonian in the Jordan-Wigner representation.
Let us consider here, for simplicity, only the case of
naive fermions. In this case we have

H= 3 miao g

«@.xX

% Z [/1(0(, k)gfz’(wk)x+E)o,(‘a'\»)
Xk

xp(y(a, k)x+k, ax)+hec.], (9)

+

where A, =A,=—A;=—-4,=1and A(«, k) and y(«,
k) are given in a matrix form by

R R
Pl i
Ma, k)=
(@h=\ 1 4]
P+l i
4 4 3
33 4
W b)=3 3 | (10)
112

The fermion variables are represented in the com-
puter by a single bit. The order of these variables has
some relevance due to the sign factor p appearing in
eq. (5). In the case of Wilson fermions it is reasona-
ble to store the four Dirac components belonging to
a lattice site consecutively. The sites can be stored in
the usual lexicographic order. The very specific order
used in ref. [4] is not necessary. Arbitrary boundary
conditions are possible. In the present paper aiways
periodic boundary conditions are assumed. Of course,
on the boundaries the phase factor p(..x+Kk, ..x) is
sometimes given by a longer product than inside the
lattice. These phase factors have to be often com-
puted during the simulation, therefore it is advanta-
geous to keep them short. In the way just described
the average work per site needed to compute them
everywhere on an L? lattice is growing with L2,

The aim of the simulation is to compute traces like

Z=Trexp(—pH) , (1)

with =T ~! the inverse temperature. Following ref.
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[4] this is done on L3- L, asymmetric lattices, where
B=ayL,. The lattice is much finer in the “time” di-
rection, therefore the ratio of the lattice spacings g,
is much smaller than 1. Up to first order in g, one
can replace

Trexp(—LoagH)
aTI‘{CXp(—aOHD) (1—‘a0HR)}LO. (12)

Here H=H+ Hy is a decomposition of the hamil-
tonian into a diagonal piece H and the rest Hy con-
taining the off-diagonal terms in the fermionic
variables. In ref. [4] H,=0 and Hg = H was taken,
but the more general form in (12) allows the combi-
nation of the fermionic algorithm with the usual
Monte Carlo integration procedure for the bosonic
variables. Namely, in the case of interacting theories
the bosonic piece of the hamiltonian can be added to
Hy, (see later). Also in the case of purely fermionic
theories, as a numerical comparison shows, the partly
exponential form in eq. (12) turns out better from
the point of view of the autocorrelation of subse-
quent configurations. Another advantage ofeq. (12)
is that it is insensitive to a constant shift in the ham-
iltonian, because the constant is contributing to Hp
and therefore drops out from the relative probability
defining the heat bath procedure (see below). This is
not so for H,=0 when a careful choice of the con-
stant is usually necessary, even if at the end (for
ay—0) the dependence on it has to disappear.

In the specific case of free Wilson fermions the di-
agonal part is given by

Hp |{&}) =mA{EH{E)) (13)

where {&}={&(a, x), @=1,2,3,4, x=1,.., L*} with
E(a, x) = £ 1 denotes the fermion variables, |{£} ) is
the state in the Hilbert space belonging to {£} and

A{é}E 27/10:51.5((1..\') . (14)

In this notation, after inserting in eq. (12) the com-
plete set of states L, times, we have

Z= 5 1 lexpl—aomAié)]

ity =1

XSkl =aoHp | {&} )} 40, (15)

where the dots are small corrections due to the re-
placement in (12) and, by definition, {&}, .+, ={};.
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The non-zero contributions in the sum (15) cor-
respond to sequences {&},...{&}., such that the con-
secutive states {¢}, and {&},,, differ at most by a flip
of a single “active fermion link”. A “fermion link” is
a pair of fermion variables connected by a non-zero
off-diagonal matrix element of Hg. A fermion link is
active if the fermion variable pair is unequal. The sum
ineq. (15) is performed by sampling with a heat bath
Monte Carlo. The probability of a configuration is
taken to be proportional to

P&} (&0, = Ijexm—aomA{f},)

X 48 11 —aoHR {412 ] - (16)

A heat bath step consists of keeping the states | {},_, >
and [{&},,,) fixed and choosing |{&},» with relative
probability

W({&})=exp(—asmA{<},)
X | L& i 1T —apHr [ (S}
X {1 ~aoHe [{&}is1 > ] - (17)

Since the probability P is defined in eq. (16) by the
absolute value of matrix elements, the partition func-
tion in {15) is given by

_ e <{€}1[1'—aOHRI{C}H—I>
Z"<,l:ll [ L8 —agHg | {E}ie D] >P- (18)

Here ¢ >, means an expectation value in the Monte
Carlo process defined by the probability P. The ex-
pectation value of some operator can also be ob-
tained similarly. As a simple example one can
calculate the expectation value of .y, by inserting
this operator, for instance, at the first timeslice /= 1:

<(/7.\ l//\> =Z"< z Zaél.g“(oz,\‘)l

* D@m= a @

The Monte Carlo step determined by the relative
probability W in (17) does not change the exactly
conserved quantum numbers like, for instance, the
fermion number. In order to sum over all the sectors
belonging to different quantum numbers one has to
choose the intial configuration randomly and repeat
the Monte Carlo summation many times. Of course,

Lo <{é}rll—aonl{é},+\> > ) (19)
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it is also possible to stay, for instance, at some given
fermion number if one is interested only in such
averages.

As a first test of the method I performed Monte
Carlo simulations of a free Wilson- (or naive-) fer-
mion field with the hamiltonian in eq. (9). The aim
was to compare the results on { gy to the exact value
at given inverse temperature f§, namely

sinh(BE,) (m—r >, cos q;)
E,[1+cosh(pBE,)]

2
(20)

Here ¥, means a momentum sum over the Brillouin
zone corresponding to periodic boundary conditions
and E, is the energy belonging to momentum g:

qu\/(m—chos q,) +Y sin’g, . (21)
/ /

The first question is, of course, the dependence of the
numerical results on the timelike asymmetry of the
lattice aq. The replacement in eq. (12) implies that
the exact trace is obtained only in the limit a,—0. The
computed values of (@y) on a 4° lattice (which
means actually L3 with L=f=4 and therefore
Lo= B/ a, timeslices) for free naive fermions (r=0)
are shown in fig. 1. As can be seen, the deviation from
the exact value at a, =0 is nearly linear in a, for small
. The deviation becomes smaller than the statistical
error for a,= 135 (i.e. Lo=1280). The statistics cor-
responds typically to 5000 sweeps per a, value after
1000 equilibrating sweeps (a “‘sweep” means on the
average one heatbath change per fermionic variable
on the L3 L, lattice). The statistical errors were al-
ways estimated by the usual binning of the sequence
of results (in our case into bins of length 2”).

The order of magnitude of the deviation from the
exact value of the trace can be understood by com-
paring exp( — LoaoE) to (1 —apE)"". Assuming E'~ 1
for the magnitude of the energy eigenvalue, the de-
viation of the two expressions can easily be seen to be
of the order of (aoL,)*/Lo=ayp. This is linear in a,
and is of the same order of magnitude as the devia-
tions in fig. 1. It is obvious from here that a substan-
tial improvement can be expected from the second
order replacement  exp(—LoaoE)— (1 —asE+
LagE*) ", In order to achieve the same approxima-
tion it is enough to have typically by a factor of more
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Fig. 1. The dependence of (i) on the ratio of the timelike to
spacelike lattice spacing a, for free naive fermions with mass in
lattice units m=1.0. The spacelike lattice is 4* and the inverse
temperature f=4. [ This can be shortly referred to as a 4* lattice,
although the calculation is actually done on a 4% (4/a,) lattice.
The dot at a,=0 is the exact result from eq. (20).

than 10 smaller L,. The second order analogue for
the replacementineq. (12) is

Trexp(—LoagH)
"Tr{exp( —aoHD) (l-aoHR +%a(2)H%{)}LO .
(22)

The computer code for this quadratic formula can be
substantially more complicated than for the linear
one, but the expected reduction of the time length of
the lattice will probably lead to considerable gain in
performance. (In the present calculations always the
linear approximation was used.)

The initial configurations were randomly chosen
out of all possible time-independent configurations.
It can be shown that in q,—0 limit this is a correct
procedure, although there also non-zero configura-
tions which cannot be reached from this by subse-
quent heat bath steps. As was stated before, a non-
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zero contribution is obtained from a sequence
{&}...{&} ., 1f the subsequent states are either identi-
cal or differ at most by a flip of a single active fer-
mion link. Due to the periodicity the configuration
has to be the same after going around once in time
direction. Therefore, either the subsequent flips have
to compensate each other or otherwise the same state
can also be achieved if a change is “going around the
world” in space. These later sequences have, how-
ever, a minimum number of L factors of g, in the
probability and hence are negligible for a;,— 0.

A potential source of problems in the calculation
of expectation values is that the phase factors in the
nominator and denominater [asinegs. (18), (19)]
can strongly oscillate and make the convergence to
the average slow. No such problems exist for the free
Wilson fermions and for the scalar-fermion model
discussed below. Moreover, the expectation value in
eq. (18) determining Z is in these cases exactly 1. As
a manner of fact, I saw this property first in the nu-
merical calculation and then could verify it for large

Wy e
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Fig. 2. {@w> as a function of the mass # in lattice units on 4%
lattice for free naive fermions with a,= 75;. The Monte Carlo re-
sults are compared to the exact values from eq. (20) shown by
the triangles.
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Fig. 3. The same as fig. 2 as a function of the inverse temperature
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classes of configurations in the specific representa-
tion of Dirac matrices (8) and for the chosen order-
ing of fermion variables. Note that this is apparently
different for free staggered fermions in 2+ 1 dimen-
sions with free boundary conditions, because accord-
ing to ref. [4] there we have Z# 1.

The dependence of (@) on the fermion mass
(m), on the inverse temperature () and on the fer-
mion number {N;) is shown in figs. 2-4. The space-
like lattice is always 4* and the asymmetry parameter
ap=555. Fig. 4 is for Wilson fermions with r=1, oth-
erwise naive fermions corresponding to r=0 were
taken. The statistics in figs. 1-3 is typically 5000
sweeps after 1000 equilibrating sweeps. Fig. 4 has by
a factor of 4 more statistics. As one can see in figs. 2
and 3, the exact values given by eq. (20) are well re-
produced. Fig. 4 could be compared to the value ob-
tained by approximating the fixed fermion number
by fixed chemical potential as is usually done in mac-
roscopic systems. On the small lattice this would,
however, involve a non-negligible error.

Let us note that the exact result in eq. (20) refers
to the sum over fermion number. As discussed be-
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Fig. 4. The same as fig. 2 as a function of the fermion number N
for Wilson fermions with r=1 and m=3.5. The mass in the fer-
mion propagator is m1—3r=0.5.

fore, this can be obtained in principle by performing
a sequence of simulations with randomly chosen ini-
tial configurations and averaging over the results.
However, in the sum in eq. (20) the states with small
fermion number dominate (the chemical potential is
zero). In addition, for naive fermions { wy> is slowly
varying near zero fermion number (actually, slower
than for Wilson fermions with r=1 on fig. 4), there-
fore a single simulation with small fermion number
gives already a good estimate. This is how figs. 1-3
were obtained, in order to save computer time.

By the use of eqs. (12) and (22) the extension of
the updating procedure to scalar-fermion theories
with Yukawa couplings becomes possible. As a sim-
ple example I considered a single-component scalar
field ¢, coupled to a Wilson-fermion field by the
Yukawa coupling G¢ 7. .. Since in the representa-
tion (8) the Yukawa coupling is diagonal in the fer-
mion variables, it can be added to H, together with
the purely scalar piece of the action. The updating of
the fermion variables is the same as before (the only
difference is the fluctuating mass term implied by the
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varying scalar field ). The updating of the scalar field
can be done by the usual Monte Carlo procedure with
Hy, as the action. Since the lattice spacing is smaller
in the time direction, the scalar hopping parameter
has to be different in spacelike and timelike direc-
tions. The ratio of the two has to be tuned in such a
way that euclidean rotation invariance be restored in
the continuum limit. (For the similar problem with
gauge fields on asymmetric lattices see¢ e.g. ref. [7].)
The convergence of the Monte Carlo procedure on
small lattices (between 4* and 8*) turned out to be
similar to the free case. More details about the simu-
lation of this scalar—fermion model will be published
later [8].

It is important to note that the @, 0 extrapolation
is generally not necessary. One can also work with
small but finite a; which corresponds to an action
Hp—ag ' log(1 —agHy). This contains some higher-
order correction terms in addition to Hp+ Hy, but in
the euclidean invariant continuum limit these cor-
rections probably do not matter.

The extension of this updating procedure to other
scalar—fermion models and to models involving gauge
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ficlds seems possible but the efficiency of the method
has to be seen in future investigations.
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