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A linked duster expansion is developed for the fl = 0 limit of the SU(2) Higgs model. This 
method, when combined with strong gauge coupling expansions, is used to obtain the phase 
transition surface and the behaviour of scalar and vector masses in the lattice regularized theory. 
The method, in spite of the low order of truncation of the series applied, gives a reasonable 
agreement with Monte Carlo data for the phase transition surface and a qualitatively good picture 
of the behaviour of Higgs, glueball and gauge vector boson masses, in the strong coupling limit. 
Some limitations of the method are discussed, and an intuitive picture of the different behaviour 
for small and large bare self-coupling A is given. 

1. Introduction 

The  nonpe r tu rba t i ve  s tudy of the scalar  sector  of the S tanda rd  Model  is of  crucial  

i m p o r t a n c e  since this sector provides  the mechanism that  gives masses  to the 

e l emen ta ry  par t ic les  of the theory.  I t  is usual ly  assumed that  the system is in its 

b r o k e n  phase  and  that  the masses  appea r  through the vacuum expecta t ion  value of 

the  scalar  fields. However ,  an a l ternat ive  and  still consis tent  pic ture  may  arise if the 

sys tem is in  the symmetr ic  phase  [1]. Since in any case the mechan i sm behind  the 

or ig in  of  masses  is of nonper tu rba t ive  nature ,  its comple te  unders tand ing  may  only 

come  th rough  an analysis  going beyond  the l imits  of  pe r tu rba t ion  theory.  The  lat t ice 

fo rmu la t i on  gives an appropr i a t e  f ramework  for this study,  since it al lows the 

t r ea tmen t  of  the full pa th  integral  def in ing the qua n tum field theory [2]. A n  

i m p o r t a n t  d i f ference  of the lat t ice approach ,  compared  to the usual  pe r tu rba t ive  

analysis ,  is the poss ib i l i ty  of calculat ing corre la t ion  funct ions wi thout  the implemen-  

t a t ion  of  a gauge fixing constraint .  I t  was shown long ago that  the vacuum 

expec ta t ion  value of  gauge noninvar ian t  quanti t ies ,  such as the Higgs double t ,  must  

van ish  if no  gauge fixing is made  [3]. Therefore,  in this sense, there is no sponta-  

neous  s y m m e t r y  breaking*.  N o  local order  pa rame te r  can be used for d is t inguishing 

* However, this does not completely invalidate the semiclassical picture [4]. 
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the Higgs or screening phase from the confinement phase in this theory. In fact, it 
was demonstrated that in SU(N) scalar gauge theories, with fields in the fundamen- 
tal representation of the gauge group, both phases are analytically connected when 
the radial degree of freedom of the Higgs field is frozen [5, 6]. This analytical 
connection is due to the fact that the phase transition line has an endpoint, for 
sufficiently low fl = 4/g  2. This connection disappears if the radial degree of freedom 
is not frozen, for low values of the self-coupling X, where the phase transition line 
does not have an endpoint, and in fact extends to negative values of the gauge 
coupling [7, 8]. There have been many papers lately considering the/3 --* ~ limit of 
the theory. The triviality of the ~0 4 theory is used to put restrictions on the allowed 
values of the renormalized self-coupling XR in terms of the high energy cutoff A, 
which in the lattice formulation is given by the inverse of the lattice spacing a 
[9-12]. Recently, a combination of high temperature expansions with renormaliza- 
tion group analysis has been used as an analytical tool to solve the system in the 
symmetric phase at vanishing gauge coupling, putting interesting bounds on the 
possible Higgs mass value [13]. 

In this article we will concentrate on the opposite side of the phase transition 
diagram, namely the region where the gauge coupling is strong: fl ~< 1. This is a very 
interesting region, since a nontrivial fixed point may exist at the expected critical 
point at the edge of the phase transition surface. The renormalization group analysis 
of ref. [14] is not conclusive concerning the behaviour of the system in this 
neighbourhood. Furthermore, most Monte Carlo analysis concentrate on intermedi- 
ate values of the bare parameters, namely f i - 2  and X>~ 0.1 [16,24]. In the 
interesting region, where both/3 and the bare self-coupling ~ take small values, the 
numerical simulation is difficult. Due to the limitations in the numerical analysis, 
little is known about the SU(N) Higgs theory at strong gauge coupling. A first 
analytical study for these systems has been made in ref. [15] where the large N 
theory at infinite gauge coupling was analysed. 

In this paper we follow an analytical approach to study the strong coupling region 
of the Higgs theory. Our work is inspired by the recent successful analysis of the 
theory in the vanishing gauge coupling limit, where high temperature expansions are 
used to solve the system deep in the symmetric phase, reaching correlation length 
values as large as two lattice spacings, where the system is already inside the scaling 
region [13]. In analogy, the method should allow the solution of the system deep in 
the confinement phase, at small values of the hopping parameter k. We put special 
emphasis here in showing how the linked cluster expansion, used in the infinite 
gauge coupling limit, may be combined with strong coupling expansions to calculate 
analytically the correlation lengths of the isoscalar and isovector states in the 
desired coupling region. In the confinement phase, important questions related to 
the behaviour of masses as one changes the different bare parameters and the exact 
location of the phase transition may be answered, with an accuracy that depends on 
the order of truncation of the series we apply. There are, in principle, no restrictions 
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on the self-coupling X. Although, as we will show, the order of the strong gauge 
coupling expansion necessary to get an accurate picture of the theory is higher, for 
larger values of the self-coupling. In this paper we are more interested in showing 
the capabilities and limitations of the method, than in getting an accurate high order 
expansion. Thus, all the expansions will be given up to eighth order of the hopping 
parameter. We will show also, that the method may easily be extrapolated to any 
U ( N )  gauge group, with scalar fields in the fundamental representation. In sect. 2 
we formulate the model on the lattice. In sect. 3 we elaborate on the general 
technique used. Its combination with strong gauge coupling expansions is explained 
in sect. 4. Sect. 5 contains an analysis of the results and some concluding remarks. 
Useful formulas for the calculations, and details about the derivation of the 
expansions are given in the appendices. 

2. Formulation of the model 

For the formulation of the model on the lattice, we use the parametrizations first 
introduced in ref. [7], which has the advantage of being more suitable for the 
definition of the high temperature expansion. We will choose lattice units, so all 
length scales will be measured in terms of the lattice spacing. The SU(2) Higgs 
action reads 

s=s (u) + l) E 
x x ,  y 

(1) 

where Sg = - 1/3EpTr(Up), Up is the ordered product of link variables U~,. 
the plaquette P and 

around 

(2) 

The relation of the above parametrization with the one used in the more traditional 
continuum formulation of the theory 

is given by 

s~= fdx [(~/~19c)2-[ - m 2 ( q o c ) 2  -Jr- t~.c(qlgC) 41 (3 )  

1 - 2X - 8k 
= _ _  2 (4 )  

qo ~ = qok~ ,  )kz k2  , mc - k 

For future purposes, it is better to represent the Higgs doublet % by its angular and 
radial degrees of freedom, %=0xc~x(la). The integration measure is then 

3 3 3 G dG d axd Ux,~, where d3g denotes the SU(2) Haar measure. The action may be 
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rewritten as 
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E p.{ - k E (s) 
X X X , ~  

where all isospinor like factors are absorbed in the definition of the traces. The 
angular part of the Higgs field may be integrated out for finite ft. For this purpose it 
is useful to introduce a new gauge invariant link variable Vx, = a*xUx..ax+. [17]. 
Using the invariance of the Haar measure, eq. (40), the partition function may be 
rewritten in terms of the variables O~ and V~,., with the integration measure 
O 3 dpx d3Vx,, and the action 

s=s~(v)+xE(o2-1)2+ Eo~-k~_.pxpx+.Tr(V~..) ,  (6) 
X X X , p .  

where both V~,~ and Px are gauge invariant. 

3. /3 = 0 boundary 

3.1. CHARACTER EXPANSION 

For fl = 0, the link variable is random and may be integrated out exactly. In order 
to do this, it is convenient to rewrite 

~ V e x p  k ~] = . f (x, OXox+.Wr(Vx,.)) ~f~gx.,exp[½2kO~ox+.Xf(gx.,)] (7) 

where xr(V~,~) denotes the character of V~,. in the fundamental representation of 
the group SU(2). Some basic properties of the character expansions are reviewed in 
appendix A. The integrand in eq. (7) may be given in terms of a series in characters 
of V~,., with coefficients that are modified Bessel functions of argument Yx,~, = 

2kpxPx+., 

exP[½y~..xr(V) ] = ~ 2 (2 j  + 1)12j+l(Yx..)xj(Vx,.) (8) 
j Y~,~ 

Once this expression is introduced in eq. (7), the only additional step for integrating 
out the gauge fields is an integration over the group variables of the characters of 
the group. The integral of all nontrivial characters vanishes identically, so this 
assures that only the term depending in the trivial character survives. Consequently, 
the result of the integration is 

( k2RxRx+~,) " 2II(Yx'~') I-I ~ nV-...~7]~)v. (9) 
I-[ Yx,. x,.  .=0 X , p .  
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This gives us an effective action for the physical Higgs field p~ = R x. The partition 
function in the infinite gauge coupling limit is then given by 

<~=S~(Rx~Rx)exp[-~(X(Rx-1)Z+Rx)] 
k RxRx+u) (10) 

In the fl = 0 limit of the theory only scalar excitations are present in the spectrum. 
The Higgs field R x = q02q0x is like a meson in the fermion case [15]. In view of the 
results in the cp 4 theory, one hopes that the present theory may he solved by 
combining, at the expected second order phase transition point at the edge of the 
phase diagram, some convergent expansion of correlation functions with renormal- 
ization group methods. The linked cluster expansion explained in the next subsec- 
tion is a first step in this direction. 

3.2. L INKED CLUSTER EXPANSION 

The partition function of the SU(2) Higgs model at infinite gauge coupling is 
given by eq. (10). We intend now to define a linked cluster expansion that is suitable 
to evaluate the correlation functions of the Higgs field and to analyse other 
properties of the theory in this limit. Apart from the finite order of truncation of the 
expansions, no approximations are made in the calculations, and an accurate picture 
of the regularized theory may be obtained. The derivation of the method is given in 
appendix B. At each order, the expansion coefficients are polynomial in the one 
point expectation values 

(R") = - -  (n = 1,2 . . . .  ) ,  (11) 
J0 

J . ( k )  = fo~dRR " + l e x p -  (R + X ( R -  1)2). (12) 

More explicitly, if we define the "one point" generating functional 

.~(X, hx)= fo°~dRRexp[h~R- X ( R -  1)2], (13) 

the expansion coefficients are functions of the moments M n, 

8" ln  ~e(X' hx) by= (14) 
M .  = = - 1  
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In the limit ?, --* 0 the moments reduce to a particularly simple form: Mn = 2F(n).  
The correlation functions can be given in terms of graphical rules, which is in the 
same spirit as ref. [18]. For example, the vacuum expectation value of the Higgs 
field is represented, in low orders, by 

8" "2 

where we draw edges as lines and external and internal vertices as open and filled 
circles respectively. The appearance of the last term which is absent in the rules of 
ref. [18] is due to the more complicated action we have and to the fact that k is kept 
as an expansion variable. This is analogous to what happens when trying to connect 
the linked cluster with the weak embedding expansions for the free energy in the ¢p4 
theory [18[. The factors present in front of the fourth and fifth terms are symmetry 
factors. The rules to calculate (Rx)  may be summarized as follows: 

(a) Assign the label one to the external root vertex and a dummy label to each 
internal vertex. 

(b) For each pair of vertices i and j write a factor k2/2 when they are joined by 
one edge, a factor ( k : ) : / 3 !  when they are joined by two edges, and in general a 
factor ( k 2 ) n / ( n  + l)! when they are joined by n edges. 

(c) For each/-valent  internal vertex i write a factor M l. For each/-valent  external 
vertex write a factor MI+ ~. 

(d) Sum each internal vertex label freely over the entire lattice. 
(e) Divide by the symmetry factor of the 1-rooted graph. 
These rules may be generalized for the calculation of any n point correlation 

function, by changing the number of external vertices. For example, the pair 
correlations for noncoincident points may be calculated by the following rules: 

(a) Assign the labels 1 and 2 to the external vertices and dummy labels to the 
internal vertices. 

(b) For each pair of vertices i and j write a factor k2/2 when they are joined by 
one edge, a factor (k2)2/3T when they are joined by two edges, and in general a 
factor (k2)n/(n + 1)! when they are joined by n edges. 

(c) For each /-valent internal vertex i write a factor Mr(i ). For each /-valent 
external vertex j = 1, 2 write a factor M/+ l(J)- 

(d) Sum each internal vertex label freely over the entire lattice. 
(e) Divide by the symmetry factor of the 2-rooted graph. 
A special situation occurs when two or more of the n points coincide. Let us 

consider the simplest case, namely (R2)  c. In this case one has to sum a 1-rooted 
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graph [changing the factor one by a factor two in rule (c)] and a 2-rooted graph with 
both external vertices at the same point. This may be easily generalized for the case 
where there are j coincident points. Since the method at this point is the same as the 
one explained in ref. [18], we refer the reader to this article for a more detailed 
exposition. 

The graphs typified by the last term in the expression of (Rx)  above do not 
respect rules (b) and (e). These graphs are always given by product of connected 
graphs that coincide in one or more points, signaled by the semicircles in the above 
example. For example, the dependence on k of this term may be obtained by 
subtracting the value given above from the one given below the bracket. In the 
general case, both the factor in front of these graphs and their dependence on k 
may be computed in a systematic way, and is briefly explained in appendix B. Since 
these graphs are dominated by low order moments M,, they are more important for 
larger X. The reason for this is the behaviour of the different M,, as a function of 
the self-coupling. When large values of X are considered, only M 1 and M 2 become 
relevant: M 2 goes to zero and M 1---, 1 as X--* oo (see table C.1). The graphs 
considered give important contribution to the correlation functions in this limit. On 
the contrary, for small values of X (• << 1), they give only small contribution to the 
correlation functions. However, they are relevant in the interesting region where the 
endpoints are located. The presence of these graphs and the dependence of the k 
factor on the number of coincident edges make the calculation more difficult here 
compared  to p u r e  q0 4 theory. 

3.3. PHASE DIAGRAM AND HIGGS MASS 

Once the correlation functions of the Higgs field are computed, we can obtain the 
phase transition line and the Higgs mass in a similar way as in the ep 4 theory. We 
have computed expansions for the susceptibilities 

X2 = E ( R ( x ) R ( O ) )  c, (15) 

1~2 = Y ' ~ x 2 ( R ( x ) R ( O ) )  c (16) 
X 

in powers of k 2. From these expansions, we can get information about the location 
of the phase transition. For this purpose, one has to assume a given behaviour of the 
series at high orders of k. This is a difficult point, since even the order of the phase 
transition is unknown. We have assumed a second order phase transition and used 
some methods appropriate for this case. 

We expect the radius of convergence of X2 to give us the value k~, at which the 
phase transition takes place. In our calculation, for small enough )~, all the 
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coefficients are positive. Then, the value kc 2 may be estimated, for large n, as 

a n 
k~ 2 - r n , (17) 

an-1 

where a n is the nth coefficient of the expansion. The ratios rn, eq. (17), converge 
rapidly to a positive value. However, the order of truncation does not allow us to 
extract information directly from the last ratios computed and some extrapolation 
method is needed. An estimate of k~ can be given by [22] 

! nG,-n G 
k 2 - (18) 

n t  - -  / , /  

Here r, is the approximate value defined in eq. (17). We have chosen the factor 
( n ' - n )  = 2, because it allows us to obtain two different results which can be 
compared.  Both estimates are usually very close to each other, for those values of X 
where a phase transition clearly appears. The final value obtained by this procedure 
is also usually very close to the last evaluated ratio. We expect this value to give us a 
good approximation to the correct k c. 

The Higgs mass may be estimated in two ways. The first estimate assumes that, at 
low momentum p, the renormalized two point function behaves as 

F~Z'°)(p,-p)=-(m~+pZ+higherorder) for p ~ 0. (19) 

As in the fp4 theory, this gives a mass [19] 

m R = (Sx2//x2) 1/2. (20) 

This definition does not coincide with the mass obtained from the pole of the 
propagator  

F(2'°)(p, - p )  = 0, p = (0, ira), (21) 

but we expect both values to be close, and their difference to be computable in 
terms of some perturbative expansion around the second order phase transition 
point where the continuum limit can be defined. In the following we will keep eq. 
(20) as our definition of the Higgs mass. However, for comparison, we have also 
computed the mass obtained from the expected exponential decay behaviour of the 
two point Higgs correlation function at p = 0, in a similar way as employed in 
computing the glueball masses [20]. First, we calculate the p = 0 Fourier transfor- 
mation of the correlation function at time ~- 

Y'~(R(O,O)R(x, r ) )  c =  G(p = 0, ~'). (22) 
x 
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Then, a second estimate of the Higgs mass can be given as 

493 

=-log( G(p=O, ~'= N) m .  (23) 

The above quantity may be computed by the methods explained in the last 
subsection. 

4. Strong gauge coupling expansion 
The computation of the generating functional at /3 = 0 can be combined with a 

character expansion of the Wilson action to obtain information at low/3. For k --* 0 
the Higgs field decouples and we recover the pure gauge theory. The low energy 
excitations are given by glueballs, one of which has the quantum numbers of the 
vacuum and is supposed to be the lowest excitation. For k ~ 0 both the glueball and 
the Higgs boson acquire a finite mass, and a nonnegligible mixing may appear since 
both have the same quantum numbers. For nonnegligible k, a vector excitation, the 
W triplet, also appears and we are interested in obtaining the dominant behaviour 
for the W mass. 

The Wilson action may be written in terms of a character expansion, similar to 
the expression of the kinetic part of the Higgs field action, eq. (8), 

) p 13 x j (Vp)  . (24) 

Using eq. (24) and the character properties, all the usual strong coupling methods 
may be developed. In the pure gauge theory only closed surface plaquette configura- 
tions appear. A different result is obtained if Higgs loops are considered because 
open surface diagrams also contribute. The general strategy for obtaining physical 
information will be to integrate out first the gauge fields, which is easily done by 
using the character properties. One can show that once the gauge fields are 
integrated out all correlations of physical particles are given in series in /3, with 
coefficients which are given in terms of correlation functions of the Higgs field at 
/3 = 0. Since we have an explicit expansion for correlations of the Higgs field in this 
limit, we can also consider this as an expansion in k, where the coefficients are 
polynomial functions of /3. Using this fact, the phase transition surface and the 
Higgs mass can be obtained in the same way as explained in sect. 3. 
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The corrections up to f12 to the partition function can be easily gotten. First we 

write explicitly the expansions 

I-I Vx,.)exp{-[S(k=O, fl=O)]} 
X,tt 

×FII P 

×FI .'c, p. 

2 ( 2 j +  1)I2j+l(fl)xj(Vp) 1 
J B 

E 2 ( 2 i  + 1) I2i+l(Yx'")xi(Vx'~) 
i Yx,p, 

(25) 

Then, for computing the first powers in fl we expand the Wilson action keeping 
only the low order character terms. To integrate out the gauge field one has to 
compute some nontrivial character integrals (see appendix A). Once this integration 
is done, one arrives at the following expression: 

i2(yx,.) 
In ~ .=  In ..~e(fl = 0) + flee ,il~I~s Ii(yx,.) f12 ( 12(Yx'l*) 

p,p' 

~2 ( I 3 ( Y x , # )  ) /~2 ( I2 (Yx ,~)  ) ( I2(Yx, p,) ) 
+ 3 T ~p liI-~s ll ( Yx, # ) P -- E H linI~ks • p,p, links l l (yx , . )  p " I i (yx , . )  e' 

f12 ( i2(Yx,~) ) )2 fi2 ( I3(y~ ' , . ' )  I2(Yx,~) ) 
2 ~p li~ks Ii(Yx..) e + 3 - 4  p~p, /l(Yx',~')'il~-I~ 'l(Yx,.) p.." 

(26) 

where the brackets above always imply expectation values at fl = O. ~-p (~e,p,) here 
means a summation over all different plaquettes P (pair of neighbour plaquettes 
P, P') and Fl l i~f(yx,~)  means that for each link at the point x and with direction/~ 
belonging to the countour of the plaquet P (pair of neighbour plaquettes P, P') we 
must write a factor f(Yx,~). The factor I3(Yx,.,)/Ii(yx,~,,) of the last term of eq. (26) 
must be understood as belonging to the link that joins both plaquettes. Once the 
expansions of the Bessel functions are done, each bracket is a disconnected 
correlation function of the Higgs field at fl = 0. For example 

I2(Yx,.) cjlm.( k R j I m n )(xRx+.Rx+.+.Rx+~) 
j,l,m,n=l 

(27) 
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with coefficients cjt,,,(k ) to be determined order by order in k 2. Any disconnected 
correlation function 

(RxRy.. .  R~) (28) 

is a sum of products of cumulant correlations in which each term corresponds to a 
parti t ion of the arguments (xy...  z) and every partition appears once and only 
once. 

There is an equivalent and more compact way of calculating the disconnected 
correlation functions. For the computation of j / m n (RxRx+~Rx+~+~R~+~), we start 
putt ing a factor #(x),  ct(x + I~), cm( x + ~t + u), c"(x + u) at the vertices of the 
plaquette, where # =  (RJ)k= 0. The factors c ~ are the one point disconnected 
moments  at k - - 0 ,  and can be given as a polynomial expression cJ(hx) of the 
connected moments  M,(hx) at hx = - 1 .  Once this is done, one can construct the 
linked cluster expansion of the disconnected correlation function, working as if one 
were calculating the more simpler correlation (R~R~+~R:.+~+~R~+~). In the latter 
case, one has to write a factor M 1 +l  whenever the plaquette vertex is l-valent. In the 
general case, if one of the plaquette vertices is l-valent, one has to replace cJ by 

a'cJ(hx) h,=-i  c/ ~ , (29) 

where cJ(hx) is the above defined polynomial function of c j in terms of the 
moments  M,(hx). This compact form allows the computation of all the brackets in 
eq. (27), up to a given order, by replacing the factor c/(x) by the appropriate factor 
c~(x), whenever in the bracket the power of R x changes from j to n. 

We observe that, in the method explained in sect. 3.3, for /3 ~ 0 there is an 
additional complication one must face to obtain the phase transition location. This 
is due to the fact that the corrections in/3 appear at second order in k 2. So the first 
evaluated ratio r~ is the same even when the corrections in /3 are included. As a 
result, only one reliable estimate, using eq. (18), can be obtained by the previously 
explained method. 

For  the glueball state we considered the symmetric combination of the three 
space like orientation single plaquette operators, which is often used in QCD 
glueball spectrum calculations. Let us observe, that this state has isospin I w = 0 and 
spin pari ty jpc= 0++, which are the same as that of the Higgs field. For the 
computat ion of the n-plaquette disconnected correlation functions one has to 
calculate 

f£2V..@RR [ e x p ( -  S)] X~( Vp,). . .  Xr (Vp2) 
(Xf (VpI)"'" xf(Vp2)~ ~ ~ ( f l ,  k, )~) (30) 
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The denominator is the partition function, for which we have an explicit expansion, 
and the numerator may be calculated using the above discussed expansions, eqs. 
(24) and (8), and the character properties. All the computations are similar to the 
ones already done for the fl dependent correction of the generating functional. For 
example, at first order in fl, we have 

(X (Vp)2) c I2(f l )(  I2(Yx,~ ) ) 
(31) 

Keeping only the first eight orders in the hopping parameter, a correlation of two 
plaquettes connected by a third one is given by 

(12(/3) t ( I 2 ( y x , ~ , )  ) 
(xf(Vp1)xf(VP2))c= / 1 - ~ J  liI-~I~s Ii(yx, i,) p1p, p2" (32) 

The brackets always indicate mean values at fl = 0 and Flli~,s implies that we have 
to put a factor I2(y~,~)/Ii(Y~,~) for each link belonging to the contour of the 
diagram formed by the three plaquettes p1, p, and p2. 

For the computation of the mass we consider [20] 

E E 
x spa t ia l  

d i rec t ions  

(xr(Vv)(O,O)xf(Vv,)(x,z))~=o,l=G(p=O,~'=0,1), (33) 

where ~- means the number of lattice spacings in the time direction. As a first 
approximation, one can take 

mg=-ln G ( p  O,'r O) ' (34) 

where the small time interval chosen is as the only possible one at eighth order in k. 
We have also evaluated the first pure gauge contribution, in order to take care of the 
behaviour for k ~ 0 of the glueball mass, namely mg - - 4  ln(lfl). 

Finally, let us consider the W. The third component of the W vector operator is 
defined as 

W-x 3, ~ = PxPx + i~X1/2 ( T3Vx. # )- (35) 

This is the analogue of the continuum operator Tr(~3q)t ~,¢p)= Wf(x),  defined in 
ref. [21]. This state has weak isospin I w = 1 and spin parity jpc = 1 - - .  The relevant 
correlation functions of 14(. 3 x,, are easily calculated from the relations 

3 (Wx,,) a = 0. (36) 
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If  we connect two vector operators with a two dimensional array of n plaquettes we 

get 

W 3 3 c 
x, , W x  + n v, ~)B 

ix(B)] \OxOx+.Px+..Ox+..+~li~ks Ix(yx,.) ,i~I~Is, 1 'a(Y~', . ' )  ' 

where I-lli.k s, means that we have to write a factor 1 -  I3(yx,.,)/I~(yx,,., ) for the 
links x,/~ and x + n u,/a and for each link joining two plaquettes, while gIji.k s means 
that we have to write a factor I2(Yx,.)/Ii(yx,.) for each other link belonging to the 
contour of the plaquettes. A useful relation here is the property of the modified 

Bessel function 
4 

Ii(z ) - I3(z)  = - I 2 ( z ) .  (38) 
z 

In the case of the vector state, we assumed exponential decay of the two point 
correlation functions and employed a similar computation to that used in the 
glueball case. Defining 

Y'~ ( W3(0, 0)W.3(x, r ) )c.=1,2 = G( p = 0, ~- = 1 ,2) ,  (39) 
X 

we get an estimate of the vector mass by using eq. (23), for N = 2. 

5. Results and discussion 

5.1. PHASE TRANSITION SURFACE 

The correlation function expansions were truncated in the eighth order in k and 
in the second order in 13. In appendix C we give the results of the susceptibility 
coefficients up to k s in terms of M~, at 13 = 0. We have also included the values of 
the moments  M,,  of the expansion coefficients, and of the estimated values of k c 
for some representative values of X. The obtained phase transition location is 
compared with Monte Carlo data in fig. la. For 13 < 1 our results agree to a good 
approximat ion with Monte Carlo results, although the values we obtain by applying 
eq. (18) are higher than the values found in the Monte Carlo analysis. The values 
shown in fig. l a  at 13 = 0 are an average of both estimates obtained using eq. (18). 
These typically differ by less than 5% from each other (see table C.3). Our 
assumption of the existence of a phase transition relies on the positiveness of the 
coefficients and on the approximate constant values of the computed ratios. At 
higher X, typically ) t -  1, the ratios begin to vary very fast at different orders and 
some coefficients become negative (see table C.3). We interpret this behaviour as a 
signal of the end of the phase transition line. Obviously, at the order considered one 
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Fig. 1. (a) Dependence of the phase transition location on the inverse gauge coupling f l ,  as estimated 
using eq. (18), for the bare self-coupling ~ = 0.01 (dotted line), 0.1 (dash-dotted line) and 1 (dashed line). 
Also shown in the figure is the Monte Carlo data for the same values of the bare couplings. The vertical 
segments  give the errors in the Monte Carlo estimates. (b) Dependence of the phase transition location 
on the bare self-coupling ;t, for the inverse gauge coupling fl taking the values fl = 0, 0.5,1,1.5, 2. The 
endpoints  are taken when the estimate of kc, eq. (18), differs by 10% with the last evaluated ratio (~4 ) -  

The vertical segment in each curve shows the point where this difference is already 5%. 
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gets only a range of possible (~, k) values for the endpoint, which extends up to 
values of k as high as one for all the values of/3 considered. 

For  h << 1, the position of the phase transition surface is surprisingly well 
predicted when one extrapolates to higher values of the gauge coupling. However, 
for larger ~ the phase transition points obtained are systematically at higher values 
of k. The main reason for this behaviour is that the correlation functions of the 
Higgs field begin to be dominated by plaquette terms as the self-coupling is 
increased, due to the fact that the /3 = 0 contribution carries higher order M, 
factors. For this reason, we expect higher corrections in /3 to be more relevant for 
larger ~. In order to get an estimate about the inclusion of higher order terms in/3, 
we consider the most relevant corrections of order/33, generated by three joined 
plaquettes. For/3 ~< 1 we obtain a little correction to the estimated k c, besides a shift 
of the order of 10% on the position of the endpoint at fi = 1. However, when 
extrapolated to larger values of/3,  the coefficients become positive and the ratios 
become rapidly convergent even for values of ~ >> 1 and at / 3 -  2 the phase 
transition endpoint disappears. In fig. 1 we have also included values of fl as large 
as 3, to show how the extrapolation behaves for small values of the self-coupling. In 
fig. lb,  we show the dependence of the phase transition surface for different values 
of /3, when the third order corrections are included. We see that not only the 
quantitative picture for low values of ~, but also the qualitative picture for higher 
values of ~ begin to agree with the one found by Monte Carlo simulations in 
ref. [8]. 

5.2. SCALAR AND VECTOR MASSES 

The masses obtained by the linked cluster expansions have a natural cutoff, 
namely the inverse size of the typical graph that contribute to the correlation 
functions. In view of the experience gained in the q~4 theory, one expects, for 
example, that even when critical behaviour occurs masses of order m R - 0 . 5  may 
only be obtained when the 10th order of the series is computed (see table 2 of ref. 
[13]). Here we have two limitations to obtain small values for the masses. On one 
side, the phase transition is presumably of first order until the endpoints, and then 
the correlation length remains finite. On the other side, the order of truncation of 
the series is too low to expect low masses to appear. The obtained expansions are a 
sensible approximation up to some value kf, lower than ko, that depends on the 
order of truncation applied. The analysis of the behaviour of scalar and vector 
masses, that is strictly related to the picture obtained from our expansions, is made 
taking kf coincident with the estimate of k c, eq. (18). We do not expect our 
conclusions to depend strongly on a better estimate of kf since in the neighbour- 
hood of k~ the expansions have a smooth dependence on k and the mass values 
conform with the typical size of the graphs included. 

In fig. 2 we show the dependence on k of the masses, for different values of /3  
and ~. Let us begin with the discussion of the behaviour of the Higgs mass. The 
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Fig. 2 (continued). 
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figure shows that this mass always decreases with the hopping parameter k, up to 
k c. For k -* 0, the Higgs mass m R diverges quadratically in k for any ft. For greater 
values of fl, when ~ and k are fixed, the values of m R become lower, a fact that can 
be understood since we are approaching the phase transition surface. For fixed k 
and fl, instead, the Higgs mass values are larger for larger ~. Again, this behaviour 
may be understood since we are going away from the neighbourhood of the phase 
transition surface. The mass estimate m H, eq. (23), shows the same behaviour when 
the different bare parameters are varied, although it diverges logarithmically for 
k ~ 0. We expect rn H and m R to be close to each other in the neighbourhood of a 
critical point. The figures show that m H agrees well with m R when k approaches 
k c. This agreement is better near the endpoints than for small values of ~. 

Information about the strength of the phase transition may be obtained by 
examining the values of the Higgs mass in the neighbourhood of k c. For example, 
the curves show that at a fixed value of the gauge coupling, in the neighbourhood of 
the phase transition, m R is smaller for larger values of ~. This is a signal of the 
weakening of the phase transition order, when higher values of ~ are considered. At 
fixed values of the self-coupling the figures show a weakening of the phase 
transition for lower values of fl, when the values of the self-coupling are near the 
predicted endpoints. We can now compare these results with the ones obtained from 
Monte  Carlo data. At intermediate values of fl, where the Monte Carlo analysis is 
done, the previously described dependence of the strength of the phase transition on 
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is preserved. However, the dependence on /3 is reversed: the transition becomes 
weaker for larger values of /3, although the variation is very soft. Our data is 
compatible with Monte Carlo. In fact, if the transition at the endpoint in the strong 
coupling regime is of second order, and at intermediate values of/3 is of first order 
[8], there must be a weakening of the phase transition transition with growing gauge 
coupling in the strong coupling region and this behaviour must be reversed at lower 
values of the gauge coupling. 

As k ~ 0 the glueball mass goes to the pure gauge value m g -  41n(¼fl) and this 
behaviour dominates for low k. While reaching k c, there is a more pronounced 
decreasing for higher ~. The greater decreasing is produced because open surface 
plaquette contribution become more relevant for larger ~. Plaquette contributions 
to the correlation functions are a source of mixing between the glueball and the 
Higgs states. So, for high values of ?,, where most Monte Carlo calculations are 
done, a substantial mixing between these two states seems most probable. This gives 
support to the qualitative picture described in ref. [23]. 

The vector excitation mass diverges logarithmically for k ~ 0 and also for fl ~ 0. 
For  finite values of the gauge coupling, the behaviour of the Wx., and Higgs masses 
are similar whenever the various parameters are varied. Near the phase transition, 
for fl ~< 1, the hierarchical relation m H < m v < mg is always verified. Since the same 
relation between the Higgs and W masses is also observed in Monte Carlo data at 
intermediate values of the gauge coupling, we expect the relation to be preserved in 
all the intermediate region and, perhaps, even in all the confinement phase of the 
theory. In the Higgs phase, instead, this relation is reversed [17]. 

5.3. CONCLUSIONS 

The fl = 0 linked cluster expansion, when combined with usual strong coupling 
expansion, is a useful technical tool to analyse the Higgs system in the strong 
coupling limit. The position of the phase transition surface and the behaviour of the 
masses can be obtained in the confinement phase. Due to the technical difficulties 
in obtaining higher order coefficients for larger/3, this expansion cannot replace 
Monte Carlo data for intermediate/3 - 2-3. However, it is useful as a complemen- 
tary analysis tool for smaller values of fi and ~, where Monte Carlo calculations are 
difficult to perform. It also serves to get an analytical understanding of the 
behaviour of physical quantities, as a function of the different bare parameters 
inside the confinement phase. There are some interesting questions that may well 
have an answer with this and similar techniques. One of these is a more precise 
determination of the position of the endpoints, and the behaviour of masses and 
renormalized couplings in their neighbourhood. Another interesting question [23] is 
the change of the mixing of the glueball and Higgs states for different bare 
parameters. In this article we accomplished a first step in this direction obtaining 
expansions of the correlation functions up to eighth order in k and second order in 
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/3. A more accurate picture may be obtainable with a higher order expansion in k, 
but probably one needs similar orders as in the W4 theory. Furthermore, a similar 
program as the one developed in ref. [13] at vanishing gauge coupling may be 
carried out at strong gauge coupling, to study the behaviour of the renormalized self 
coupling in the neighbourhood of the critical point. In this case, the computation of 
further correlation functions besides those computed in the present work will be 
required. This will allow us to inquire into the nature of the resultant continuum 
theory at the endpoint of the phase transition diagram, namely if it is interacting or 
not. 

The model that can be immediately tackled by similar methods is the U(1) Higgs 
model. As explained in appendix B, all the calculations done in this article can be 
applied with little variations to this case. An interesting application is to understand 
what happens with the location of the confinement phase when an external 
magnetic field is applied. Due to the limitations of mean field and Monte Carlo data 
in the study of this phenomenon [25], a linked cluster expansion seems to be an 
interesting alternative technique. 

I would like to thank I. Montvay for suggesting this subject to me and for very 
helpful discussions and encouragements. I am grateful to P. Damgaard for an 
interesting discussion about mean field results and for suggesting the extension of 
the method to the abelian case. 

Appendix A 

CHARACTER EXPANSION PROPERTIES 

The Haar measure of the group SU(2) satisfies [20] 

d3U = d3U * = d3(UV) ,  (40) 

fd3U = 1, (41) 

where the second property is a normalization condition. The irreducible characters 
form an orthonormal basis under integration over the Haar measure of the group: 

f d 3 U x , . ( U ) x * ( U )  = 8,.s, 

f d Ux,.(O)xs(V+V) = drlXr(V), 

(42) 

(43) 



where d r is the 
parametrized as 
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dimension of the representation. For SU(2), a matrix U is 

U=cos(½0)+ioBsin(½0) (0 ~< 0 < 4¢r), (44) 

where o i are the 2 × 2 Pauli matrices. In terms of 0 and ti, the Haar measure is 
given by 

d3U= sin2(½0) dO d2h (45) 
27r 4~r 

and the characters read 

s in [ ( j  + ~)01 
xj(U) = sin(10) ' 

Any class function f(U), that satisfies 

f(U) =f(VUV*) 

may be decomposed in components as 

U(U) = Exr(U)L. 
r 

j = 0, ½,1 . . . . .  (46) 

(47) 

(48) 

In particular, the pure gauge action may be decomposed as 

exp[ ½fiX1~2( U)] = exp[ fl cos(½8)] 

= ~ 2 ( 2 j +  1)I2J+l(fl)xj(U) , (49) 

j B 

where I , (B)  are the modified Bessel functions of argument/~. The fact that SU(2) 
has only real representations assures the equality 

xj(U)  = xj(U*),  (50) 

a property that may be easily obtained from eq. (46) by changing 0 ~ - 8 .  Another 
useful relation for the expansions we consider is 

x I (G)  = [X1/2(G)] 2- 1. (51) 
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Finally, we list some nontrivial integrals we used in the expansions: 

11 = [XI /2(UV)]3X1/2(U)=X1/2(V) ,  ( 5 2 )  

12 = f ~ U x 1 / 2 ( U ) x 1 / 2 ( U V ) x I ( U V )  = ½X1/2(V), (53) 

= 2 X I3 = f~Uxl(U)xl(UV)[xl/2(UV)] 2 ~ I (V) ,  (54) 

14= f~Uxl/2(UV)Xl/2(UA)Xl(U)= ~[X,/2(AV*) + 2X1/2(AV)] ,  (55) 

Is= f~Ux1/2( ir3U)xI /2(U)Xl /2( ir3(U*)2)  - ~, (56) 

I6 = f~UXl ( i r3U)[X l (U)]  2= ~. (57) 

Observe that eqs. (52) and (53) are not independent, but related by eq. (51), while 
eq. (57) may be deduced by using eqs. (51), (54) and the invariance of the Haar 
measure eq. (40). 

Appendix B 

L I N K E D  C L U S T E R  E X P A N S I O N  A T  fl = 0 

According to eq. (10) the partition function in the infinite gauge coupling limit is 
(h x = - 1 )  

1--I (Rx NRx)eX p - 1) 2 f x ( 

× I-I (k2RxRx+ )"] 
x,~ .=o n ! ( n + l ) !  ]" 

(58) 

This may be rewritten as 

~(hx, x, k)=~(hx, x,~=0) 

1 
× ~  2-n v 

• 1 , 2 , 3  . . . .  

v(1,2 . . . . .  2 n ) ( R ( 1 ) . . . R ( 2 n ) ) k =  o, (59) 
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where 

( n,~!(k2) "~ 
v(1,2 . . . . .  2 n ) =  ~ nfi(n,~+l)! (60) 

when in the term (n~ } pairs of points coincide. The summation is for all points over 
I n the lattice. The factor 5 appears because we make no distinction between the 

elements of the pairs. The additional factor [(I-I~n~!)/n!] -1 is the number of 
different ways we can change the indices while keeping (n~) coincident pairs. The 
whole factor 

~z~ v(1,2 . . . . .  2n) (R(1)  ... R(2n)) =J-  (61) 
1 , 2  . . . . .  2 n  

may be given by a graphical expansion [18]. For example for n = 2, 

M1{i) MIl l)  M2{i) 

Ml l j )  M~lk) M2lj) 

M~{k) Mill) 

M2Ij)  

The factors M, that appear above are given by eq. (14), each free index i, j ,  k, l 
must be summed over the entire lattice and a factor I-[~[(k2)"./(n~ + 1)!] must be 
written for each time (n~ } edges coincide. The coefficients a, fl, 7 are given by 

1 
2"n! 1-I (62) l~ g~n/~!' 

where n is the order in k 2 of the graph and n¢ is the number of repetitions of a 
connected graph w~ of symmetry g¢ [18]. If only coincident edges belonging to the 
same connected graph w, are considered, this allows an easy computation of ~ :  

so that 

~=~(hx,  X,k=O)Y'~l-I(WB) "t' 1 (63) 
,,~ B gt~ n~! '  

In ~ =  In ~ ( h x ,  X, k = 0) + E(wa].  
\gB/ 

(64) 
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For  obtaining an n point correlation function one has only 
derivations 

to perform h 

6 " ( l n ~ )  hx= 
8h~.[.~-h~ =(Rx"'Rv>C" (65) 

- 1  

From this equation and eq. (64) we obtain the rules given in sect. 3. There is still a 
problem one has to face. It originates in the coincident edges that appear when two 
different connected graphs coincide in one or more links. Such a case is not 
included in the derivation of eq. (64). For example, the simplest case is 

Ml(i) Mill) 

M1 ) MI (k) 

Mil l )  2 

MIIN 2 

(66) 

The last expression above means that we have considered a factor (k2/2)  =, while the 
correct factor was (k2)2/3!. The factor 2 is the number of times the last graph 
appears  in the product. In fact, for any graph of this type, the factor that appears in 
front of it is only a symmetry reduction factor 

(67) 

where Iq~ means the product of the symmetry factors of the initial connected graphs 
w~ that are repeated n~ times and g" are the symmetry factors of the final 
connected graphs w r For example, in eq. (66) the factor is (2)2//2. With this 
prescription, one can calculate, in a tedious but straightforward way, the corrections 
to eq. (63) that appear due to coincident connected graphs. For simplicity, we will 
symbolize them as corr. in the following. Then, returning to eq. (63), we have 

= - -  + corr. (68) 
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and 

l n ~ = l n ~ ( h x ' ; k ' k = O ) +  ~ ( w ¢ ) + l n [ l + c ° r r ' e x p ( - Y ' ~ ) ]  " B  g~ ~ (69) 

Obviously, this apparently complicated expression is highly simplified due to the 
fact that disconnected graphs disappear in the final result. 

The method may be easily generalized to any SU(N) group, by observing that for 
a different SU(N) [or U(N)] theory, with fields in the fundamental representation 
of the gauge group, the generating functional at/~ = 0 is given by [15] 

~=/FI(R7' ~Rx)exp(- Z [X(R~- 1):- hxR~]) 
X .X" 

(fi 
x l-I n!(n+ U - 1 ) !  (70) 

Then, the only change with respect to the SU(2) theory, apart from a redefinition of 
the integration measure, is the change of the factor (n + 1)! by the factor (n + N - 1)!. 
If we return to the derivation of the link cluster expansion, the only changes we 
have to make so that it applies to a general U(N) group, is to redefine the moments 
M,, by the appropriate change of measure and replace the factor kZ/(n + 1)! by a 
factor k2/(n + N - 1)! in rule (c) of sect. 3. 

Appendix C 

SUSCEPTIBILITY COEFFICIENTS IN THE INFINITE G A U G E  COUPLING BOUNDARY 

The expansion coefficients of the susceptibility X2 are polynomial functions of 
the moments M,, defined in sect. 3. 

TABLE C.1 

Values of the one point moments M,,, defined in the text, tor different 
values of the bare self-coupling X 

x MI M2 M3 M4 M~ M~ 

0.001 1.992 1.972 3.883 11.40 44.37 214.6 
O.OI 1.928 1.766 3.078 7.662 24.16 90.12 
0.1 1.607 0.983 0.948 1.054 1.024 1.335 
1.0 1.133 0.281 0.069 0.54 × 1 0  3 -0 .014  0.004 

10.0 1.003 0.047 0 . 2 9 × 1 0  3 - 0 . 4 5 × 1 0  4 0 . 9 1 2 × 1 0  5 - 0 . 2 0 6 × 1 0  5 
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The first coefficients in k 2 at fl = 0, are 

S U S  o = M 2 , (71) 

SUS 1 = 4 (M3M 1 + M2) ,  (72) 

S U S  2 = } (2M4M 2 + 138M3M2M 1 + 23M4M12 + 2M32 

+ 4 6 M  3 - 2M3 M3 - 6Mz2M12 ) , (73) 

S U S  3 = ~ls( M s M  3 + 2340M32M12 + 169M13M5 + 135M4M3M 1 + 4 5 M s M 2 M  ~ 

+ 135M32M2 + 6279M3M1M 2 + 2067M4M2M 2 + 3M51M3 - 540M2M3M 3 

- 4 5 M 4  M4 + M 2 + 90344 M2 + 1053M 4 + 15M~M 4 - 540M3M12), (74) 

S U S  4 = 10ts0 (3M 2 + 19794MsMZM3 + 29718MsM1M2 + 666MsMaM 4 

+ 1320MsM2M 3 - 336M6M~ + 31104M~MzM 3 + 49908M14M23 

- 96444M4M2M4 - 73752 M 4 M  2 - 564360M~3MZM3 

+ 370818M31M3M4 - 280152MZM 4 + 1157850M12MZM4 

+ 1727682MZM2 M2 + 14946MZM42 + 2168688MIM32M3 

+ 132696MIMzM3M 4 + 30750M1M33 + 194868M25 + 43266M23M4 

+ 74562M2M32 + 882M2M42 + 660MZM4 + 3M4M 6 - 4848MsM ~ 

+ 1728M6M4 - 48MaTM3 + 4848M2MzM6 + 222M1M3M 6 

+ 219M22M6 + 177666MsM31M2 + 8928M4M6), (75) 

where SU S, are the n th order expansion coefficients of X 2- 
In tables C.1 and C.2 we give the results of the moments M ,  and the susceptibil- 

ity coefficients for different values of h, at /3 = 0. We also show the values of the 
ratios r,, eq. (17), for the same values of )~, in table C.3. The first three values of )~ 
are representative of a situation where a phase transition seems to take place. The 
value 1 of the self-coupling is an example where, although all the computed 
coefficients are positive, the ratios are not rapidly convergent. The existence of a 
phase transition is not clear, and even if it takes place, the estimated k c may be far 
from the real value. The last X value is a value where a phase transition surely does 
not take place. The coefficients vary rapidly and their positiveness is lost. 
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TABLE C.2 
Values of the susceptibility coefficients in k 2, as a function of the bare 

self-coupling 2~ at fl = 0 
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~k SU S 0 SU S 1 SU S 2 SU S 3 SU S 4 

0.001 1.997 0.47 x 102 0.12 x 104 0.29 x 105 0.72 x 106 
0.01 1.766 0.36 x 102 0.76 x 103 0.16 x 105 0.35 x 106 
0.1 0.982 0.99 x 101 0.98 x 102 0.94 x 103 0.90 x 104 
1.0 0.281 0.631 0.11 x 101 0.13 x 101 0.16 x 101 

10.0 0 .47X10 x 0 .10×10 -1 - 0 . 2 8 x 1 0  -2 - 0 . 1 2 × 1 0  2 0 .31x10  2 

TABLE C.3 

Values of the ratios r,,, defined in the text, together with the two estimated values ( r~m, ) of k c, 
in accordance with eq. (18), for different values of the bare self-coupling )~ at fl = 0 

q ~ ~ ~ rml rm 2 

0.001 0.0417 0.0401 0.0392 0.0391 0.1974 0.1966 
0.01 0.0487 0.0475 0.0468 0.0469 0.2151 0.2141 
0.1 0.0986 0.102 0.104 0.104 0.3277 0.3261 
1.0 0.445 0.574 0.831 0.804 1.016 (?) 1.012 (?) 

10.0 4.68 - 3.62 2.34 - 0.38 
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