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In supersymmetric a-models "decay constants" of Goldstone superfields are strongly constrained. We show that a hierarchical 
ordering of these mass scales always corresponds to a chain of K~ihler manifolds which represent the different steps of a sequential 
symmetry breaking. We illustrate the general result with the examples SU(n+2) /SU(n)  ×U( 1 )2 and Es/SO(10) ×U( 1 )3. 

Supersymmetric a-models $1 are lagrangians for 
massless superfields which possess nonlinearly real- 
ized, global symmetries. They occur in supergravity 
models and in all supersymmetric theories with 
spontaneous symmetry breaking where they describe 
the low energy interactions of  Goldstone bosons and 
their superpartners. Supersymmetric a-models have 
a number of properties which distinguish them sig- 
nificantly from ordinary a-models. One important 
difference concerns the "decay constants" fa of  the 
Goldstone fields. In ordinary a-models, which are 
defined by a coset space G / H ,  these mass scales can 
be chosen independently for each irreducible repre- 
sentation of the unbroken subgroup H of G [ 2 ]. On 
the contrary in supersymmetric a-models the num- 
ber of independent decay constantsfa is equal to the 
number of U(  1 ) factors contained in H, i.e., to the 
dimension of the center of  H [3,4]. 

Since the mass scalesfa cannot be chosen arbitrar- 
ily in supersymmetric models, it is of  interest to know 
which hierarchies f (~ >>f ~2) >>... >>f  (n) are al- 
lowed, where e a c h f  (k~ represents a subset of  all de- 
cay constants. These possibilities are also phenome- 
nologically interesting. It has been speculated, for 
example, that a hierarchy of decay constants could 
explain the observed hierarchy of quark and lepton 
masses of different generations [ 5,6 ]. In the follow- 
ing we will see that the allowed hierarchies among the 
mass scales fa are in one-to-one correspondence to the 

*~ Fora recent review, see ref. [ 1 ]. 

different patterns of spontaneous symmetry breaking. 
Supersymmetric a-models correspond to K~ihler 

manifolds [ 7 ]. Homogeneous K~ihler manifolds [ 8 ] 
are completely specified by the choice of  a group G 
and a subgroup U( 1 )Q. I f H X U (  1 )e is the maximal 
subgroup of G which commutes with Q, the so-called 
central charge, the coset space G / H × U ( 1 ) Q  is a 
K~ihler manifold. Its metric is the second deriative of 
the K~ihler potential 

02 
g,e;( ~, ~o* ) - O~oa O~o~ K ( ~o, ~o* ) ,  ( 1 ) 

where ~0 and q~* denote the holomorphic and antiho- 
lomorphic coordinates. The lagrangian of the super- 
symmetric a-model takes a simple form in terms of 
the K~ihler potential [ 7 ]: 

L = f  d40 K(0, ~ ) ,  (2) 

where O= (~o, ~u) is a chiral superfield containing the 
complex scalar ~o and the corresponding Weyl fer- 
mion ~u. 

The K~ihler metric can be obtained from the Lie 
algebra-valued Maurer-Cartan one-form 

o9(~, (p*)= U - l  (q~, ~*) dU(~p, q~*) 

= Xa(.oa 3¢ YaO.)*d-~- Sio)i-~ Qog . ( 3 ) 

Here U(q~, (p*) is the usual CWZ variable [ 9 ] which 
parametrizes the coset G / H × U ( 1  )o, Xa and Ya= 
X] are the broken generators, and S~ and Q are the 
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generators of the unbroken subgroup H × U ( 1 )Q. The 
K~ihler metric can be expressed in terms of the one- 
form 

o)~ ((0, q~*) = a)~(~0, ~0") dq~ <~ , 

~og(O, O) =fi~, (4) 

and its complex conjugate. It contains as parameters 
the decay constantsf~: 

2oja  g<~s~(~0,~0*)= ~ ' f ~  <~((o,(o*)og*~(~0, q~*). (5) 
a 

As shown by Itoh, Kugo and Kunitomo, the arbitrar- 
iness of the decay constants corresponds to the am- 
biguity of the central charge Q which can always be 
chosen such that [ 4 ] 

[Q,X~l=f~X~, f ] > 0 .  (6) 

Since Q is a linear combination of the generators of 
the U ( 1 ) factors of the unbroken group, this also im- 
plies that their number is equal to the number of in- 
dependent mass scalesf~. Eq. (6) emphasizes the im- 
portance of the central charge: it determines not only 
the coset space and the complex structure, it also 
specifies entirely the Kiihler potential. 

Eq. (6) is also a convenient starting point to prove 
that a hierarchy of mass scalesf~ corresponds to a se- 
quence of Kiihler manifolds. Let us divide the decay 
constants f~ and the broken generators X~ into two 
sets: {f~l) }, {X~ l) } and {f~z)}, {X~ z) }, such that 

kf}-~T ] =chub, h ~ = O ( 1 ) ,  e<<l.  (7) 

Since e is a continuously varying parameter, on which 
the central charge Q depends, we can consider the 
limit e--+0 where Q becomes the charge Q, with (cf. 
eq. (6))  

[ Q l ,  X a  (2) ] = 0 ,  ( 8 a )  

[Q2, X~ (z)] =/~(z)zx~ (z) , Q~ =Q-Q~ • (8b) 

As Q commutes with H for all values of e one also has 

[QI, gel = [Q2, S,] = 0 ,  (9) 

i.e., in the case of decay constants of two different 
orders of magnitude the unbroken group contains 
necessarily two U(1)  factors: H X U ( 1  )o=H(Z) × 
U( 1 )o~ XU( 1 )~,, with Lie algebras {S} 2) ,  Q~, Q, } 
= {S} ~) , Q~ }. The broken generators X~ form repre- 

sentations of H × U ( 1 ) Q, and because of (8a) and the 
complete "antisymmetry" of the structure constants, 
C K . _ J  . _F 

I J  ~ t . K l  ~ t . . j K  , o n e  has 

{ x ( £ ~ ,  x ~  ~ ] = co#X~ ~) , 

IS!  ~ ), x ~  2) ] = c~bx~  ~ , 

[X~2), y~z)] =cajS!,),  

IS! ~, S~ ~) ] =c,jkS~ '~ 

(10a) 

(10b) 

(10c) 

(lOd) 

Hence X~ 2), y~2) and S}2) generate a subgroup H (t) 
of G which by construction commutes with Q~. Since 
Q~ does not commute with the generators X~ 1 ), H (~) 
is the maximal subroup of G which commutes with 
Q~ and therefore G / H ( I ) × U ( 1  )Q, is a K~ihler man- 
ifold. Furhermore, because of eqs. (8b) and (9), the 
S! 2~ generate the maximal subgroup H ~2) of H (l) 
which commutes with Q2, i.e. H(~)/H ~2) × U (  1 )Q2 is 
also a K/ihler manifold. To conclude, we have shown, 
that the inequali tyfa ~) >>f ~2) implies the existence 
of two K~ihler manifolds: G/H(1)XU(1)e~ and 
H( I ) /H(2)×U(1)e2 .  We note that in the space of 
central charges of the coset G / H  × U ( 1 )Q the charge 
Q~ lies in a hyperplane which separates inequivalent 
complex structures. The extensions to a hierarchical 
sequence f ~) >>f (2) >> ... >>f (n) is obvious. The 
subgroup H X U ( 1 ) e  must have the form 
H ~n) ×U (1 )o ,  × . . .×U (  1)e,, and the sequence of 
mass scales corresponds to the chain of Kiihler man- 
ifolds: G/H( t )  X U( 1 )Q ..... , H(n-1)/H (n) × U (  1 )Q,. 

The simplest, non-trivial example is the coset space 
SU (n + 2) / SU (n) × U ( 1 )2. It allows two physically 
inequivalent complex structures with quantum num- 
bers [ 10 ] 

~1 ~--- ]~ ( -- I '--n-- l ) ( f l )  "JI- ~ (--n-- 1'-- I ) ( f2 )  

+ 1 (" '-")(f3) , ( l l a )  

+ l(",-m (f3) . ( l i b )  

From the explicit expressions for the Kiihler poten- 
tials [ 11 ] one reads off the relations for the decay 
constants 

,~t~l: 2 2 2 f l  = f z + f 3 ,  (12a) 

t'2n: f ~ = f ? + f ~ .  (12b) 

In accordance with the general theorem, the two pos- 
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sible hierarchies correspond to the chains of symme- 
try breaking: 

~ I  : f l ,  f2  > > f 3 :  

S U ( n + 2 )  

Ji ,f2 
- - ,  SU(n)  x S U ( 2 )  × U ( 1 )  

/3 
--+ SU(n)  XU( 1 )  2 , (13a) 

O,:A ,f3 >>A: 

S U ( n + 2 )  

/i ,,I~ 
, S U ( n + I ) X U ( 1 )  

--~ SU(n)  × U ( 1 )  2 , (13b) 

o.:f, ,f~ >>f~ ~,f3 >>A ): 

S U ( n + 2 )  

.fl ,f3 (/'2 ,[3 ) 
, S U(n+  1 ) X U ( 1 )  

./~ (/'1) 
, S U ( n ) X U ( 1 )  2. (13c) 

We note that some inequalities, for instance f3 >>f~, 
f2 orf~, f2 >>f3 in the case of £2n, are not allowed. 

Particularly interesting are coset spaces based on 
exceptional groups [ 3,10,12 ] since in the "excep- 
tional sequence" En+~/E, × U (  1 ) (n=3 ,  ..., 7) the 
coset generators transform with respect to En pre- 
cisely as quark-lepton representations. The coset 
spaces with an anomaly free E, representation con- 
taining three quark-lepton generations are E8/ 
SO (10 )×K,  where K = S U ( 3 ) × U ( 1 ) ,  S U ( 2 ) ×  
U( 1 )2 or U( 1 )3. These coset spaces necessarily also 
contain one mirror family [ 10] so that the complex 
structure takes the form 

£2= 16(f  ) + 16 (f2) + 16 (f3) + 16 (f4) + 10's+ l ' s .  
(14) 

The allowed hierarchies among the decay constants 
can now easily be deduced from the possible patterns 
of symmetry breaking (K = U ( 1 ) 2): 

(i) Es~E7 × U ( 1 )  

---~ E6 X U (  1 )2-~ SO (10) x U (  1 )3, (15a) 

(ii) E8--.E7 x U ( 1 )  

--.SO(10) X SU (2) XU( 1 )2 

o S O ( 1 0 ) x U ( 1 ) 3 ,  (15b) 

(iii) Es--,E6 x S U ( 2 )  x U ( 1 )  

--+SO(10) × SU (2) × U (  1 )2 

- ,SO(10)  × U (  1 )3, (15c) 

(iv) E8-~E6 x S U ( 2 )  × U ( 1 )  

---~ E6 XU( 1 )2--,SO (10) × U (  1 )3, (15d) 

(v) E8oSO(10)  X S U ( 3 ) × U ( 1 )  

-~SO(10) × SU(2) × U ( I  )2 

--+SO(10) × U (  1 )3. (15e) 

The corresponding hierarchies among the mass scales 
f~ read 

(i) f~,f2 >>f3 >>f4, (16a) 

(ii) f~, f2 >>f3, f4, (16b) 

(iii), (iv) f , f 2 , f 3  >>f4. (16c) 

An important consequence ofeq. ( 16 ) is that the de- 
cay constant of the mirror family 16 can never be 
much smaller than the decay constant of one of the 
family representations 16. This implies that the 
quark-lepton mass matrices suggested in refs. [ 5,6 ], 
which are of the form rn 0 ~ 1 If f ,  cannot be used in 
the context of E8 a-models since they would lead to 
light mirror fermions. 

So far we have discussed only homogeneous super- 
symmetric a-models. However, it is known that they 
cannot arise from spontaneous symmetry breaking 
[ 13 ]. Low-energy interactions of Goldstone fields are 
described by non-compact, non-homogeneous a- 
models, for which also isometry anomalies can be 
cancelled by local counter terms [ 14 ]. Such models 
can be obtained from homogeneous ones through 
breaking of central charges. For these models the 
K~ihler potentials are also known [ 11 ] and one easily 
verifies that, although the interaction terms are sig- 
nificantly modified, the possible hierarchies among 
the decay constants remain unchanged, a-models, 
which are homogeneous up to broken U ( 1 ) factors, 
are particularly interesting since for a given coset 
space the corresponding fermion representation has 
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m a x i m a l  chirali ty.  In  a -mode l s  wi th  m o r e  " d o u -  

b l ing"  (cf., e.g., ref. [ 1 4 ] ) ,  where  no t  only  the  

G o l d s t o n e  superf ie lds  o f  the  b roken  U ( 1  ) fac tors  

con ta in  q u a s i - G o l d s t o n e  bosons ,  the  cons t ra in t s  on  

the  decay  cons tan t s  are  weaker .  In  the  ex t r eme  case 

o f  total  doub l ing  there  are no  res t r ic t ions  at all. An  

example  o f  this  case is g iven  in ref. [ 15 ]. 

We wou ld  l ike to t hank  N. D r a g o n  and  H. R 6 m e r  

for helpful  discussions.  

References 

[ 1 ] M. Forger, Supersymmetric a-models and Kfihler manifolds, 
Freiburg preprint THEP 88/5 (1988). 

[ 2 ] D.G. Boulware and L.S. Brown, Ann. Phys. 138 ( 1982 ) 392. 
[3] C.L. Ong, Phys. Rev. D 31 (1985) 3271. 
[4] K. Itoh, T. Kugo and T. Kunitomo, Nucl. Phys. B 263 

(1986) 295. 
[5] L. Ib~fiez, Phys. Lett. B 150 (1985) 127. 

[ 6 ] T. Yanagida and Y. Yasui, Nucl. Phys. B 269 (1986) 575. 
[7] B. Zumino, Phys. Lett. B 87 (1979) 203. 
[ 8 ] M. Bordemann, M. Forger and H. R6mer, Commun. Math. 

Phys. 102 (1986) 605. 
[ 9 ] S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177 ( 1969 ) 

2239. 
[10] W. Buchmtiller and O. Napoly, Phys. Lett. B 163 (1985) 

161. 
[ 11 ] W. Buchmiiller and U. Ellwanger, Phys. Lett. B 166 (1986) 

325. 
[ 12 ] C.L. Ong, Phys. Rev. D 27 ( 1983 ) 3044; 

T. Kugo and T. Yanagida, Phys. Lett. B 134 (1984) 313; 
Y. Achiman, S. Aoyama and J.W. van Holten, Phys. Lett. 
B 141 (1984) 64; Nucl. Phys. B 258 ( 1985 ) 179; 
S. Iri6 and Y. Yasui, Z. Phys. C 29 (1985) 123; 
K. Itoh, T. Kugo and H. Kunitomo, Prog. Theor. Phys. 75 
(1986) 386. 

[13] G. Shore, Nucl. Phys. B 248 (1984) 123; 
W. Lerche, Nucl. Phys. B 238 (1984) 582. 

[ 14 ] W. Buchmiiller and W. Lerche, Ann. Phys. 175 ( 1987 ) 159. 
[ 15 ] W. Buchmfiller, R.D. Peccei and T. Yanagida, Phys. Lett. 

B 124 (1983) 67. 

62 


