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Abstract. The off-shell gauge independent effective 
action proposed by Vilkovisky and DeWitt (VDEA) 
as well as the "physical" mass-shell momentum 
subtraction (MMOM) scheme permit the observation 
of threshold effects of the "running" quantities in grand 
unification right through the thresholds in a manifestly 
gauge independent manner. In our present work we 
establish the coincidence not only between VDEA and 
MMOM, but also with Weinberg's "effective gauge 
theory" (EGT) approach, which to one loop order 
shares the gauge independence of VDEA and 
MMOM. Numerical results are presented for the 
minimal SU(5) values of the unification mass and of 
the Weinberg angle in all three schemes. The results 
of our careful analysis represent an a posteriori 
justification of previous calculations which were based 
upon subtraction schemes lacking manifest gauge 
independence. Moreover, we interpret our results as 
positive evidence for the physical relevance of the 
VDEA. We also list the complete one-loop results for 
massive two-point functions of the gauge bosons in 
the Landau-DeWitt gauge, to which the VDEA boils 
down in Yang Mills theories. 

1 Introduction 

Radiative corrections in gauge field theories are 
usually plagued by gauge fixing dependences which 
should drop out when a physical quantity is calculated. 
This is true at least for S-matrix elements, however 
there are indications that quantum field theory could 
be more than a theory of the S-matrix. In particular 
in quantum cosmology there are situations where an 
S-matrix in the usual sense cannot be constructed due 

* Supported by Deutsche Forschungsgemeinschaft (DFG) under 
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to the lack of asymptotically free regions, and even in 
flat space-time there is the example of quantum 
chromodynamics where an S-matrix for the funda- 
mental particles appears to be non-existing. Under 
such circumstances the central objects in a quantum 
field theory will be effective field equations and other 
vertex functions which remain gauge fixing dependent 
even on the dynamical subspace given by the solutions 
of the effective field equations [2]. Moreover, frequently 
one simply does not bother to construct S-matrix 
elements to extract physical quantities but rather 
analyses off-shell quantities. 

One such example is the case of grand unified 
theories (GUT) [3,4], where predictions like proton 
lifetime and Weinberg mixing angle are obtained 
from gauge dependent effective coupling parameters 
I-3, 5, 6]. In this context a reasonable renormalization 
scheme has to comprise decoupling of heavy particles. 
The conventional momentum subtraction schemes 
(MOM) [1,7] do obey this minimal requirement. 
However, they introduce a gauge dependence, because 
vertex functions at some off-shell values of the 
momenta are used to define the renormalization of the 
effective action. 

Recently manifest gauge independence of the 
off-shell effective action has been achieved by a 
modification of the conventional framework due to 
Vilkovisky, who succeeded in defining a parametriz- 
ation and gauge independent effective action based 
on a particular affine connection on the space of field 
configurations and the corresponding normal coordi- 
nates [8]. A subsequent modification of Vilkovisky's 
original construction as proposed by DeWitt [9] has 
turned out to be mandatory in order to guarantee 
one-particle-irreducibility and renormalizability of the 
vertex functions to all orders in the loop expansion 
[10]. For Yang-Mills theories this effective action, 
henceforth termed Vilkovisky DeWitt effective action 
(VDEA), coincides with the usual one in a certain 
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homogeneous background field gauge [11, 10]. This 
fact allows the evaluation of the VDEA using the 
well-know Feynman rules of the background field 
method [12, 10]. 

The VDEA has been envoked to remove the gauge 
dependence found in the so-called "self-consistent 
dimensional reduction" in quantum Kaluza-Klein 
theories [13,14] and very recently in the calculation 
of the plasmon decay constant in high-temperature 
QCD [15]. In the latter case the VDEA is in conflict 
with other methods claiming manifest gauge inde- 
pendence [16]. However, in these applications the 
question has not yet settled whether the relevant 
quantities have been analysed, so that the VDEA is 
in danger of playing the role of a placebo, since gauge 
independence alone does not imply that the quantities 
under consideration actually are physical ones. 

In the present problem of GUT calculations we are 
able to compare MOM predictions made gauge 
independent by the VDEA with that obtained by 
recourse to a physical renormalization scheme 
referring to a S-matrix element, which is naturally 
gauge independent [17]*. In the latter approach the 
problem of on-shell IR divergences is circumvented 
using the "mass-shell momentum subtraction scheme" 
(MMOM) [19,18] proposed by one of the present 
authors (W.K) in the context of QCD. M M O M  defines 
the normalization condition of the gauge coupling 
renormalization constant by scattering of fictitious 
superheavy test-fermions of mass M in the limit 
M--* oo. Then the IR-singularities of the S-matrix 
element due to soft gluon emission are associated with 
inverse powers of M and vanish in the limit M ~ oo. 
This limit provides an alternative to the Thomson- 
limit in QED, which is not viable in nonabelian gauge 
theories, and defines the scaling of the running gauge 
coupling as a function of the momentum transfer in 
a scattering process. 

Both approaches are compared with Weinberg's 
"effective gauge theory" (EGT) where l-loop threshold 
corrections can be elegantly accomplished by 
integrating out the heavy fields in a kind of 
background field gauge [20]. In this way the 
advantages of minimal subtraction are retained and 
only asymptotical limits of Feynman graphs below the 
thresholds ("IR-limits") have to be computed. The 
lesson to be learned from this is that the knowledge 
of the gauge coupling renormalization constant far 
below the relevant mass-threshold is sufficient to 
provide the link between the effective "low energy" 
theory and the low energy limit of the unified model. 
The detailed behaviour of the running coupling 
constant at the threshold and above belongs to the 

category of renormalization scheme dependence, 
which is harmless in case of weak coupling. 
Furthermore, the effective gauge theory has been 
shown to be 9auge parameter independent at l-loop 
level within of Re-gauges [21]. There are, however, 
fundamental problems in this approach beyond one 
loop. Therefore, renormalization methods are desir- 
able which" are gauge independent by construction and 
valid to all loop orders. 

Accepting the M M O M  approach as being genuinely 
physical, we use the results of the comparison as a test 
for the "physical relevance" of the gauge independent 
off-shell VDEA. In Sect. 2 we review some relevant 
properties of the VDEA as well as of MMOM. Sect. 3 
is concerned with the renormalization group analysis, 
and in Sect. 4 we present our results and give our 
conclusion. 

Appendix A contains the complete results of the 
massive two-point functions of gauge bosons of a 
general spontaneously broken nonabelian gauge 
theory in the Landau-DeWit t  gauge, to which the VD 
framework boils down in the case of Yang-MiUs 
theories. Group factors and the resulting threshold 
functions are found in Appendix B. Since the standard 
model is Contained in the minimal SU(5) model these 
appendices may also provide a useful collection of 
formulae for l-loop calculations of electroweak 
processes by simply omitting the contributions of 
superheavy particles. 

2 Vilkovisky-DeWitt effective action in 
Yang-Mills theories 

As pointed out by Vilkovisky, the problem of gauge 
depedence of the effective action is closely related to 
the one of parametrization dependence. A solution to 
the latter is provided by the use of geodesic normal 
coordinates if a natural connection is given on the 
configuration space of the fields. In gauge theories 
different gauge conditions correspond to different 
parametrizations of the gauge orbits of the configur- 
ation space, so gauge fixing independence requires that 
the geodesics used to define normal coordinates 
project onto geodesics on the gauge orbit space. 

In [8] a connection for the configuration space of 
gauge theories with closed algebras has been 
constructed which fulfils the above requirement. 

Let DivE,p] denote the generators of gauge 
transformations* 

6~oi= Di~[~o]6~ ~ (2.1) 

and let 71i[~o] be an auxiliary metric functional whose 
Killing vectors are the gauge generators D~[~0] (6/~r 

* Unfortunately in the calculation of the contributions of massive 
gauge bosons to the fl-function in [18] two graphs were omitted. 
The corrected results for the threshold function and for the 
numerical values of the SU(5)-predicions calculated in [17] may be 
found in the erratum to [17] and are also given below 

* We employ the compact notation of DeWitt where the symbol 
q~i comprises all fields, and the index i encompasses all discrete and 
continuous labels. The summation convention is extended to include 
integration. Functional differentiation is abbreviated by a comma 
and subsequent indices 



Then a connection which is consistent with the 
projection onto the gauge orbits is given by 

F i = ~'i __ 2Di (mTn)kDkN-l~# 
m n  m n  �9 f l  

+ N - l~O~7~mN - la'Ol?,,D~pDi).k, (2.2) 

where N,p=_Di?uD~,  P ~ ,  denotes the Christoffel 
. 

symbol associated with 7u, and a point instead of a 
comma denotes covariant functional differentiation 
with respect to 7u, reserving the semicolon for full 
covariant differentiation based on (2.2). 

At one loop order, the VDEA is given by* 

F[~o] = S[0]  + �89 tr In (S;m" [0]  + t/~aF,~mF,P,[q3]) 
F ~, - D i - - i t r l n (  i[~0] a[~p]), (2.3) 

where a gauge breaking term �89 has 
been added to the classical action functional S [q~]. In 
the example of the Yang Mills self energy gauge 
invariance and gauge independence have been checked 
in [10] by explicit Feynman graph calculations. The 
difference with respect to the conventional scheme is 
that one has to deal with novel, non-local Feynman 
rules [10]. For example, the 3-gluon vertex is modified 
according to 

(S,,.k -- S,k~F; e) Io 

--, a f ~ (  gk~(q - k)~ + a ~ ( r -  q)~ + g~(k  - 

/ 

r ) q  

+(gkjkZ kkk j ) [g#q~  - ~. r s  q , q q r ~  (2.4) q r 3;' 
where " ~ "  means specification of the condensed 
notation to indices and momenta. The non-local 
vertices are seen to effectively contain propagators 
which have to be evaluated under Feynman boundary 
conditions. 

In the case of Yang-Mills theories with linear matter 
couplings, where a field independent starting metric 
7u can be found, things.can in fact be greatly simplified. 
Normal coordinates a'[(o, ~o] around q3 resulting from 
the complicated connection (2.2) can be proved [10] 
to be of the form 

G'[O, ~o] = (0 - ~o) ~ + x '~[O,  ~o] D~EO]~j~(q~ - O) ~ 
(2.5) 

with some (complicated) functional X~[qS,~o]. This 
entails that in the so-called Landau DeWitt gauge 
[12] 

Di[Fp]Tc~(tp - q3) -/= 0 (2.6) 

all the covariant functional derivatives appearing in 
the expansion of scalar functionals can be replaced by 
ordinary ones. 

* Apart from a contribution of the path integration measure (cf. 
[9]) required for unitarity and also for rendering the second term 
on the r.h.s, reparametrization invariant, which however can be 
disregarded in perturbation theory 
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(2.6) is a mean field (or background field) gauge 
condition*, so in the case of Yang-Mills theories we 
end up with the result that the Vilkovisky-DeWitt 
framework in effect singles out the homogeneous 
background field gauge where everything reduces to 
the conventional scheme. 
It only remains to choose ~u" Following [8] we take 

ds 2 = 7 1 j d q g i d q )  j = ~ d4x( - tr dA~dA u + d~d(a) (2.7) 

for Yang-Mills fields A , ( x )  and scalar particles ~b(x). 
This fixes 7u in accordance with the coefficients of the 
highest space-time derivatives contained in the 
classical action. Because of the field independence of 
7u it is consistent [10] to not include fermions into 
(2.7), which cannot be treated on equal footing with 
bosons because of their different canonical dimension. 
For our applications below they would not make any 
difference, anyway, since we shall not have to consider 
external (background) Fermi fields. (See however [22].) 

The quantity of central interest for us is the 
renormalization group function fl(g) which determines 
the scaling behaviour of the gauge coupling constant g. 

In pure Yang-Mills theories fl(g) is gauge 
independent to all orders of perturbation theory, so 
there is no need for an off-shell gauge independent 
formalism. If matter fields are coupled to (unbroken) 
Yang Mills fields, fl(g) is still gauge independent up 
to 2-loop order, as long as a mass independent 
renormalization scheme is employed. The situation is 
different, though, in spontaneously broken gauge 
theories. In particular the decoupling behaviour of 
(super) massive particles is gauge and scheme 
dependent [23] in the conventional framework. (So 
far only Weinberg's method [20] of effective gauge 
theories based on the minimal subtraction scheme is 
an exception. It applies, however, only to the l-loop 
approximation [21].) 

In order to test the physical relevance of the off-shell 
VDEA we want to compare it with a recently 
developed physical computational scheme which 
resorts to a suitably chosen S-matrix element. So 
we are going to compare two manifestly gauge in- 
dependent schemes, for which we do not see any a 
priori reason for having to yield the same answers. In 
particular, we want to compute the unification mass 
of a G U T  by integrating a 2-loop renormalization 
group equation. We are thus in effect determining the 
solution of the effective field equations, which in 
contrast to S-matrix elements in themselves are not 
gauge (or more generally parametrization) in- 
dependent [8]. 

In the off-shell gauge independent Vilkovisky 
DeWitt framework we employ the usual momentum 
subtraction scheme in order to define a running 
coupling constant which exhibits manifest decoupling 

* There is a subtlety [10,22] concerning the correct implementation 
of (2.6) at loop orders higher than one which we shall ignore here, 
since it will not be relevant for our applications 
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of heavy particles. Because of gauge invariance of the 
VDEA the necessary information is contained already 
in the 2-point function. 

In the M M O M  scheme we define the/3-function by 
on-shell scattering of superheavy test-fermions with 
mass M--.oo, which provides a naturally gauge 
independent scheme. This nonrelativistic process has 
the advantage that on-shell IR-divergences are 
suppressed by powers of 1/M ]-19]. In a particular 
generalization of the Coulomb gauge again only 
2-point functions contribute [18]. (As a check we have 
also reproduced the corresponding results in a 
covariant gauge.) 

In order to set up the Feynman rules we first 
consider a SU(2)-model spontaneously broken by a 
Higgs multiplet ~ in the adjoint representation 

5o = _ !F4_u~_~',~ + I(D,(~ b + v)) 2 - V(~b + v), (2.8) 

which renders gauge bosons orthogonal to v massive. 
There the Landau-DeWitt  gauge condition reads 

Du(.4)A u + g ( ~ +  v) x (~b + v) = 0. (2.9) 

We implement this gauge condition by means of a 
Lagrange multiplier field L, which possesses inter- 
actions with external (mean) fields and internal lines. 

Inversion of the kinetic kernel yields the momentum 
space propagators 

- -  i f kuk ~ ] 
A 

k. 
a~,,~ = # - L  #~ '  ALL = O, 

ik 2 - Mk .  (Z 10) 
az~-(k ~-M2):'  z l~ , - (k  2_M2 F, 

- i M  
A~ = ~--2 ~t ~' 

- i  i 
A.,, - k2 _ M2, Ann = k ~-7-;- m"h 

where M is the mass of the gauge bosons. Here we 
have split the scalar field into the Higgs ghosts 

1 Z=v2V x (v x 4,) (2.11) 

and the physical Higgs boson 

1 
H =  v'~b, (2.12) 

Ivl 
with mass ran. u and u' denote the real anticommuting 
Faddeev-Popov ghost fields, which exhibit the same 
pattern of massive and massless parts as the gauge 
bosons. 

A very attractive feature of the Landau-DeWitt  
gauge and hence of the VDEA turns out to be that in 
(2.10) the introduction of unphysical mass poles is" 

+4 +2 - 2 , w q  

+z, ~ +2 +2 ",,,,•. j § 4 

"-" 

+ 4 + + ( x 
. . .~ , . , . .  

-2 / 
�9 ..., ...." 

Fig. 1 l-loop contributions to the self energy of a massless gauge 
boson due to a physical massive gauge boson in the Landau-DeWitt  
gauge. Wavy, curled, dashed, and dotted lines correspond to gauge 
bosons, Lagrange multipliers, Higgs ghosts, and Faddeev Popov 
ghosts, respectively 

avoided. In the 't Hooft or R~-gauges [24], this can 
be achieved only at the cost of a non-zero gauge 
parameter [23], which is not a fixed point of renorma- 
lization. One drawback of the Landau DeWitt gauge, 
though, is a proliferation of graphs due to the presence 
of mixed propagators and interacting Lagrange 
multipliers. 

3 Running coupling constants in SU(5) 

3.1 Renormalization group equation and threshold 
fimctions 

The essential feature of grand unified theories is that 
all interactions of the gauge bosons are described by 
a single universal gauge coupling. Thus it might be 
surprising at first sight that we are going to define 
three different running coupling constants. The point 
is that due to the hierarchy of mass scales large 
logarithms spoil the applicability of perturbation 
theory, unless they are summed by renormalization 
group techniques. Due to spontaneous symmetry 
breaking the evolution of the running coupling now 
depends in an SU(5)-variant way on normalization 
conditions which obey the required decoupling 
properties. We thus define the strong, the weak, and 
the electromagnetic running coupling by considering 
the SU(5)-coupling of the respective gauge bosons. 

In addition to the gluons G,, the massive gauge 
bosons W + and Z, ,  and the photon Au, the SU(5) 
model contains two colour triplets of superheavy 
charged gauge bosons Xu and Y~, (which lie in a 
fundamental representations of the electroweak SU(2) 
with colour charge). In some apt basis these particles 
are grouped into the adjoint representation of SU(5) 
in the form 

[ / G u - ~ 2  B.13 X Y , 

1 B. 1 (3.1) 
, / 2  x 2 

, Y 



where the first row and the first column are colour 
triplet with respect to the unbroken subgroup SU(3). 
The observed gauge bosons of the Glashow Weinberg 
Salam model are defined by 

1 W1 

Z,  = cos (Ow)W~ - sin (Ow)B,, (3.2) 

A u = sin (Ow)W3u + cos (Ow)B,, 

Ow is called "Weinberg angle" (we do not discuss here 
the well-known symmetry breaking mechanism, which 
in the minimal model employs Higgs bosons in the 
representations 24 and 5 of SU(5) [3,5]). An 
immediate consequence of the SU(5)-symmetry is that 
at the tree level the strong and the weak coupling are 
of equal strength and that tan 2 (Ow) = 3/5. 

Due to the gauge invariance of the VDEA the 
evolution of the gauge coupling can be determined 
from the two-point functions of the gauge bosons [25]. 
We therefore employ the normalization conditions* 

HA(p2)lp2= _u2 = 0, (3.3a) 

II2(pe)lp2= _,~ = 0, (3.3b) 

t I~(p~) l~= .~ = o, (3.3c) 

where 

ig 2 2 
H(' ] (p  2) = 1~2~2(g,~ p - pup~)H(p2), (3.4) 

in order to define the running gauge couplings 
gA(/0, 92(#), and g3(/0, which denote the SU(5) gauge 
coupling appropriate for strong, weak, and electro- 
magnetic processes, respectively, at an energy scale #. 

Integration of the renormalization group equation 
at 2-loop level yields 

1 1 
- (H~(/~) - H ~ ( # o )  ) + A , ,  i = A ,  2, 3, 

x~(~) x~(~0) 
(3.5) 

where x~ = g2/(4~) 2. Ai are the 2-loop contributions. 
Due to the large logarithm of the ratio of the 
unification scale and the Fermi scale a "shift of orders" 
takes place: Numerically l-loop threshold corrections 
are of the magnitude of 2-loop corrections. Thus, 
neglecting 3-loop effects, we may combine our exact 
1-loop threshold functions with a naive step approxi- 
mation at 2-loop order. Using the expansion 

* In the following it will be sufficient to define the weak running 
coupling constant at energies much larger than the Fermi-scale. 
Thus we can neglect the W-boson mass in (3.3b) and (3.4) 
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of the fi-function we obtain the 2-loop contributions 

Aj = ~i bji In xA(~#)~. (3.7) 
�9 b i x i ( # o )  

This equation is valid in the asymptotic regions 
between (or above) mass thresholds and b~ and b~j are 
the corresponding asymptotic values. 

The mass of the superheavy gauge bosons Mx ~ Mr, 
usually denoted as "unification mass", is now 
determined from two of the three experimentally 
available coupling constants at low energies by 
matching these coupling constants in the SU(5)- 
symmetric phase far above all masses. It is most 
appropriate to start from the fine structure constant 
and from the strong coupling constant in the range of 
asymptotic freedom (say 40 GeV). Then, in turn, the 
weak coupling constant and the Weinberg angle are 
calculated as predictions of SU(5). 

Both, the electromagnetic and strong interactions 
are mediated by the massless gauge bosons corres- 
ponding to unbroken subgroups of the unification 
group. This entails that all (massive) contributions to 
the two-point function of these gauge bosons combine 
into three transverse combinations TA, TF, and Tu, 
which comprise the complete contribution of a 
particular massive gauge boson, Dirac fermion, or 
scalar particle, respectively (according to (3.4) the 
factor ig2/16~; (pZg,~ _p,p~) is to be dropped in T,.). 
In the Landau-DeWit t  gauge the results of Appendix 
A combined according to the group factors given in 
Appendix B yield 

TA(I~) = 7(,~ -- In 2) + 
1622 -- 172 -- 7 

4 2 +  1 

1 
TH(#) = -- 3(J~ -- In 2) 

8 s2  + 1 + 4~ (2). (3.Sc) 
9 3 3 

Here we have defined 

m 2 + 1 + 1 
2 = ~(2) = x / ~  + l ln (3.9) 

/t 2' x / 4 2 + 1 _  1' 

= 1/(2 - n/2) - ~/+ In (4nfi2/p2), fi is the mass scale 
of dimensional regularization in n dimensions, and 
# = x / - p  2 denotes the normalization point, m is the 
mass of the respective physical particle. Of course, for 
a massless gauge boson, m = 0, the abundant contri- 

21 
- 82 + ~ ,  (3.8a) 

4 
TF(/0 = -- ~ ( ~  -- In 2) 

20 + 1 6 2 + 4 - - 8 2  (2) ' (3.8b) 
9 3 3 
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T a b l e  1. Asymptotic values of the threshold functions (pole terms are omitted) and effective 
threshold factors 

T IR T IR T IR T uv T uv T uv In  A 2 In F 2 In  H 2 
A F H A F H 

VDEA ! 0 0 :@ ~o 8 s9 5 8 
3 - -  9 4-2 3 3 

MMOM 2 0 0 6 2o s 16 5 8 - - -  --~ 21 ~ 3 

EGT _2 0 0 0 0 0 _ ! 0 0 3 21 

bution of a Goldstone boson T u has to be subtracted 
from TA, restoring the well-known coefficient ~ of the 
pole term. 

From (3.5) it is clear that, within our intended 
accuracy, the precise behaviour of the threshold 
functions is irrelevant if all matchings of coupling 
constants are performed in asymptotic regions 
between mass thresholds. What  is really needed are 
the IR-limits /~ << m and the UV-limits /~ >> m of the 
threshold functions (3.8), 

Ta uv = 7 ( ~  - In 1./2) _1,_ ~ _ ,  T~ = 7 (~  - In m 2) -,}- 2, 
TUV = _ _~(o~ _ In/,2) _ ~o, T~R = _ 4(ga _ In m2), 

F 

T ~ V = - � 8 9  -,  T,,m=-�89 
(3.10) 

We define "effective thresholds" Am A, Fmr and Hmn 
as being the masses at which the fl-function has to be 
switched discontinuously between its asymptotic 
values in an effective "step-approximation" in order 
to be consistent with the limits (3.10). In Table 1 the 
relevant constants for the asymptotic limits (3.10} of 
the threshold functions and the logarithms of the 
factors A,F, and H are compiled for the VDEA, the 
MMOM-scheme and for Weinberg's EGT. 

For  our comparison of the VDEA with the M M O M  
scheme and with the EGT we need re-compute only 
one threshold function: 

TMMOM, , = 7 ( ~  -- In 2) + 7 ~(),) _ 82 + 6. 
1622 82 

A t ,u)  4 2 +  1 

(3.11) 

T r~u~ and TMMOM (in the l- loop approximation) 
F - - H  

trivially coincide with the VDEA results. The 
non-trivial coincidence of the IR-limit of TVDEA with - - A  
the physical M M O M  result (Table 1) is the essential 
point on which our conclusion of "physicality" of the 
VDEA relies. We have calculated (3.1 l) in the La ndau -  
DeWitt  gauge, in which the graphs of Fig. 2 contribute 
in addition to the self energy of the gauge bosons. The 
individual additional diagrams indeed have non- 
vanishing IR-limits, which sum up to zero, however. 
The agreement of(3.11) with the Coulomb gauge result 
[17] provides an interesting, to our knowledge unpre- 
cedented, check of gauge independence of the S-matrix 
for spontaneously broken non-abelian Yang-Mills  
theory in a non-covariant gauge. 

All information on the EGT is contained in the 
IR-limits of the threshold functions, which have been 

I" +/~ + 
Fig. 2 l-loop contributions to heavy fermion scattering in the 
Landau-DeWitt gauge 

evaluated in [20] and coincide with both, the VDEA 
and the M M O M  scheme. 

3.2 Unification mass and Weinberg angle 

Having at our disposal the asymptotic values of the 
threshold functions in the Landau DeWitt gauge and 
the formulae for the self energy in Appendix B it is 
straightforward to work out the renormalization 
group equation (3.5) for the running coupling cons- 
tants in SU(5). The coefficients bls, which enter the 
2-loop corrections (3.7), are given in the literature [25]. 

For  /t >> M x and #i somewhere below the Higgs 
mass and the top-quark mass mr, but much larger than 
the remaining quark masses, the running electro- 
magnetic coupling is 

. . . . . .  10 2 
1 _ 1 + 4 0 1 n # 2 + 3  l n / ~ 1 3  

XA(],I ) XA(I.,II) 
21 

lnM~ v +21ninE 
8 3 

353 In M 2 + In a 3 + 4 In (2as) 
24 

35 lnA2 + l l n H 2  + 21nF2 (3.12) 
2 6 3 

29AI 22AI 113An 93AU 
40 A + 2 3  3- -164  1 + 7 6  2 

10AU 908Am 
+ ~ -  3 + 2 5  �9 



The analogous formula for the strong coupling 
constant reads 

1 _ 1 + 4 0 1 n p 2 _ 2 3 1 n p l  z 
X3(#) X3(].//) 3 3 

+ } In - 1__9 In 
3 3 

+ 1-1na3 + l n a  8 -- 71nA / + 21nil2 
3 3 

2_lnF2_l l  A, _116 At _ I l A H  
+ 3 40 a 23 3 41 1 

2 7 a , ,  26AU + 908AU/ (3.13) 
+19 2 - 7 -  3 25 " 

In these formulae the 2-loop corrections (I) below the 
Fermi-scale, (II) between the Fermi scale and the 
unification scale, and (III) above the unification scale 
are given in terms of 

i _ In xj(2mw), A~ I = In xj(2mx) 
Aj - xj(#I) xj(2mw)' 

A m = In x(/0 (3.14) 
x(2Mx)' 

where the U(1)-hypercharge coupling x~ is related to 
the electromagnetic coupling x a and to the weak 
coupling x2 by 

2 SO 2 2 1 2 3. (3.15) 1 _ c o + So Co = - - - - - -  - -  = -- 
X A X1 X2 

asM x and a3Mx are the masses of the superheavy 
colour octet and colour triplet Higgs bosons, 
respectively [6]. 

Since the normalization conditions (3.3a-3.3c) 
coincide in the symmetric phase # >> Mx, the left hand 
sides of (3.12) and (3.13) have to be equal. This implies 
the following implicit formula for the unification mass 
Mx: 

67 In M2 1 1 u/z 21 
- + 11 In lnA 2 

8 M 2 xa(#,) x3(/~,) M 2 2 

l _ l n H  2 1 lna3a3 9 - A1a+6At 3 
2 4 2 20 

69 t5Au 36AU 
- 1 6 ~ A ~ I - ~  2 + 7 -  3- (3.16) 

For the evaluation of the 2-loop contributions and 
for the determination of the Weinberg angle we further 
need x2(2Mw). With # >> Mx and M w << #u << Mx 

1 1 4 0  2 19 61 
- - -  ~-~-ln/t - l n g 2 1 - 6 1 n M 2  

Xz(p) X2(#II) 6 

1 H2 + 2 ln(2a8) - 21 In A 2 + - In 
3 2 3 
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9 35 11 + 12An + 908Am (3.17) 
-45A~ l + f ~ A 2  7- 3 25 _. " 

We again invoke asymptotic SU(5) symmetry: 
Combining (3.17, 3.12) yields 

1 1 l 0  2 + 19 109 
- ~- ~- I n  p ,  In p2 _ In M 2 

X2(#II) XA(III) 6 24 

2'ln  2 ] lna -5ln(2a , 8 M w + 3  lnmt + 

1 
lnH 2 + 2-1nF2 29A~ 

- 7 1 n A 2 - - 6  3 --46 A 

+ 2 2 A I  7 7 A H  47zllI 2 AII 
23 3 - 1 6 4  1 - 7 6  2 - 7  3" (3.18) 

Since we disregard threshold corrections at 2-loop 
order we may use formula (3.18) also for the evaluation 
of the coupling constant at the thresholds when 
inserted into the 2-loop corrections (3.14). 

Aside from the unknown masses a3M x, asM x, and 
m, of the superheavy Higgs-bosons and of the 
top-quark, respectively, (3.16-3.18) only depend on the 
couplings XA(#t) and x3(/~t), which have to fit the 
experiments. 

The strong coupling constant is usually character- 
ized by its asymptotic scale parameter A,~ (nF denotes 
the effective number of flavours). We use in the 
MS-scheme A5 = 136 MeV as our central value, which, 
according to 

1 33_2nF 1 /12 . 306_38nv /,2 
-- -- n ~ 5 - #  lnln ~ 7  (3.19) 

:~3 (/*) 3 A,F 33 -- 2n e A,~ 

corresponds to a running coupling constant 
0~s(40GeV)=0.1264 and to A4=200MeV in good 
agreement with recent data [26]. This MS-value still 
has to be converted to the considered renormalization 
scheme through 

1 1 116 23(/0 
- b 6 3 + ~ l n  , mb<<#<<m . (3.20) 

x3(~) 23(~) 2 3  x~(~) 

where (~VDEA = (40nv - 615)/36 = - 215/36 is the finite 
difference between the renormalization constants of 
x3 in the MS- and in the VDEA-scheme, respectively, 
and is obtained from the UV-limits of the contribu- 
tions of the gluons and of the nF effectively massless 
quarks to the gluon self-energy. The conversion 
formula for the strong coupling constant (3.20) is the 
only place in our present work where 2-loop 
contributions are numerically relevant for the conver- 
sion between different schemes. 

The fine structure constant of QED is known with 
high precision in the Thomson-limit [27] ~rh = 
4gS~XA(O)= 1/137.036 . . . .  However, in the confine- 
ment region the contributions of the strong interaction 
to the running coupling constant xa(p) cannot be 
treated perturbatively and dominate the error. We 
avoid the uncertainties due to light quark masses by 
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using a dispersion relation for 

1 3472 , m~mum~ 3 
- t- m - ~  + In  F 2 

XA(]21) 8 (~Th ~ I  2 

+ (Hhadr.(]21) "{'- ~A), ]21 >> m~. 

The hadronic contributions 

(3.21) 

3~ 
Hhaa~.(40 GeV) = - x 0.0253 (3.22) 

2a 

were obtained from data for the process e + + e-  
? ~ hadrons by Paschos [28]. The conversion constant 
6A vanishes for the VDEA and for the MMOM- 
scheme (which coincide with the dispersion relation 
scheme in QED). We will use 6a below in the EGT 
scheme to compensate the fermion threshold correc- 
tions In F 2 implicit in Hhaa~ .. 

It seems reasonable to expect Yukawa couplings to 
be of the order of gauge couplings, thus heavy Higgs 
boson masses should be near Mx. We assume a3 = 
a8 = 1 and a top-quark mass of 60 GeV. The iteration 
of (3.12-3.18) converges quickly and we obtain 

x[l(2Mw) = 758.96, x2~(2Mw) = 339.59, 

x3X(2mw)= 109.79, x3~(2Mx)=519.47. (3.23) 

With M w = 82 GeV our prediction for the unification 
mass becomes 

Mx=2.77(3 ) x 10~4GeV \i36-~;iex;/ 

( 8 2 G e V )  ~  x exp [66:(c~ 1(40)- 129.79)]. 

(3.24) 

In this formula the indicated (theoretical) uncertainty 
is an estimate of the magnitude of higher order 
corrections. 

The Weinberg angle is first evaluated in the 
asymptotic region Mw << #u << Mx in order to avoid 
the numerical evaluation of the threshold functions 
(these values would in any case drop out eventually 
in the conversion to the on-shell scheme). From (3.23) 

we find 

3 xA(]2u) sZ(#u) - sin 20w(]2u) - 
8 X 2 ( ] 2 I I  ) 

3 XA(2Mw) ( 
- ~  X ~ w ) w ) \  1 + [ ~  -x2(2Mw) 

+ ~lxA(ZMw) ] In U,/_ + O(x2)~ (3.25) 
2Mw / 

=0.21165 x (1  +0.02321n 2Mw,/#ll ~. 

The (l-loop) conversion to the MS-scheme reads 

g2 1 +(TA uv !TUV ~TUV~x 
_ --2--fi + "  f J 2 _  1.0172, (3.26) 

(3TUV ~TUV~x S 2 1 - 1 - ' , g - - A  -~- ~' F ,' A 

thus s 2 ( M w ) = 0 . 2 1 1 8 3 .  It is most convenient to use 
the on-shell scheme of weak interactions, in which the 
Weinberg angle is given by the ratio of the W and Z 
masses. Using the conversion factor given in [-29] we 
finally obtain 

2 - -  1 m 2  s 2 ( M w )  x 1.0059 SOS = 

4 5 = 0.21308(20) -- 0.0051 In 
136 MeV 

- 0.0033(c~ I ( 4 0 G e V ) -  129.79) 

+ 0.000351n mt (3.27) 
60 GeV" 

The conversion constants and the results of the 
calculations in all three considered schemes are 
compiled in Table 2. 

4 R e s u l t s  a n d  conclusion 

We have calculated the SU(5) predictions (3.24/27) 

Mx =2.77(3) x 1014GeV x 136MeV (4.1) 

Table 2. Conversion constants, running Weinberg angle, and the central values of the unification 
mass and of the Wcinberg angle in the on-shell scheme 

~A (~3 S2(]III) Mx/lOl4GeV s2 os 

VDEA 

M M O M  

EGT 

( 0 0.21165 I +0.02331n /~H 2.773(30) 
36 2MwJ 

( 0 0.21389 1 +0.02301n #u 2.760(30) 
9 2Mw/ 

--- 0 0.21535 1 +0.02301n /IH 2.754(30) 
18 2M w 

0.21308(20) 

0.21315(20) 

0.21317(20) 



2 = 0.2131(2)- 0.0051 In SOS 

+0.000351n m, 
60 GeV 

A5 
136 MeV 

(4.2) 

in the momentum subtraction scheme based on 
the gauge independent Vilkovisky-DeWitt effective 
action. The indicated (theoretical) errors are estimates 
of higher order corrections. Dependences on heavy 
Higgs masses as well as modifications for non-minimal 
models are extensively discussed in [3, 6]. Our results 
are easily generalized to other models be simply adding 
the contributions of further particles to (3.12/13/16/18). 

The central result of our investigation is that the 
two gauge independent calculations based on vertex 
functions (VDEA and EGT) perfectly agree with the 
S-matrix calculation of M M O M  within the uncer- 
tainty due to higher order corrections (see Table 2). 
This is a consequences of the (non-trivial) coincidence 
of the IR-limits of the respective threshold functions 
(which are compiled in Table 1). Thus we have not 
found evidence against the physical relevance of the 
off-shell VDEA, which is presently invoked in 
situations where one cannot resort to the S-matrix 
[14,15]. Of course our considerations do not provide 
a general justification for such applications. 

As to our particular application to GUTs, it is well 
known that the minimal SU(5) model is ruled out by 
the experimental limits on proton decay in the 
p ~ e + + n o decay chanel, which imply [30] 

MeXp. > 6 x 1014GeV. (4.3) x 

Our accurate calculation of the Weinberg angle (4.2) 
shows that the minimal SU(5) model is also in conflict 
with recent experimental determinations [31] 

(S2s) ~p = 0.230(5) (4.4) 

of this observable. 
The methods and results proposed in our present 

work may be applied to more elaborate GUT models 
without difficulty as well as to the GWS model, which 
is nowadays subject to experimental tests with 
increasing accuracy. For higher loop calculations the 
EGT approach is no longer applicable in its present 
formulation, however with the VDEA or the M M O M  
scheme there are the necessary tools for a manifestly 
gauge independent perturbation theory. 

Appendix A: two-point functions of a general 
spontaneously broken Yang-Mills theory in the 
Landau-DeWitt gauge 

In this appendix we list the (dimensionally regularized) 
analytic expressions for all (massive) l-loop 2-point 
functions of the gauge bosons of a general 
spontaneously broken gauge theory in the Landau-  
DeWitt gauge. 

Lvwxr(k; too, m~) denotes a self-energy graph whose 
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2 vertices are connected by the 2 (mixed) propagators 
Avw(rnl) and Axr(mo). (The particles V and X enter 
the same vertex.) Lvvxx is abbreviated by Lvx, and 
Lx denotes the tadpoles. Some loops, which in all 
models contribute in a particular universal combi- 
nation, are already combined with the corresponding 
relative symmetry factors. We further use the 
definitions 

k 2 

~ = ( 4 2 n  V -- In ~fiSfi2 -- In 2),  

2 2 2 2 )~ - -  m ~  a -  m ~  + m x  5 - m ~  - -  ml 
_ k 2 '  _ _  k 2 ' _ _  k 2 ' 

r = l ~ / 1  + 2 0 + 6 2 ,  X =m2 (A.I) 
2 ~ 

m I 

1 + a + 2 r  
~(a,  3) = r In 

1 + a - - 2 r '  

U + ~---U1U2 -~-ala2, 

where v -+ refers to a fermion loop with a general 
fermion-gauge-boson coupling ~u(vi+ai75) at the 
vertices i = 1,2. (Note that ~ = ~ - In(morn1~#2).) 

Gauge sector 

(LAA + 2LAAAL + 2LLAAA + 2LALLA + 2LJ(k ;  m0, ml) 

= (gu~k2 - kuk~){ 22 ~ +1412962 + (5062 - 31)6 

+ 14~4 + 4~2-  28] ~(raZ' 6 )13  (o- + 262 + 8)~(o-, c5 ) 

(36 + l)a + 3 

25 5 62 _{_ 205 
6 a - ~  18 q-gu~k2 (A.2) 

�9 { i c r ~  + 1161262 + (5 - 1362)a-- 764-- 562 + 2] 

~(a,  6) 12 r 2 (4o- I~ 2 ~- 1)~(0", 6) 

+ ~ ( 6 2 - 2 ) l n x + - a +  62 
2 

L A = g u , a ( ~  + �89 (A.3) 

L, = 1 - + �89 (A.4) - g u v a ( ~  

Goldstone sector 

3 64 

+ .,,  8 J \ 32  8 
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(764+5162 3) E66 
+ \ 4  32 +16  6 + 2 4  

+ 1 3 6 4 + 1 1 6 2  1 19(6 ,6)  __ __ ---I- 
16 32 ~ J  ? 

+ 5 ( 6 2 -  3 6 -  1 ; 5 2 -  1 ) l n x  

- 2  14r 2 

+0"2_ 106-3 1~9 52 - ~ } 3  (A.5) 

+ gu~k2{ - 26j~ + [464 + (962 + 4)63 

+ (364 - 2762 + 1)0" 2 - (3964 + 3062)6 

- 1166 - 1964 - 762] 9(6, 6) 
32r 4 

3. 3 '4') - -  + 6 +  52 lnx 
4 2 

--5 J4r 2 

_ _  962} 10"2_0"+ 
2 2 

L x = g , , 6 ( ~  + �89 (A.6) 1{ 
LAx = (gu~k -- kuk~)k2 [363 + (662 + 126 + 5)62 

+ (254 + 1463 + 962 + 106 + 2)6 + 465 

+ 264 + 663 + 362 + 26] @(6, 6) 
32r 4 

1 
2((6 + 1)6 + 262 + 6)In x 

1 
-- (62 "~- (62 "1- 26 + 1)6 + 53 + 62 -t- 6)8r2 

~(6+  35+ l )}+gu~{ --3~4 

- [40" 3 + (952 + 146 - 7)0" 2 

+ (354 + 1953 - 62 + 96 -- 10)0" 

+ 665 - 54 + 753 -- 262 + 6 -- 3] 9(6, 5) 
64r 4 

1 
+ ~((36 + 1)6 + 652 - 6)lnx 

- (62  +(62 +25 + 1)0"+63 +62 +6) 

l 6 1} 
"8r 2 + 4  -la + - (A.7) 

moLxxAx = (gu,k 2 - kuk~)(0" + 6) 

' / -  [663 + 0262 - 216 + 5)62 

+ (464 - 2763 + 962 -- 176 + 1)a 

- 865 + 64 - 1253 + 262 - 35] 9(6, 6) 
64r 4 

+ (60 -2 + (462 -- 76 + 3)a 

--463 + 6 2 - 3 6 ) l @ 2 r 2 - 6 } + g u v k 2  

+ 6){- +E463 +(962_ 156+8)62 

+ (364 -- 2003 + 1262 -- 126 + 5)6 

-- 665 + 264 -- 963 + 462 -- 26 + 1] 9(6, 5) 
64r 4 

+ ~((2 -- 36)6 + 662 -- 26)1n x 

-- (462 + (362 -- 56 -1- 2)ff -- 353 + 62 - -  25) 

,A8, '16r 2 t- 4 

2 
LAxxA = (g.~k 2 -- kuk~) _ k2 

"~[362 +(652 + 2 ) 6 + 2 6 4 +  352 ] 9(6,6) 
( 16r 4 

6 + 6 2  } 
- 6 1 n x  1 

4r 2 

9u~2{[462 + (962 + 3)6 + 364 + 5 6 2 - ]  + 

.~(a,  5)32r 4 4351nx ~ 2 21} (A.9) 

2mo(LAAAx + LAALz -- LALxA ) 

kuk~) t -- [(36 + 2)62 + (263 + 552 + 35)6 (gu~k 2 

+ 264 + 263 + 52] 9(6 '6)  
8r 2 

1 2 + ~ ( a  + ( 2 6 2 + 3 b ) a + 2 b  3+252)1nx 

+ (6 + 1)6 + 62 -1- 6} guvk 2 + 



+ (363 + 1132 + 133 + 5)0 + 334 

+ 533 + 33 + 533 3) 
16r 2 

~(3a 2 + (332 + 83)a + + 532)1nx 333 

]((33 + 8)0 + + 83) 332 

LAxA z + LAxL x + LLzA x 

= (gu~k2 - kuk~)2 { - (a + 32) ~(4r'23) 

+ (a + 232 +12)lnx + l } + gu~k2)o 

" { - ~  + ~(o, 3)-~(o + 332)1nx-2}. 

Matter sector 
1 2 miLAn + ~ Lxn + rn~ LAznn 

(A.IO) 

(A.11) 

f 1 
= (g. k 2 - + 1 - s o  2 + ( 2 0 3 2  - 3 3  + 11)0 

~. 9 (0 ,  3) 
+ 83'* + 1332 -- 33 + ZJ 96rS-r2 

_ 148((123_3)a+833+93)lnx_;(a+32)_~} 

- [802 + (832 -- 9fi + 5)0 + 234 

1)o 

+233 - 4 3 2 + 3 3 ) l n x - 1 4 ( 3 a + 3 2 ) - 6 }  (A. 12) 

Lnn:(g ,~kZ-k ,k , ) f -13(~-(20  +432 + 1)~(a, 3)) 

- (a+~32+~)31nx-43(a+32)+:}  

+ (.Juvk2 { -- o ' ~  -- 32~.@(o', 3) 

+~(a+32+l)31nx-a+b 2} (A.13) 

Ln = 9,~o~(,~ + 1) (1.14) 

LFr=(g.~k2-k.kJv + I - 4  (~ +(a + 2 6 2 -  1)~(a, 3)) 
[ o 
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+ (2a  + ~32)31nx + 83(0 + 32) -  20 } 

g~vk2I(42v - 2ov+)~ + 

+ [2v + (a + 32) _ 4v- 23 ~(0, 3) 

+ [2v-2 - v+(2a + 32)]31nx 

- 2v+ (2a + 32) + 8v-2 t. (A.15) 

The calculations in this appendix have been 
performed using the computer program for symbolic 
calculations MACSYMA. 

Appendix B: gauge boson self energy in the 
Landau-DeWitt  gauge for minimal SU(5)  

In this appendix we compile the l-loop self energies 
of the gluon, the photon, the Z and the W -+ in the 
minimal SU(5)-model in terms of the diagrams given 
in Appendix A. 

So2 = 1 _ Co2 denotes the square of the sine of the 
3 in the Weinberg angle, which is equal to 

SU(5)-model. Omitting the contributions of all 
superheavy particles the following formulae im- 
mediately apply to the Weinberg-Salam model if So 
is treated as a free parameter. (Then g is the SU(2) 
coupling constant and e = sog is the electromagnetic 
coupling. The subscript 0 refers to the classical 
Lagrangian (tree level).) 

Apart from omitting the momentum dependence in 
the arguments of the loop functions L we conform to 
the conventions of Appendix A. M 3 and M8 denote 
the masses of the superheavy Higgs colour triplet and 
octet, respectively 1-63. M5 is the mass of the Higgs of 
the standard model, the remaining designations are 
self-explaining. The matter contributions are written 
down only for the first generation. In the symmetric 
case m o = m~ = M we further use the abbreviations 

1 1 LSA = ~LAA + gL A + 2LAAAL + LALLA + L.. + 2L,,, 
(B.1) 

1 Lsz = ~Lzz + L z + mZLax 
+ 2M(LAAAz - -  LALzA + LAALx)  

-- 2MLzxax + LAzA x + 2LAxL x -- M2LAzxA . 
(B.2) 

L~v is the fermion loop in case of pure vector 
coupling. 

According to the Lagrangian of minimal SU(5) we 
obtain the following expressions. 

Photon self-energy 
2 { 34 

IIAA__ l~2S 2 2LsA(Mw)+~_LsA(Mx ) 

34 
+ 2Lsx(Mw) + ~Lsz(Mx) 
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+ ~(Lnn + 2Ln)(M3) + (Lnn + 2Ln)(2M8) 

4 13 } + L~v(me) + ~LvF(m,) + L~,(ma) . (B.3) 

Gluon self-energy 

1-1oo ~2 { -- 3LsA(O ) + 2(LsA + Lsx)(Mx) 
16n 2 

+ ~(Ln  n + 2Ln) (M3)  3 + ~(L~,, + 2L,,)(Ms) 

+ ~Lrr(m,) + ~Lvn(ma) }. (B.43 

W self-energy 

I IW+ w_ -- s2(LAA + 2LAAAL + 2LLAAA 
16r~ 2 

+ 2LALLA + 2L.,,)(O, Mw) 
2 2 + so(MwLA z -- 2MwLAAAz 

+ 2MwLALxA -- 2LAALx)(O, Mw) 

+ c2(LAA + 2LAAAL + 2LLAAA 

+ 2LALLA + 2LJ(Mz,  Mw) 

+ ~LA(Mw) + ~C2LA(Mz) 

+ 2L,(Mw) + 2c2L,(Mz) 

(s * 1 o 2 
+ c~MwLAx+~Lxz 

2 + 2SoMw(LAAA x -- LALxA + LAxL x) 

+ Co(LAxAz + LAzL  x + LLxA;~) 

) ~ MwLAxxx (Mz, Mw) 
CO 

1 1 
+ }Lz(Mw) + ~Lx(Mz) 

+ (MZLAn + 1 4Lzll 

+ MwLaznn (Mw, Ms) + ~Ln(M5) 

+ 3(Lsa + Lsx)(Mx) + (LI~ H + 2Lu) (2Ms)  

+ LFF Vi = ~, ai = -- ~;m.,m a 

+ LFF vi=~,ai =-~;O,me . (B.5) 

Z self-energy 
-2 g S 4 
9 2 2 0 

/ / z z  = ,  ~_2 ~ 2coLsA(Mw) + 2Mw~z(Lax- LAzxA)(Mw) 
IOTC [ C o 

/ / C  2 __ S2 'X 2 

+ ~ C  'o "-~ (Lxx + 2Lx)(Mw) 

2 - 4MwSo(LAAAx -- LaLzA + Laaex)(Mw) 
S 2 
0 2_  so)LzxAx(Mw) + 2Mw 2(Co 2 

C 0 

2 2 + (c o -- So)(LAxAx + 2LAxLx)(Mw) 

+ 6c2(LsA + Lsx)(Mx) 

+ cl ( M2 LAH + ~ Lxn + MzLAxnn )(Mz, Ms) 

1 
+ 4~c~(Ln(M5) + Lz(Mz)) 

S 2 
+ ~O(Lm~ + 2LH)(M3) + 2 co(Lml + 2LH)(2M8) 

3c o - 5s o 1 . m 
, a i  - -  + 3LFF v i -  12Co 4-c o '  " 

+ 3Lvv(vi-  - 3c2 + s2 1 "m 
' a i  = 4Co ) 12Co - - - ,  d ( 2 2  ) 

3s o -- c o l . m 
LFF Vi = . . . .  , ai = , e 

4Co 4Co 

\ 4c o 4 o ;0 " (B.6) 

Mixed photon-Z self-energy 
,q2 { 2 

I I  A z  = - 2coLsA(Mw) - 9 so all 2 16~ 2 SO c o 

C 2 __ - 2  

(LAx -- LA,~A)(Mw) + 2Co~~ + 2L,)(Mw) 

C 2 _ S 2 
c~ - 3S2MwLxxaz(Mw ) + 2~p.. ~O M w 

CO C O 

3C2 -2 
"(LAAA~ -- LAL~A + LAAL~)(Mw) + ~0 --f0 

2Co 

"(LAxA x + 2LAxLx)(Mw) -- 2Co(LsA + Lsx)(Mx) 

-- c--~ (Lnu + 2Ln) (Ma)  + co(Lnu + 2Ln)(ZM8) 
5 

3c o --  5s o 
+3LEe v +=v -- - --  ;m~ 

18Co 
( 2 2 3c o - s o "~ 

+ 3Lvv v + = v - -  ,r ;mal 
30Co / 



( 2 2 ) c o - 3s0. 
q -  L F F  V + : V -  - -  - - - -  , m e . 

4C0 
(B.7) 

(B.6/7) have not been used in Chap. 3 and are given 
for the sake of completeness. The mixed self energy 
(B.7) can be shown to be finite and transversal, which 
enables a powerful check of,the analytic expressions 
in Appendix A and of the group factors derived from 
the SU(5) Lagrangian. 
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