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In supersymmetric o-models “decay constants™ of Goldstone superfields are strongly constrained. We show that a hierarchical
ordering of these mass scales always corresponds to a chain of Kahler manifolds which represent the different steps of a sequential
symmetry breaking. We illustrate the general result with the examples SU (n+2)/SU (n) X U(1)?and Eg/SO(10) XU (1)3.

Supersymmetric o-models #' are lagrangians for
massless superfields which possess nonlinearly real-
ized, global symmetries. They occur in supergravity
models and in all supersymmetric theories with
spontaneous symmetry breaking where they describe
the low energy interactions of Goldstone bosons and
their superpartners. Supersymmetric g-models have
a number of properties which distinguish them sig-
nificantly from ordinary g-models. One important
difference concerns the “decay constants™ f, of the
Goldstone fields. In ordinary og-models, which are
defined by a coset space G/H, these mass scales can
be chosen independently for each irreducible repre-
sentation of the unbroken subgroup H of G [2]. On
the contrary in supersymmetric o-models the num-
ber of independent decay constants £, is equal to the
number of U(1) factors contained in H, i.e., to the
dimension of the center of H [3,4].

Since the mass scales f, cannot be chosen arbitrar-
ily in supersymmetric models, it is of interest to know
which hierarchies f ) >f @ > > are al-
lowed, where each ‘%) represents a subset of all de-
cay constants. These possibilities are also phenome-
nologically interesting. It has been speculated, for
example, that a hierarchy of decay constants could
explain the observed hierarchy of quark and lepton
masses of different generations [5,6]. In the follow-
ing we will see that the allowed hierarchies among the
mass scales f; are in one-to-one correspondence to the

# For a recent review, see ref. [1].
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different patterns of spontaneous symmetry breaking.

Supersymmetric g-models correspond to Kihler
manifolds [7]. Homogeneous Kihler manifolds [8]
are completely specified by the choice of a group G
and a subgroup U(1),. If HX U (1), is the maximal
subgroup of G which commutes with Q, the so-called
central charge, the coset space G/HXU(1), is a
Kihler manifold. Its metric is the second deriative of
the Kihler potential

2
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8.5(9, 0*) = K(g, ¢*), (1)
where ¢ and g* denote the holomorphic and antiho-
lomorphic coordinates. The lagrangian of the super-
symmetric o-model takes a simple form in terms of
the Kihler potential [7]:

L=J‘d“0 K(9.9) )

where ¢= (¢, i) is a chiral superfield containing the
complex scalar ¢ and the corresponding Weyl fer-
mion .

The Kihler metric can be obtained from the Lie
algebra-valued Maurer—Cartan one-form

w(p, p*)=U""(9p, ¢*) dU(p, ¢*)
=X, 0%+ Y0+ S,0'+ Qw . (3)

Here U(gp, ¢*) is the usual CWZ variable [9] which
parametrizes the coset G/HXU(1)g, X, and Y;=
X! are the broken generators, and S; and Q are the
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generators of the unbroken subgroup HX U (1) . The
Kihler metric can be expressed in terms of the one-
form

w (o, *)=w (g, ¢*) dp*,
04&(0,0)=63, (4)

and its complex conjugate. It contains as parameters
the decay constants f,:

Lop(0, 0*) = gf?zw‘é((o, P*)w* (9, 9*) . (5)

As shown by Itoh, Kugo and Kunitomo, the arbitrar-
iness of the decay constants corresponds to the am-
biguity of the central charge Q which can always be
chosen such that [4]

[Q X.]=f2X., [f2>0. (6)

Since Q is a linear combination of the generators of
the U (1) factors of the unbroken group, this also im-
plies that their number is equal to the number of in-
dependent mass scales f,. Eq. (6) emphasizes the im-
portance of the central charge: it determines not only
the coset space and the complex structure, it also
specifies entirely the Kdhler potential.

Eq. (6) is also a convenient starting point to prove
that a hierarchy of mass scales f, corresponds to a se-
quence of Kédhler manifolds. Let us divide the decay
constants f, and the broken generators X, into two
sets: {f $17}, {X" Y and {f {2}, {X{?}, such that

e
5

Since ¢ is a continuously varying parameter, on which
the central charge Q depends, we can consider the
limit é—0 where Q becomes the charge Q, with (cf.
eq. (6))

2
) =8hah, hab=0(1), exl. : (7)

[0, Xi]=0, (8a)
[Q:, XP1=f2 X3, 0,=0-0. (8b)
As Q commutes with H for all values of € one also has
[Q1,Si]1=1Q:, 5:]1=0, €)

i.e., in the case of decay constants of two different
orders of magnitude the unbroken group contains
necessarily two U(1) factors: HXU(1),=H® X
U(1)g, XU(1)g,, with Lie algebras {S{*’, 0>, 0,}
={S¢", 0,}. The broken generators X, form repre-

60

PHYSICS LETTERS B

9 February 1989

sentations of HX U (1), and because of (8a) and the
complete “anti_symmetry” of the structure constants,
¢ X =cg’ =c;, one has

(X, X =cop’™ XD, (10a)
[V, X =i’ X§, (10b)
(X3, Y =cs'S(, (10c)

[S10, S0 =c,ASL0. (10d)

Hence X{¥, Y{*’ and S!* generate a subgroup H ("
of G which by construction commutes with Q,. Since
Q, does not commute with the generators X{!’, H"
is the maximal subroup of G which commutes with
Q, and therefore G/H'" XU (1), is a Kiihler man-
ifold. Furhermore, because of egs. (8b) and (9), the
S{?) generate the maximal subgroup H® of H("
which commutes with @,, i.e. HV/H® XU (1), is
also a Kihler manifold. To conclude, we have shown,
that the inequality /' §{!? > f {2’ implies the existence
of two Kihler manifolds: G/H"'XU(1),, and
HM/H® xU(1),,. We note that in the space of
central charges of the coset G/HXU (1), the charge
Q, lies in a hyperplane which separates inequivalent
complex structures. The extensions to a hierarchical
sequence f(V>>f @ > 1™ is obvious. The
subgroup HXU(1l), must have the form
H"'%xU(1)p, X..XU(1),,, and the sequence of
mass scales corresponds to the chain of Kihler man-
ifolds: G/H" X U(1)g,, ..., H*"D/H"W XU (1),,.

The simplest, non-trivial example is the coset space
SU(n+2)/SU(n) xU(1)2 It allows two physically
inequivalent complex structures with quantum num-
bers [10]

Q=AY+ A0 (f)
F10m = (£, (11a)

QH=ﬁ(—l,—n—1)(ﬂ)+n(n+l,1)(/‘2)
+10m=m(fy)

From the explicit expressions for the Kahler poten-
tials [11] one reads off the relations for the decay
constants

Q: fi=f3+f3, (12a)
O f§= %+f% (12b)

In accordance with the general theorem, the two pos-

(11b)
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sible hierarchies correspond to the chains of symme-
try breaking:

Q:fi, L>fi:

SU(n+2)

fi2
— SU(n)x8SU(2)xU(1)

f
— SU(n)xXU(1)?,

Qi fi, >f
SU(n+2)

A
——— SU(n+1)xU(1)

(13a)

f2

— SU(n)xU(1)2,

Qu:fi, /s> (61 >f):
SU(n+2)

NS2.053)

(13b)

SU(n+1)xU(1)

£

—— SU(n)xXU(1)2. (13c)

We note that some inequalities, for instance f;> f,
f>or fi, /> f; in the case of £y, are not allowed.

Particularly interesting are coset spaces based on
exceptional groups [3,10,12] since in the “excep-
tional sequence” E, . ,/E,XU(1) (n=3, ..., 7) the
coset generators transform with respect to E, pre-
cisely as quark-lepton representations. The coset
spaces with an anomaly free E, representation con-
taining three quark-lepton generations are Eg/
SO(10)xK, where K=SU(3)xU(1), SU(2)X
U(1)? or U(1)3. These coset spaces necessarily also
contain one mirror family [10] so that the complex
structure takes the form

Q=16(f;,)+16(f)+16(H)+16(f£)+10s+1’s.
(14)

The allowed hierarchies among the decay constants
can now easily be deduced from the possible patterns
of symmetry breaking (K=U(1)?):

(1) Eg—E;XU(1)

—-E¢xU(1)?-SO(10) xU(1)3, (15a)
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(ii) Es—E,xU(1)
~S0(10) xSU(2) X U(1)?
-SO(10)xU(1)?,

(iii) Es—EsxSU(2)xU(1)
~SO(10)XSU(2) XU (1)?
S0(10)xXU(1)?, (15¢)

(iv) Eg—E¢xSU(2)xU(1)
—EsxU(1)2-580(10) X U(1)?,

(v) Eg—SO(10)xSU(3)xU(1)
+80(10) XSU(2) X U(1)?
~SO(10)xU(1)3.

(15b)

(15d)

(15e)

The corresponding hierarchies among the mass scales
f.read

) fi,h>fh>f, (16a)
(iily f.a>flfas (16b)
(ii1), (iv) fi, 6, s> 1. (16¢)

An important consequence of eq. (16) is that the de-
cay constant of the mirror family 16 can never be
much smaller than the decay constant of one of the
family representations 16. This implies that the
quark-lepton mass matrices suggested in refs. [5,6],
which are of the form m;; ~1/f.f;, cannot be used in
the context of Eg g-models since they would lead to
light mirror fermions.

So far we have discussed only homogeneous super-
symmetric o-models. However, it is known that they
cannot arise from spontaneous symmetry breaking
[13]. Low-energy interactions of Goldstone fields are
described by non-compact, non-homogeneous o-
models, for which also isometry anomalies can be
cancelled by local counter terms [14]. Such models
can be obtained from homogeneous ones through
breaking of central charges. For these models the
Kihler potentials are also known [11 ] and one easily
verifies that, although the interaction terms are sig-
nificantly modified, the possible hierarchies among
the decay constants remain unchanged. o-models,
which are homogeneous up to broken U (1) factors,
are particularly interesting since for a given coset
space the corresponding fermion representation has
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maximal chirality. In o-models with more “dou-
bling” (cf, e.g., ref. [14]), where not only the
Goldstone superfields of the broken U(1) factors
contain quasi-Goldstone bosons, the constraints on
the decay constants are weaker. In the extreme case
of total doubling there are no restrictions at all. An
example of this case is given in ref. [15].

We would like to thank N. Dragon and H. Rémer
for helpful discussions.
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