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We study the fermion energy level crossings in the background of scalar fields, which interpolate adiabatically between config- 
urations of different topological numbers; for example, those evolving from the normal vacuum to a final skyrmion. We evaluate 
numerically the energy eigenvalues and we analyze the existence of zero energy modes, as a function of the fermion mass, mr, the 
typical mass scale of the soliton, l/ps, and the intermediate adiabatic path. No energy level crossings exist for mr< 1.5/p~ while 
one level crossing occurs for mr> 1.5/p~, whenever the intermediate path implies no fermion flux at spatial infinity. Exactly the 
opposite conditions are obtained whenever the path allows fermion current flow there. We explain how, in both cases, the skyr- 
mion carries the fermion number of any fermion with a mass mf> t .5/ps, as expected. We also extend our analysis to a soliton of 
winding number 2 and finds similar results. 

The Higgs sector o f  the s tandard  weak interact ions 
is a l inear  a -model  [ 1 ], and may suppor t  topologi-  
cally metastable  solitons. However ,  the quart ic  cou- 
pling of  the Higgs fields, 2, is a free pa ramete r  not yet 
constra ined by exper iment .  Imagining the Higgs sec- 
tor as an effective low energy theory, one can take an 
infinite 2 l imit  and obta in  a nonl inear  a -model  with 
stable soli tons [2,3 ] ( skyrmions)  ~.  In our  previous  
work [4] ,  we have evaluated,  using the adiabat ic  
method  [ 5-7 ], the fermionic  charge induced by the 
scalar fields considered as background for the fer- 
mions. We proved there, with appropr ia te  examples,  
that  the correct  fermionic  induced charge in the 
background o f  the final scalar configurat ion may dif- 
fer from the induced charge evaluated  naively, apply-  
ing the adiabat ic  current expression, depending on the 
in termedia te  path one considers.  To obta in  the 
ground state charge of  the final scalar field, one must  
take into account  the existence of  zero energy modes  
[7] ,  since the relat ion between the induced and 
ground state charges and the number  of  zero energy 
level crossings n+ ( n )  in the posi t ive (negat ive)  di- 
rection o f  the energy axis is [ 8,9 ] 

~ It is necessary to include a stabilizing term for the scalar fields, 
for example, a skyrme term. 

Q i n a . = Q G s b n + - n  . (1)  

The ground state charge, Qcs, is related to the spec- 
tral asymmetry  of  the hamiltonian,  q [HI ,  in the usual 
way [10] ,  Q ~ s = - ~ / [ H ] .  D ' H o k e r  and Fahr i  [8] 
have studied, in the f ramework of  the nonl inear  a- 
model,  the appearance  o f  zero energy modes,  as a 
function of  the fermion mass and the typical mass 
scale o f  the scalar field. These authors bui ld up adi- 
abat ical ly a final skyrmion of  winding number  one, 
start ing from the normal  vacuum, and find that  no 
energy level crossing occurs if  the fermion Compton  
wavelength, 1/mf, is much smaller  than the soliton 
width,  Ps, while one and only one level crossing oc- 
curs for 1/mf>>p~. They conclude that  the skyrmion 
carries the fermion number  of  any fermion with mass 
of  the order  of, or greater than, its own typical  mass 
scale. Kahana  and Ripka  [ 11 ], a r r ived at a s imilar  
conclusion, by evaluat ing explicitly, in a static back- 
ground, the relation between the fermion number  and 
the winding number  of  the soliton. 

The ground state charge is independent  o f  the way 
one arrives at the final configuration.  It follows then, 
from eq. (1)  and the fact that the induced charge 
value depends  on the in te rmedia te  path [4] ,  that  the 
number  of  zero energy level crossings must  also de- 
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pend on this path. In this letter we will show this de- 
pendence explicitly. Even though the present work 
concentrates on the skyrmion, our results confirm the 
empirical method proposed [4] to obtain, using the 
adiabatic current expression, the correct induced and 
ground state charges for more complex configura- 
tions, for example: the sphaleron [ 12 ]. We will show 
also, for completeness, that the different number of 
zero energy modes which appear, depending on the 
intermediate stages, are consistent with the physical 
fact that the ground state charge of a soliton can be 
identified with its topological charge, whenever heavy 
fermions or, equivalently, a wide soliton are 
considered. 

We take a a-model coupled to an SU (2) doublet 
fermion ~u, treating the 0, quartet of scalars fields, (00, 
O), as background, 

~ =  ½0uOa 0 IZOa -- 12 ( 0  2 --/)2 ) 2 _~_ iqT~ q/ 

- -  (gy/x/~) ~(0o + ig's O" ~r)q/. (2) 

We will consider two different expressions for the 
scalar fields, to build up adiabatically the final skyr- 
mion of winding number one, starting from the nor- 
mal vacuum. As a first possibility, consider 

~ o = V { 1 - h ( t ) [ 1 - A ( r ) ] } ,  

(~=vh( t )f2( r)r /r  , (3) 

with 

f ~ ( r ) = l - 2 e x p [ - r  21n(2)/p 2] , 

f2(r) = - 2 x / ~ - e x p  [ - r  2 In (2 ) /p2 ]  

× e x p [ - r  2 ln (2 ) /2p  2 ] , (4) 

and h(t)  being a function which varies slowly and 
monotonically from 0 to 1. Using the adiabatic cur- 
rent expression [ 5 ], 

( j " (X)  ) 

=Ecla&.~"eeB'/~d~aOa~Ot,~,O,./127~210] 4 , (5) 

we can, in principle, evaluate the fermionic induced 
charge in the above background. Eqs. (3) are the 
normal vacuum, ( v, 0), at spatial infinity for all time 
t, and so they give no fermion current flow there. This 
means, since we are dealing with scalar fields, that no 
fermionic charge may be induced in this background. 
However, if one calculates the induced charge using 

naively eq. ( 5 ), a different value is obtained, namely 
1. Such incorrect value is due to the presence of a sin- 
gularity in the current expression, which always ap- 
pears for somewhere vanishing background fields, like 
those of eqs. (3) at r=  0 and h (t = 0) = ½. This appar- 
ent discrepancy is discussed in ref. [4], where we give 
examples to show that the real induced charge differs 
by one unit from the one evaluated adiabatically, 
whenever a zero value for the scalar fields occurs at 
an intermediate time t, at r=0 .  

As a second configuration, we consider the follow- 
ing expression for the scalar quartet: 

¢o = - v c o s { h ( t )  [n-arccos f i ( r )  ]} , 

4 =  v sin [h(t)  arcsinf2 (r) ] f ,  r<~p~, 

=-v s in {h ( t ) [n+arcs in f z ( r ) ] }~ ,  r>ps, (6) 

with h(t) ,  f~(r) and f2(r) being the same as above 
and arcsinfz(r) and arccosf~ (r) taking values in the 
intervals [ - n/2, n/2 ] and [ 0, n], respectively. Eqs. 
(6) give an intermediate configuration which allows 
fermion current flow at spatial infinity and is non- 
vanishing everywhere. In this case, the final induced 
fermionic charge is obtained directly from the adi- 
abatic current expression, since this is well defined 
for all points. The result coincides then with the top- 
ological charge of the soliton. Note that configura- 
tions which allow fermion flux at spatial infinity are 
required, whenever one is working with a nonlinear 
a-model, since in these models the charge in the 
winding number cannot be achieved through a some- 
where vanishing field. 

Both configurations, eqs. (3), (6), reduce to the 
skyrmion at h (t) = 1. In order to look for zero energy 
modes in both backgrounds and study the depen- 
dence of these modes on the soliton width, consider 
the Dirac equation in the background of a general 
scalar quartet 

ia'%, 7/ -  (gy/x/2)(0o +iq~'oTs) ~'= 0 .  (7) 

The isospinor components, ~un, can be decomposed 
into upper and lower components: ~u, = (~,+), and in 
the Dirac representation eq. (7) becomes, 

+ "  -y 
[ ( ~ ' P ) i j  (~ . . . . .  lmf~i j ( (J '~)nm]ZIm 

- -  + 

-= ( E +  mfOo)Xin , ( 8 )  

with n, m =  1, 2 and i, j=  1, 2 being the isospin and 
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Lorentz indices, respectively. For  our  case, since 
Oo=Oo(r),  O=O(r)O,  following ref. [ 13], we observe 
that the grand m o m e n t u m  operator ,  defined as 
M = j + I ,  with j =  1+ s being the ord inary  angular  mo- 
mentum and I being the isospin, commutes  with eq. 
(8) .  So, it is useful to expand the Z + components  in 
eigenstates of  M 2 and M3. The solutions of  eq. (8)  
will also have upper  and lower components  of  defi- 
nite, opposi te  parity.  We now define 2 X 2 matr ices  
~//~ by 

Z,+,, = ~YI,+,,, a2 ...... ( 9 ) 

and expand ..tl +- in terms of  two scalar and  two vector  
functions 

Jl,+,,,(r) =g+ (r)6,,., +g"+ (r)a.  ..... ( i0 )  

which can be themselves  expanded  in terms of  scalar 
and vector  spherical  harmonics  [ 13 ] 

g ± ( r ) =  Z G ] f ( r ) Y M , v 3 ( . Q ) ,  

g " ± ( r ) =  Z [P/( t (r )~ .~ ,u~(-Q)  
A] M3 

± ~ a ~-: r ~ a . + B v ( r ) . ~ t M ~ ( g 2 ) + C , ~ , (  ) ~f.~,~,~(s'2) ] (11)  

Eq. (8)  reduces, for M =  0, to a set of  coupled equa- 
t ions involving pT and G*±: 

0,-P + (x)  = [{oo(x )T-E]G +- ( x )  

- [ 2 / x + _  q ~ ( x )  ]P~ (x) , 

O~G + (x)  = [q~o (x)  -+ E ] P  + ( x )  +_ ~o(x)G +- ( x )  , 
(12) 

with G ± = ~ i G * + ( x ) .  In eq. (12) ,  we have rede- 
fined variables in terms of  the fermion mass, mr=gyV/  

x ~ ,  as E ~ E / m r ,  x =  rmr ~2, and  dimensionless  fields, 
with ~o=Oo/V, ~=O /v. We evaluate the energy ei- 
genvalues only in the case M = 0 ,  based on the as- 
sumpt ion  that  the zero energy modes,  i f  they exist, 
are expected to appear  for the lowest grand momen-  
tum orbitals.  This assumpt ion  is actually proved in 
ref. [ 8 ], where it is shown analytically,  in the frame- 
work o f  the nonl inear  o-model,  that  the zero energy 
mode appears  in the M =  0 orbital ,  while bui lding up 
adiabat ica l ly  a sufficiently narrow skyrmion of  wind- 
ing number  one. 

In order  to solve eqs. (12) ,  we use a var iab le -order  

~2 This redefinition leads also top=pJrnf. 

variable-step Adams  technique [14] and the itera- 
t ive method  proposed  in ref. [ 15 ]. In this way we ob- 

tain the energy eigenvalues corresponding to differ- 

ent values of  the pa ramete r  p and to the different 

backgrounds,  as the scalar fields evolve from the vac- 
uum to the skyrmion.  

Let us now recall the point  we are pursuing. The 

induced charge differs by one unit  from the adiabat ic  

one, whenever  one has an in te rmedia te  background 
which vanishes somewhere before the final n =  1 

skyrmion is arr ived at. Since the final ground state 

charge of  the soliton is independent  of  the way in 
which we bui ld  it up, from eq. ( 1 ) it follows that  the 

number  of  energy level crossings, depends  on the in- 
te rmedia te  background fields. I f  the scalar fields 

evolve from the vacuum to the skyrmion through the 

path with no fermion flux, the number  o f  zero energy 

modes  obta ined  should differ by one unit  from the 

number  of  modes  obta ined  extrapolat ing between 

these configurations, using the nonlinear a-model  (i.e. 

along a path with fermion flux at spatial  inf ini ty) .  To 

prove this point,  we plot in fig. 1 the lowest energy 

eigenvalues, that correspond to the set of  eqs. (12)  
involving P - ( x )  and G + ( x ) ,  as a function of  the 

evolving backgrounds,  eqs. ( 3 ) and (6) ,  for different 

E 
1 

0.5 

-0.5 

-1 
0 

"'  2222 
.->-?,~j-~<~. 

(22 0.~ 0.6 0.8 
h(U 

Fin 1 

Fig. 1. Fermion energy for M=0 as a function of the evolving 
scalar backgrounds, for different values of the size parameter 
p = turps. The energy values corresponding to an intermediate path 
with fermion flux at spatial infinity are drawn with dot-dashed 
lines, and those belonging to an intermediate path without fer- 
mion flux are drawn with dashed lines. The full lines correspond 
to the critical value p= 1.5~p~.. Note that at h(t)= 1 the energy 
eigenvalues coincide, since they correspond to the same back- 
ground for each p. 
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values o fp  ~3. From now on we define p=p,.~- 1.5 as 
the value ofp  for which a zero energy mode exists in 
the skyrmion background, h (t) = 1. We see that in the 
no fermion flux case, one zero energy level crossing 
occurs before the final t ime for a n y p > p c  and no level 

crossing occurs whenever p <Pc. As we already said, 
in this case we have zero induced charge, Q i n d . = 0 .  

Then using eq. ( 1 ) we obtain 

QGs = Qi,d = 0  f o r p < p ~ ,  

=Qi ,o .+  1 = 1 f o r p > p ~ .  (13) 

On the other hand, in fermion flux case we see that 
the same energy level crossing condit ions hold for the 
opposite relations of the size parameter. This means 
that, as suggested, the number  of zero energy modes 
in this background differs by one uni t  with respect to 

that of the no fermion current flow case, for any value 
ofp. In this case the induced and topological charges 

are the same, Qind. = Qtop. --- 1, and this leads to 

Qcis = Qind. -- 1 = 0  f o r p < p ~ ,  

= Qi,d. = 1 for p > p c .  (14) 

We note, from eqs. (13),  (14),  that the induced 
charge value and the number  of zero energy level 
crossings arrange themselves, in each case, to give fi- 
nally the same path independent  ground state charge. 
Furthermore,  the soliton fermionic charge can be 
identified with its topological charge whenever 

p=p~mf>p~. That is, whenever mf> 1.5/p~. 
One can obtain the same conclusions in an alter- 

native way, which allows the connect ion of our re- 
sults for h(t)  = 1 (skyrmion)  with those obtained in 
ref. [ 11 ]. In fig. 2, we plot the fermion energy as a 
function o fp  and obtain different curves for the dif- 
ferent values o f h ( t ) .  Let pL-=0 (t) ,  be the value ofp  at 
which a zero energy mode occurs for any value of 
h(t) ,  thus Ps_o( 1 ) =p~_~ 1.5. Analysing the curves 
obtained for different times, in both the flux and no 
flux case, we can calculate the change in the ground 
state charge value carried by each scalar configura- 
tion, depending on the value ofp.  For each value of 
h (t),  irrespective of the type of background fields, the 
M = 0  orbital has positive energy forp<pE=o(t). Thus 
in the ground state these levels must  be empty. For 

,3 The set of eqs. (12) which involves P+ (x) and G- (x) has no 
zero energy level crossing in these backgrounds. 
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Fig, 2. Fermion energy for M= 0 as a function ofthe size param- 
eter p. Different curves correspond to different scalar back- 
grounds, depending on h (t). The energy values corresponding to 
the static backgrounds with fermion flux at spatial infinity are 
given by dot-dashed lines and those of configurations without 
fermion flux, are given by dashed lines. The energy eigenvalues 
for the skyrmion background of winding number one [h(t) = 1 ] 
are plotted as a full line. 

P > PE=o (t) this orbital has negative energy and in the 
ground state the levels will be filled, thereby increas- 
ing the fermion number  by one unit. In the no fer- 
mion  flux case, we have that forp = 0, the scalar fields 
give the trivial background for any value of h (t) ,  and 
carry then zero fermion number .  This means we have 
QGs = 1 whenever p>pE=o(t). In the fermion flux 
case, we cannot know a priori the ground state charge 
of each intermediate configuration, since we have no 
trivial background for any value of the size parame- 
ter. However, since each curve in fig. 2 is at a fixed 
value of h (t) ,  there is a fixed induced charge for each 
curve. Let us call Qi,d.= ce (t),  with c~(t) varying from 
0 to 1 as h(t)  varies also from 0 to 1. From fig. 1 we 
have that QGs = Qi,d. forp>pE=o(t) for any value of 
h(t) .  Since the fermion number  is increased by one 

uni t  for p>pE=o(t), then QGs=Qina. - 1 =c~(t) - 1 
whenever p < PE = o (t) .  

We can now extend all the above considerations for 
scalar field configurations which interpolate, once 
more through different intermediate paths, between 
the vacuum and a final soliton of winding number  2. 
In the no fermion flux case, with scalar fields (0o (r, 
t), O(r, t)~), there are two different ways of building 
up the interpolating backgrounds. The first option, is 
to construct a configuration which vanishes twice for 
r =  0, at two different values of t, going to the normal  
vacuum as r~oe .  We illustrate the above option in 
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fig. 3a, in the dimensional ly  reduced version of the a- 
model: an 0 ( 2 )  theory in 1 +1 dimensions.  This is 
only because it is easier to visualize circles than three 
spheres. Using this way to build up the n = 2 soliton, 

a %(rO 

(~1{rl) 

b ¢°(rl) 

= £bl(rl) 

Fig. 3. Parametric curves 0o=¢o(Irll), 0~ =O( Ir~l ) sgn(rl), in 
1 + 1 dimensions, for different intermediate scalar fields which 
evolve adiabatically from the vacuum to a final soliton of wind- 
ing number two, with fixed conditions at spatial infinity: (a) sca- 
lar configuration with two zero values at r=0 at different inter- 
mediate times. The dotted, dashed and full lines represent the 
backgrounds of winding number zero, one and two, respectively, 
at a fixed time. The arrows show how these backgrounds evolve 
into each other with increasing time. (b) scalar configuration with 
a zero value at r¢ 0 and at a fixed time t. The dotted and full lines 
are the static backgrounds of winding number zero and two, re- 
spectively. The dashed line is the static configuration when the 
winding number changes. The arrows show the direction of in- 
creasing r~. 

the results of  ref. [ 4] can be easily extrapolated. This 
means that, since the correct induced charge differs 
by one unit  from the adiabatic charge, whenever a 
zero of the scalar background appears at one inter- 
mediate t ime t at r =  0, then with the present back- 
ground, we have Qmd = 0, even though the adiabatic 
charge is Qa~. = Q, op = 2. The second possibility, which 
of course must be equivalent to the first one concern- 
ing the results for the induced charge, is the one in 
which the scalar fields vanish only once at a fixed 
value of t, but at r #  0, and are the normal  vacuum at 
r ~ o v  and r = 0 .  We illustrate this second option in 
fig. 3b, also for 1 + 1 dimensions. 

To study the number  of zero energy modes in the 
no fermion flux case, consider for simplicity a scalar 
field configuration of the second type ment ioned 
above, which can be taken as 

0o ---v{ - 1 + h ( t )  [ 1 + F, (r) ]},  

O=vh( t )F2(r)  , (15) 

where 

FI (r) = - c o s t 2  arccosf~ (r) ] , 

F2(r) = s i n [ 2  arcsinf2(r)  ] i r<~ps, 

= - s i n [ 2 a r e s i n f 2 ( r ) ]  i r>~ps. (16) 

For the fermion flux case the scalar quartet reads 

Oo = - v c o s { 2 h ( t )  [ 7r- arccosfl (r)  ] ) ,  

•=vs in [2h ( t )  arcsinf2(r)  ] ~ r<~ps, 

= - v s i n { 2 h ( t )  [~+a rc s in f2 ( r )  ]) i r>~ps. 
(17) 

In both set ofequationsf~ (r)  and f2 (r) have the same 
expressions as in eqs. (4) and h (t) varies monoton-  
ically from 0 to 1, as before. Eqs. ( 15 ), (17) reduce, 
for h( t )  = 1, to the same soliton configuration of top- 
ological charge 2. 

We solve eqs. (12) for each of the above back- 
grounds. We find, as shown in fig. 4, two different 
solutions for P+,  G -  and P , G +, with zero grand 
momentum,  which have zero energy modes for cer- 
tain values of p. This leads to two different critical 
values for the size parameter, Pc, -~ 1.1, for the set of 
equations involving P+,  G -  and Pc_~ -~ 3.35, for the 
set of equations involving P - ,  G +. In figs. 5a and 5b, 
we plot the energy eigenvalues as a function of the 
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Fig. 4. The same as fig. 2 but with the scalar background evolving 
from the vacuum to a soliton of winding number 2. Two M=0 
orbitals give zero energy modes. At h(t)= 1 (n=2 soliton) we 
have two critical values of the size parameter p~, _~ 1.1 and 
p~ ~- 3.35. 
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evolving scalar fields, for M =  0, with solutions for P +, 
G -  and P - ,  G +, respectively. Analysing our results, 
we have again that  the number  of  zero energy modes  
depend  on the in termedia te  path,  in this example in 
a more  compl ica ted  way as before. For  P<Pc,, there 
exists two energy level crossings, while bui lding up 
the final n = 2, soliton through the path with fermion 
flux at spatial  infinity, and no zero energy mode ap- 
pears if  the in termedia te  path  allows no flux there. 
For  P>Pc2, instead, no energy level crossing occurs 
when the path  allows fermion flux at spatial  infini ty 
and the number  of  zero energy modes  differs again 
by two units from the one obtained,  when the path 
gives no fermion flux there. For  P>Pc, and p<pc:, 
both in te rmedia te  configurations give, finally, one 
zero energy level crossing, but  these appear  in differ- 
ent M =  0 orbitals.  On the other hand,  doing an anal- 
ogous analysis as in ref. [4] we have that, if  we eval- 
uate the adiabat ic  fermionic charge, Qad, using eq. 
(5)  and considering the scalar fields given in eq. ( 17 ), 
the result reads Qad.---- Qtop. = 2. Since, with this back- 
ground, the current  expression is perfectly well de- 
f ined at any point,  the above result gives the correct 
induced charge, Qina.= Qaa. = 2. However ,  i f  we use 
eq. (15)  the adiabat ic  result is still two but, as we 
al ready remarked,  the correct induced charge is zero. 
F rom the above results it is possible to observe that  
the number  of  zero energy modes  and the value of  the 
induced fermionic  charge behave, in both cases, in 
the way as to give 

Q G s = 0  forp<pc~ , 

=1  f o r p > p c ~ a n d p < p c 2 ,  

= 2  for p>pca . (18)  

This implies  that  the soliton fermionic  number  can 
be ident i f ied with its topological  charge whenever  
mr>  3.35/ps. The same analysis is possible for soli- 
tons of  winding number  greater than 2. 

I am grateful to Rober to  Peccei for very valuable 
suggestions. I would also like to thank N. Man ton  for 
a s t imulat ing conversat ion.  

Fig. 5. The same as fig. 1 but for the final n=2 soliton and (a) 
the M=0 orbital that gives the critical value Pc,, (b) the M=0 
orbital that gives Pc_~. 
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