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The volume dependence of physical quantities, like renormalized mass and coupling, is 
numerically investigated in the broken phase of the 4-dimensional Ising model. It is shown that 
finite volume effects in small and intermediate volumes are dominated by vacuum tunneling. The 
tunneling phenomenon is investigated in detail. The splitting of the ground states due to tunneling 
turns out to be given to a good approximation by an instanton-like calculation. The large volume 
limit of the physical quantities is compared to the prediction of the perturbative renormalization 
group which connects the scaling behaviour on both sides of the phase transition. A good 
agreement with the 3-loop B-function is observed. 

1. Introduction 

Q u a n t u m  field theories with scalar fields and spontaneously broken symmetries 
p lay  an impor tan t  role in the s tandard model of elementary particle interactions, 

because  they provide a theoretical f ramework for mass generation. In non-per turba-  
tive numerical  simulations of these theories a detailed unders tanding of the finite 
volume effects is necessary, since numerical studies are always done in systems with 

finite volumes, but  the interesting physical information is usually obtained in the 

infinite volume limit. A simple prototype quan tum field theory with spontaneous 

symmet ry  breaking is the 4-dimensional Ising model  which is equivalent to the 

single c o m p o n e n t  if4 theory in the limit of an infinite bare quartic self-coupling. 

In  a series of  previous papers [1-3] large scale numerical simulations of the 

4-dimensional  Ising model were performed by some of  the present authors with 
special emphasis  on finite volume effects. In  ref. [1] the finite volume effects were 
studied in the symmetric phase and, in particular, numerical information on low 
energy scattering was extracted from the volume dependence of the 2-particle 

energy levels. In  ref. [2] the scaling behaviour of the infinite volume renormalized 
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coupling was investigated in the symmetric phase on large lattices by using an 
efficient cluster updating algorithm. In ref. [3] the vacuum tunneling phenomenon 
was studied and identified as the main source of finite volume effects in the broken 
phase. In the present paper, which is momentarily the last in this series, a detailed 
summary of the finite volume effects is given in the broken phase of the 4-dimen- 
sional Ising model and the large volume limit is compared to the scaling prediction 
obtained from previous results in the symmetric phase. The finite volume depen- 
dence of physical quantities is numerically studied and compared to analytic 
estimates. Tunneling on small and intermediate volumes is taken into account by an 
instanton-like calculation. On asymptotically large volumes, where tunneling is 
already negligible, the finite volume effects are calculated in renormalized perturba- 
tion theory. These analytical calculations will be described in sects. 2-4 of this 
paper and, as far as tunneling is concerned, also in ref. [4]. 

From the quantum field theory point of view the interesting region of bare 
parameter space is the vicinity of the critical point in both phases. In this region the 
cut-off is much larger than the physical scale, the cut-off dependence is very weak 
and to a good approximation the model can be considered as a continuum quantum 
field theory. A peculiarity of 4~4-theory is that in the scaling region the renormalized 
coupling is always small, in fact small enough for the applicability of renormalized 
perturbation theory. This can be seen, for instance, from the results of refs. [1, 2] 
and, more generally, from the approximate analytic solution of the 1-component q~4 
model [5, 6]. The renormalized coupling gR as a function of the renormalized mass 
m R is given by the Callan-Symanzik renormalization group equation [7]. For 
m R ---, 0, which means going to the critical point at m R = 0, g R ( m R )  tends to zero 
(" triviality" of ~4). The asymptotic behaviours on the two sides of the critical point 
can be connected [6]. This allows to predict the renormalized coupling in the scaling 
region of the broken phase by starting the integration of the renormalization group 
equations from a point in the scaling region of the symmetric phase. Since gR 
remains small, the perturbative fl-function can be taken (this was the procedure 
used in ref. [6] for the analytic solution in the broken phase). Taking the precise 
numerical data of ref. [2] in the symmetric phase and the 3-loop perturbative 
/?-function given in ref. [6] one can predict the expected renormalized coupling in 
the broken phase. However, as was noted in ref. [2], this extrapolation procedure is 
sensitive to the unknown higher corrections in the Callan-Symanzik/3-function. An 
important aspect of the present calculation in the broken phase is to perform a 
direct numerical check of the 3-loop perturbative prediction. 

The numerical simulations were performed both by the conventional local 
Metropolis algorithm and by the percolation cluster algorithm [8]. The latter was 
applied to study tunneling on lattices of size 103 × 120 as a function of the hopping 
parameter x. In this case the percolation cluster algorithm is essential because of the 
possible global changes. On the large volumes, where tunneling is already negligible, 
and in our case the correlation length is between 2 and 3, it turned out to be 



700 K. Jansen et aL / Ising model 

preferable to use the Metropolis algorithm. Details of the numerical calculations will 
be explained in sect. 5. 

2. Basic definitions 

In this section we consider the theory in an infinite volume. The 4-dimensional 
Ising model has variables q~x = -+ 1, which are associated with the points x of a 
hypercubical lattice Z 4 in 4 dimensions. We use lattice units in this article which 
means that the lattice spacing a is set to 1. The action 

4 

S =  - 2 x Y '  E ~xg'x+~, I¢>0 ,  (1) 
x ~ t= l  

where/2 denotes the unit vector in the positive #-direction, couples nearest neigh- 
bour  points. This model is equivalent to a particular limit of the single-component 
~4 theory. The action of q? theory on a lattice may be parametrized as 

) S = - 2 K  E #xq)~+a++2+)~(q)x2- 1) 2 , 
g , = l  

(2) 

where the field ~ assumes real values. In the limit of infinite bare quartic self-cou- 
pling )~ = oo for fixed hopping parameter  x the Ising model is reproduced. Many of 
the definitions and considerations below also hold for finite values of )~. Expecta- 
tion values of observables are defined in the usual way as averages with the 
Boltzmann factor e x p ( - S ) .  

For  values of x above a certain critical r c the Z2-symmetry ~ ~ - ~  of the action 
is broken spontaneously and the field acquires a non-zero vacuum expectation 

value: 

((/).> = + v, v > 0. (3) 

This has to be taken into account in the calculation of connected expectation values 
like the propagator  

G(x) = ( ~ o ) ~  = ( ~ o )  - 02. (4) 

The renormalized mass m R and renormalized coupling gR are defined in the same 
scheme as used in ref. [6]. The inverse propagator in momentum space yields m R 
and the wave function renormalization Z R through 

6 7 ( p ) - '  -- 2KZRI[m 2 + p2 + O ( p 4 ) ]  . (s) 

The physical particle mass m, which is different from m R, is given by the pole of the 
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propagator closest to the origin: 

G ( p )  -1 = 0, p =(im,O,O,O). (6) 

In the scaling region m and m R are nearly equal (see below). 
The renormalized vacuum expectation value of the field is 

V R =  ¢2KZR 1 V, (7) 

and the renormalized coupling gR is defined by 

m~t 
g~ = 3 o~ " (8) 

This definition of course only makes sense in the phase with broken symmetry. The 
renormalized and the unrenormalized vertex functions are related through 

F(R")(pl . . . . .  p.)  = (2XZR 1) - " / 2 F ( " ) ( p  1 . . . .  , P . ) .  (9) 

The renormalized 4-point vertex function defines another coupling 

g; )  = - r~')(o, o, o, o) ,  (10) 

which equals gR in tree-level perturbation theory (see below), but differs from it in 
higher orders. This quantity is normally used as a renormalized coupling in the 
symmetric phase, where v vanishes. 

For the purpose of Monte Carlo calculations it is convenient to introduce the 
susceptibilities 

x o =  E < % . - . + x o  &>c.  (11) 
X I , . . . , X n -  1 

Since X2 is proportional to Z R 

Z R = 2 t c m 2 x 2 ,  (12) 

the wave function renormalization cancels out in the ratios 

X n  

A.  (x2) . /~ . (13) 
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They are related to the vertex functions through 

rg)(o,o ,o)  

r )(o . . . . .  o) 

r )(o . . . . .  o) 

etc. 

= m3A3 ,  

= m 4 ( A 4 - 3 A 2 3 ) ,  

=m~t (A  5 - IOA,,A3 + 15A33), 

= m 6 ( A 6  - 15AsA 3 - 10A 2 + 105A4A 2 -  105A4) , 

(14) 

The spectrum of states is conveniently described in the transfer matrix formafism. 

We denote the transfer matrix by e -n ,  where H is the hamiltonian. In the 

symmetric  phase (K < ~c) there is a unique ground state [0s) which is symmetric 
with respect to the reflection ~ ~ - ~ .  Its energy Eos is defined to be zero. The 
spectrum above this vacuum state corresponds to that of multi-particle states which 
are symmetric (s) or antisymmetric (a) under field reflection. The mass gap m - m a 
is given by the energy E0a of the antisymmetric one-particle state with zero 

momentum.  
In the phase with broken symmetry (x > re) the ground state as well as all higher 

states are doubly degenerate. In the two vacua 10_+) the field has expectation values 
+ v and - v ,  respectively. They yield two sectors of the system such that matrix 

elements of local operators between different sectors vanish. The reflection ~ ~ - ~  
t ransforms the sectors into each other. The spectra in both sectors are identical and 
again correspond to multi-particle states. The mass gap m + =  m_ is the single 
particle mass. As K---, Kc the mass gap m a (for x <  re) or m+ (for x >  Kc) 

approaches zero. 

3. The model  in a finite volume 

Numerical  simulations of ~4-theory or the Ising model are of course always done 
in a finite volume. The extrapolation to the infinite volume hmit is associated with 
particular problems in the case of the broken phase. This situation will be discussed 
in the following. We consider a lattice with spatial volume L 3 and euclidean time 
extent T and periodic boundary conditions. With finite volume we mean finite L 
here, whereas T might also be considered infinite. 

As is well known in statistical mechanics, spontaneous symmetry breaking does 
not  occur in a finite volume. There is a unique symmetric ground state [0s) as a 
consequence of the Frobenius-Perron theorem for the transfer matrix [9] and the 
vacuum expectation value of the field vanishes: 

(Os[~[O~) = 0 .  (15) 
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For • > x c transitions between the two sectors mentioned in the previous section 
occur and the degeneracy of states is lifted by tunneling. Above the ground state 
there is a lowest antisymmetric state 10~) with a small energy E0a > 0. If we write 
the ground state and the lowest antisymmetric state as 

1 1 
I O ~ > - ~ -  (10+>+ IO >), I O a > ~ - -  ( lO+>-  10_>), (16) 

then [0+) and [0_) are states which go over into the degenerate vacua in the 
infinite volume limit. Above these states we have the symmetric and antisymmetric 
one-particle states with momentum zero which are denoted by ]ls) and [la) and 
their energies by Ezs and Eza, respectively. 

The small energy splitting E0a in the broken phase can be estimated in a 
semiclassical instanton-type calculation. In the one-loop approximation the result is 

goa = E L  1 / 2  exp( - oLS), (17) 

where a "surface tension" o appears. More details on this are discussed in sect. 4.3. 
The quantity 

o ~ (0slCxl0a> (18) 

can be considered as a definition of the vacuum expectation value of the field in a 
finite volume. In the infinite volume limit it coincides with the usual definition 

v = ( o +  Iq ,xlO+) = - < o  I q , x l O _ ) .  (19) 

(For  a discussion of possible finite volume definitions of the vacuum expectation 
value see refs. [10-13].) In a rigorous sense v cannot be determined through a 
measurement of the average field. This is manifest if one uses a global cluster 
updating algorithm in the Monte Carlo calculation as was the case in our work. In 
order to get v the propagator has to be analysed. For the calculation it is convenient 
to introduce the time slice averages 

Let 

1 
St =- V E * x . , ,  x = (x,  t ) .  (20) 

x 

Z = Tr e -  T H  = 1 "4- e - TE°a  -~- e - TEzs -]- e TE1a -{- • • " (21) 

be the partit ion function. Then the vacuum expectation value of the product of time 
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slice field averages is given by 

( S o S t ) Z  = Tr(  Soe - tHSte - ( r - t )H  ) 

= o~(e-,~oa + e-(~-,)~o~) + G ( e - , ~ , .  + e ( ~  ')~,a) 

q- C20(e-tEoa-(T-t)Els q- e-(T-t)Eo~-tEls ) 

-f-c211(e -tEl~-(T-t)El~ q- e -(T-t)EI~-tE1~) 4- . . .  , (22) 

where the matrix elements are defined as 

Cox - (0slat l la) ,  Cl0 = (lslStlOa), c H - ( l s lS t l l a ) .  (23) 

If T and t are chosen suitably large the quantities v and E0~ can be extracted from 

the t-dependence of (SoSt). 
Based on eq. (22) one can also define the susceptibility X2 in the broken phase in 

a finite volume by subtracting from the summed 2-point function the contribution 
proportional to v2: 

e -tE°a + e (T-t)E°a I 
X 2 ~  ~x <~O~x>c~t3~t (<Soat>-u2 - 1 ~  ] (24) 

for large enough T. This example demonstrates what kind of complications occur in 
Monte Carlo calculations in the broken phase due to the approximate degeneracy of 
states in a finite volume. It has to be taken into account in every correlation 
function. For  the connected correlation of the time slice squared, which is also 
considered in our Monte Carlo calculation, one obtains for large volumes 

where we define 

(So~S?>o - ( s g s } >  - ( s g y  

e -  TE°a 
= A 2 

(1 + e-rE°") 2 

e - TE°a 
+ b2t 

1 + e-rEo~ 

a~x + e-tEts 
1 + e-TEOa 

e -'(Ela- E0a) + O(e-rEx ,e - tE2) ,  (25) 

aol = (0sISfflls), 

and the small quantity A is given by 

= ( 0 a l S o 2 / 0 a )  - ( o s i S o 2 1 O ~ ) .  

bol = <Oa[ Sg[ la> (26) 

(27) 
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For small t the second and third terms are relevant, whereas for large t only the 
first term survives. 

4. Theoretical aspects 

4.1. LATTICE PERTURBATION THEORY 

For lattice ~4-theory ordinary renormalized perturbation theory is applicable. The 
quantities of interest are expanded as power series in the renormalized coupling gR, 
and the coefficients may depend on the renormalized mass m R. In the case of 
physical quantities these coefficients have finite limits when the lattice spacing goes 
to zero. Near the critical point, where the renormalized coupling becomes small, it 
makes sense to consider renormalized perturbation theory whereas outside this 
region non-perturbative effects dominate. 

The fact that gR remains finite even in the Ising limit, where the bare quartic 
coupling X goes to infinity, opens the possibility to use renormalized perturbation 
theory also for the Ising model. In this case the values of m R for given values of gR 
have to be specified as input coming from other sources beyond perturbation theory 
like Monte Carlo data or the hopping parameter expansion of Liischer and 
Weisz [6]. 

In the broken phase perturbation theory is based on expanding the field around 
one of the minima of the (effective) action. The energy splitting and other tunneling 
phenomena are absent to all orders in perturbation theory. Therefore in perturba- 
tion theory the spectrum is doubly degenerate even in the case of a finite volume. In 
this subsection, however, we consider infinite volume perturbation theory. 

A one-loop calculation yields the following expression for the inverse renormal- 
ized propagator: 

3 Z[jz(mR, OO)+/32i(mR, O0) K(mR, oo,p) ] -- F(R2)(p) = m 2 +/32 + 7gRmR 

(28) 

where we define for arbitrary L 

/3, = 2 sin p" 
2 '  

1 .~ dk 4 

1 z , f  cos 4 
I(ma, L) 

3L 3 

1 .~r dk 4 1 
K ( m R '  t '  P ) =  ~ k ~ r ( ~ - )  (/~2 + m  2) l ( ( - ~ ' ~ ) 2 q _ m 2  ) , 



706 K. Jansen et aL / Ising model 

and the sums over k go over the Brillouin zone 

27/" 
k i = T n i ,  n i = 0 , 1 , 2  . . . . .  L - l ,  i =  1 ,2 ,3 .  

For  L = oo one obtains the following result for the physical mass m: 

m = ~ +  
3gRmR 

1 2 4~1 + ~m R 
[J2(mR, oo)--m~tI(mR, oO)-- K(mR, oO,q) ] + O(g~.) ,  

where 

- -  1 2 m= 2log( m.+ 

(29) 

(30) 

F(~3)(0,0,0) = - 3 ~ R  mR[1 + 3gRm2RJ3 + O ( g ~ ) ] ,  

F(R4)(0,0, 0 , 0 ) = - - g R [ 1  + 18gRrn~J 3 -- 27gRm~]4 + O ( g 2 ) ] ,  

F(5)(0 . . . . .  0) = - g 2  3 ~ R  mR[15J 3 -- 9 0 m I J  4 + 108maR J5 + O(gR) ] , 

F~R6)(0 . . . . .  0) = -g3[15J3  - 405m2J4 + 1620m4j5 - 1620m6J6 + O(gR) ] , (32) 

with J. = J n ( m R ,  09). 

4.2. PERTURBATIVE FINITE VOLUME EFFECTS 

The quantities considered in the previous section depend on L. In finite volume 
perturbation theory the lattice momenta flowing in loops are restricted to discrete 
values specified in eq. (29). For fixed values of the bare parameters x and ?t any 
renormalized quantity X deviates from the infinite volume limit by 

8X(L)= X ( L ) -  X(oo). (33) 

This can be calculated in perturbation theory as power series in gR- Renormaliza- 
tion conditions are imposed at L = oo which means that 

gR----gR(O0) ' mR ~ mR(OO)" 

If m R ~< 0.5 (gR ~< 31) m deviates by less than 1.3% from m R. 
The one-loop expressions for the zero-momentum vertex functions are 

q = ( i ~ , 0 ) .  (31) 
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One-loop perturbative finite volume effects for some interesting cases are 

gR 
3mR 

2m R 
- -  [~J1 q--~ 2 ~ J 2 - 3  4 3 I +  O ( g R )  ] 2mR ~mR 

(~m ~ - 
ga 

1 2 2 m R ¢ l  + ~mR 
[3J1 +TmR3 2 3K(mR, L,q)+O(gR) ] 

2 3 3gR = -gg[7SJ 2- 3mZR SI + O(gR) ] , 

~OR 
2m R 

3 4 81+ O(gR) ] [tSS 1 + 2m R 

zR(t) 
3 2 

AZR---- ZR(OO) 1 =  igRmRSl+O(g2), (34) 

where now 

3J.=-J.(mR, L)-J.(rnR, oO), 3I~I(mR, L)--I(mR, O0). 

These formulae can be used to extrapolate the Monte Carlo data to the infinite 
volume limit if tunneling effects are negligible and if the perturbative finite volume 
effects are sufficiently small. 

4.3. TUNNELING 

In intermediate volumes the finite size effects in the broken phase are dominated 
by tunneling. As discussed in sect. 3 the double degeneracy of states is lifted due to 
tunneling in a finite volume. In particular there is a vacuum energy splitting E0a, 
which can be calculated in a semiclassical approximation. In this section we 
consider the essential points of such a calculation and refer to ref. [4] for details. 

The volume dependence of E0a was studied in ref. [14], where the exponential 
factor in (17) was obtained from a Bloch wall picture. The prefactor L 1/2 was 
conjectured in ref. [15]. It differs from the usual WKB-factor L 3/2 coming from zero 
modes (see below) by an additional factor L-1 due to one-loop fluctuations. 

We performed the calculation in the framework of the ~b 4 theory. It is assumed 
that one is far enough in the scaling region such that finite lattice spacing effects are 
negligible and the calculation can be carried out in the continuum. The semiclassical 
calculation is based on an instanton-like saddle point approximation to the eu- 
clidean path integral as introduced in ref. [16] and beautifully explained in ref. [17]. 
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To this end the tunneling amplitudes 

(0+Ie-THI0+> = ±r~-TEo~ + e-TEoa) 
_ 2 \  ~ - -  

(35) 

are expressed as path integrals with boundary conditions 

~x ~ Vo, T ~  oo, 

--* _+ v 0 , T ~ - oo, (36) 

where v o is the value of ~ at the minimum of the classical action. In the case where 
l 0  ) appears in eq. (35) the path integral is dominated by a classical solution, the 
so-called "kink":  

~ 3 m  2 m o 
= - -  tanh (x a - a )  (37) 

go 5 -  

with classical action 

Sc= 2 3m__2 L 3, (38) 
go 

where m 0 and go are the unrenormalized mass and coupling and a is a free 
parameter specifying the location of the kink. For fluctuations around the classical 
solution 

,/,= q,c+ n 

the quadratic part of the action is given by 

s=  Sc + f d 4x  l(x)mrl(x) + (39) 

with the fluctuation operator 

M =  - O ~ , O ~ ' + m  2 -  3 2 - 2  - -  ~mo cosh [ -12/T/0 (X 4 a ) ] .  (40) 

The saddle-point approximation to the path integral amounts to integrating these 
gaussian fluctuations. The operator M has a zero-mode corresponding to transla- 
tions of the kink or shifts of the parameter a. This zero-mode has to be treated 
separately by the method of collective coordinates. Taking into account also all 
contributions from non-interacting multi-kink configurations, which exponentiate, 
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the result for the energy splitting is 

709 

Sc / 1/2 det' M - 1/'2 

E°a-E°s=2e-S~(-2-~] I det M0 I ' (41) 

where det' is the determinant without zero-modes and 

M 0 = - 0~,0 ~' + m 2 . (42) 

The f a c t o r  S J / 2  ~ L 3/2 is due to the zero-mode. The determinant, which represents a 
one-loop effect, leads to the following three types of contributions. First of all it 
produces precisely those counterterms which are required to convert the unrenor- 
malized parameters appearing in eq. (41) into the renormalized ones. Moreover, it 
yields an additional factor L -1. Finally it gives a one-loop correction to the term 
proportional to L 3 in the exponential. The final result is of the form (17) with 

C = 1.65058ff2 m3ga (43) 

and an L-dependent surface tension 

16~r 2 (-~RL5 2 e x p ( - ½ f 3 m a L ) + O ( e - m ~ L ) + O ( g ~ )  , (44) 

+ + O(g  . (45) 

A comparison of these one-loop formulae with the results of the Monte Carlo 
calculation is made in section 5.3. 

5. Monte  Carlo calculation 

5.1. CLUSTER ALGORITHM 

To obtain the numerical results presented in this paper we employed both the 
standard local Metropolis algorithm and the new global cluster updating scheme of 
Swendsen and Wang (SW) [8]. The former was found to be superior due to its 
suitability for vectorization when the volume in the broken phase is large enough to 
make vacuum tunneling effects irrelevant. Use of the SW-algorithm on the other 
hand was advantageous in the symmetric phase [2] and crucial to investigate 
tunneling in the broken phase which there turned out to be the dominant finite size 
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effect [3]. We now briefly describe the SW-algorithm in the Ising model as we used 
it in our simulation. 

We consider the Ising model on a d-dimensional hypercubic lattice A with 
partition function 

Z =  • e - s ,  (46) 
,~x= +1 

where S is the action (1). The SW-algorithm can be derived easily if we introduce 
additional redundant bond variables k~, = 0,1" 

Z =A lald ~ e~,kx, a(kleo). (47) 
~x= +1, kxt,=0,1 

Here A(klq Q expresses the constraint that bonds with kx,= 1 can only exist 
between parallel spins: 

A(kl~)  = I- I [1 + ½k;,~,(th;,q~;,+~,- 1)]. (48) 
x u. 

The partial summation over { kx, } in eq. (47) can easily be carried out and if we 
match 

a = l o g ( e  4~- 1), A = e  -2" (49) 

equivalence with eq. (46) is achieved in the sense that all correlations of spins q~x 
coincide. In principle we may also perform the partial { q~x ) summation in eq. (47) 
and get 

Z = AIAlay'~ e"~x,' k~"2"lkx~ 1 , (50) 
kx~ 

where ~,[kx, ] is the number of disconnected clusters when kx, = 1 (0) is interpreted 
as active (passive) bond in the sense of bond percolation. There is a factor 2 for each 
cluster in eq. (50) from its independent spin orientations, and this is a special case Of 
the Fortuin-Kasteleyn [18] representation of Potts models. In the SW-algorithm one 
performs Monte Carlo sampling for both (kx~ } and (~x} in alternating order. 
Clearly, for fixed (ff~} the (kx, } distribution factorizes and an independent new 
choice ( k ~  } has to be done. For fixed (kx,} a spin direction has to be assigned 
randomly to each cluster as a whole. The non-trivial step consists of decomposing 
the lattice sites into clusters. We used the algorithm described in ref. [2] and also the 
more standard Hoshen-Kopelman [19] method. The latter could be tuned to 
execute 30% faster in the case of the cluster structure in the 4-dimensional Ising 
model at the x values we investigated. Either method of cluster search is recursive 
and could not be vectorized in contrast to all other routines we used. It is intuitively 
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clear that the SW-algorithm has the power to reduce critical slowing down. We may 
regard (kx~ } only as a vehicle to get from one spin configuration to the next which 
then differs from the old one by large domains of flipped spins. These are precisely 
the moves which are needed to explore vacuum tunneling [3] and which are 
produced very slowly via local updates. 

The cluster structure accessible from updating can be exploited further for 
variance reduction. An arbitrary spin observable O(,x) may be replaced by a bond 
dependent O(kx~) with the same mean by the formula 

O(kx.) =2-,Ik~l E A ( k l * ) O ( * x )  . (51) 
{Ox= _+1) 

The improved observable O(kx~ ) takes into account all conceivable spin assign- 
ments of the clusters even if only one of them is used as the next configuration. For 
instance, improved observables for odd powers of the spin vanish identically and 
thus give the fight answer for finite volume with zero variance. The improved 
counterpart of the two-point function is the cluster incidence function 

(*x'y) = (O(x, y)), (52) 

where O(x, y) is 1 if x, y are in the same cluster and 0 otherwise. As discussed in 
more detail in ref. [20] the respective variances V are 

versus 

v [ , x , y ]  = 1 -  <,x,y> 2 

V[@(x, y)]  = ( ,x ,y)(1  - (*x'y))  • 

(53) 

(54) 

We see that the variance reduction becomes most profitable when the physical 
interest focuses on correlations decaying to small values as e.g. in the symmetric 
phase of ,4 theory [2]. In this paper we shall also have occasion to use the improved 
four-point function 

<%%%%> = x2)O(x,, x4) +o0,1, x,)O(x2, x,) 

-4- ~)(X1, X4)•(X2, X3) -- 20(X1, X2, X3, X4)), (55) 

where the four-point incidence function O(xl, x2, x3, X4) is the obvious generaliza- 
tion of the two-point one @(xl, x2). When correlations are summed to give 
susceptibilities or zero momentum couplings, simple expressions in terms of the 
numbers of spins in the various clusters result. 
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In general, the error estimates for simple directly measured observables were 
performed by observing quadratic fluctuations and correcting for correlations 
between successive measurements. This is achieved sometimes by measuring the 
time autocorrelations and mostly by blocking the measurements until they become 
independent to a good approximation. Where compared, both methods gave consis- 
tent errors. 

For  more intricate quantities like connected correlations and minimal xZ-fit 
parameters we proceeded as follows. We successively divided our large number of 
measurements into 1, 2, 4 . . . .  ,128 subsamples. In each subsample the direct observ- 
ables are averaged (blocked) and fits and appropriate combinations are then made. 
The fluctuations of the latter among the subsamples of equal size are used to 
estimate errors which become stable for a sufficient number of subsamples. Always 
the best mean value is used from fits and combinations in the full sample. 

5.2. NUMERICAL SIMULATIONS 

We started our numerical simulations in the same way as in the previous work in 
the symmetric phase [1]. In short runs an appropriate x-value was searched for, 
where the mass in lattice units is about --- 0.5. This turned out to be x = 0.077. In 
this point a series of high statistics runs was performed by the Metropolis algorithm 
on L 3 X T lattices. We took T = 16 which is somewhat larger than in a similar point 
in the symmetric phase ( T =  12) [1], because on the basis of the Ltischer-Weisz 
solution [6] and using the perturbative estimates in sect. 4 we expected somewhat 
stronger finite size effects in the broken phase. In these runs the vacuum expectation 
value of the field v was simply defined by the absolute value of the average spin 
over the lattice. This definition is the usual one in finite volume numerical simula- 
tions. It was investigated in detail in the Ising model by Binder [12] and it is 
expected to converge for large volumes to the correct infinite volume vacuum 
expectation value. Taking the absolute value is essential, because in the finite 
volume the expectation value of the average spin is always zero if sufficiently long 
runs are performed. In the broken phase this means that the system tunnels between 
the two minima of the effective potential. The question how long the run has to be 
depends on the simulation algorithm. For the local Metropolis algorithm on larger 
lattices the flips of the average spin sign are rather rare (see below), but with the 
global cluster algorithm described above a few sweeps suffice. Having defined the 
vacuum expectation value in such a way, other expectation values with odd field 
parity can also by defined by imagining that the spin configuration was multiplied 
by - 1  if the average spin is negative. This method of defining expectation values 
with odd field parity in the broken phase can be shortly referred to as the 
"reflection method". 

Even before knowing the results of the L3X 16 simulations we felt somewhat 
uneasy about the reflection method. It is clear that, especially if the average field is 
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TABLE 1 
The results of the numerical calculation on L 3 X 16 lattices at g = 0.077.10 million sweeps per 
lattice were done with every fifth measured. Error estimates in last numerals are in parentheses. 

The expectation values are defined here by the reflection method. 
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L m v X2 - A 3  A4 × 10 3 - A  s × 10 6 3A 2 _ A4 

6 0.277(2) 0.35033(19) 40.35(12) 68.3(2) 4.93(4) 0.12(1) 9050(30) 
8 0.505(3) 0.38485(6) 21.81(7) 83.2(9) 21.6(6) 8.5(3) - 850(130) 

10 0.545(2) 0.38871(3) 18.75(3) 53.1(5) 7.8(3) 2.1(2) 670(160) 
12 0.553(3) 0.38931(3) 18.31(2) 48.7(4) 6.0(2) 1.2(1) 1130(120) 
14 0.553(2) 0.38945(2) 18.24(2) 47.8(4) 5.4(2) 1.1(1) 1420(180) 
16 0.554(1) 0.38947(2) 18.18(2) 47.8(6) 5.5(3) 2.4(2) 1390(220) 

near zero, this procedure is quite arbitrary. In any case it introduces additional 
finite size effects which are rather difficult to estimate analytically. Our reservations 
were strengthened by the results of the L 3 X 16 runs (see table 1). 

Table 1 shows that the finite volume effects are very strong on small lattices (up 
to 103). Especially the quantities like A, involving a high degree of cancellation 
seem to be very sensitive. In fact, they show an erratic behaviour on small lattices. 
(For  instance, the negative sign in the last column at L = 8 is not a misprint!) At 
K = 0.076 similar confusing results appeared on lattices up to L = 123. A possible 
attitude is to disregard the small lattices on the basis of " too  strong finite size 
effects", but  in this case the theoretical control over the finite volume effects is 
essentially given up. 

It is intuitively clear that strong finite volume effects on small lattices may be due 
to the vacuum tunneling discussed in sect. 3. Therefore we decided to investigate 
tunneling in detail. This is best done on lattices which are very long in the time 
direction because then the small splitting of doubled energy levels can be deter- 
mined. The use of the cluster algorithm described in the previous subsection makes 
it possible to sample the tunneling configurations in an effective way. The results of 
the runs on lattices L 3 X 120 were described in detail in ref. [3], where the K- and 
volume-dependence of the low-lying spectrum was investigated with L = 8, and at 

= 0.076, respectively. The expected behaviour of the low-lying zero momentum 
spectrum could be verified, showing, for instance, that the analytic continuation of 
the symmetric one-particle state in the broken phase is the lowest two-particle state 
in the symmetric phase. At K = 0.077 on the 83 lattice tunneling is still important. 
Although the splitting of the antisymmetric and symmetric vacua is already small 
(E0a = 0.006, see table 1 of ref. [3]), the one-particle mass is still ill-defined because 
the symmetric and antisymmetric one-particle states have rather different energies: 
E l s - -0 .4  and Ela---0.5. This explains why the more subtle quantities with a 
structure specific to the broken phase (like A . )  are completely distorted. 
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TABLE 2 
The results of the numerical calculation on 103 X 120 lattices. The number of sweeps is given 

in thousands (ks). Error estimates in last numerals are in parentheses, v and X2 are 
defined here by the invariant method described in sect. 3. 

ks E0a E1s Ela l; X2 

0.0740 251 0.2292(6) 0.516(2) 0.1185(2) 
0.0745 243 0.1700(6) 0.419(2) 0.1366(4) 
0.0750 244 0.1044(5) 0.328(3) 0.1688(6) 
0.0755 300 0.0424(2) 0.275(5) 0.47(6) 0.2265(4) 
0.0760 361 0.00902(6) 0.329(8) 0.366(8) 0.2958(2) 
0.0765 247 0.00114(6) 0.462(5) 0.464(7) 0.34810(15) 
0.0770 222 0.0001(1) 0.543(4) 0.545(3) 0.38890(9) 

8(3) 
35.0(6) 
26.8(5) 
18.6(3) 

In order to see the evolution of tunneling as a function of volume for different 
hopping parameters, we also performed a series of simulations with the cluster 
algorithm on a 103 × 120 lattice. The vacuum expectation value (v) and susceptibil- 
ity (X2) were determined by the formulas in sect. 3. This procedure can be called the 
"invariant  method" because only invariant quantities with respect to the field 
reflection q~x ~ - ¢ x  are used. The results are collected in table 2. For an example of 
the behaviour of the correlation functions see ref. [21]. A graphical comparison of 
the spectrum with the 83 x 120 data from ref. [3] is shown in fig. 1. 
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TABLE 3 
Comparison of the predictions of renormalized perturbation theory for finite volume effects in 

large volumes with numerical data obtained from table 1. For each L the first line shows 
the perturbative results. The second line is obtained from the results of the numerical 

simulation. It takes into account the correction factor m r t / m  , which is taken from perturbation 
theory and is near 1.016 for all L. The errors are calculated from those of table 1 by the usual 

law of error propagation. The input parameters m R and gR for perturbation theory are 
chosen such that mR(L ) and gR(L) match the Monte Carlo data for L = 16. The perturbative 

prediction for the finite L-correction za ZR(L) is always smaller than the error of Z R 
and therefore not displayed. 
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L m R m gR - A  3 A 4 X 10 -3 g~) Z R 

10 0.558 0.549 35.4 47.8 5.4 79 
0.554(2) 0.545(2) 35.1(5) 53.1(5) 7.8(3) 63(15) 0.886(6) 

12 0.561 0.553 35.8 47.0 5.2 83 
0.562(3) 0.553(3) 36.1(7) 48.7(4) 6.0(2) 113(12) 0.890(9) 

14 0.562 0.554 36.0 46.7 5.1 85 
0.562(2) 0.553(2) 35.9(5) 47.8(4) 5.4(2) 141(18) 0.886(6) 

16 0.563 0.554 36.0 46.6 5.1 86 
0.563(1) 0.554(1) 36.0(2) 47.8(6) 5.5(3) 139(22) 0.886(3) 

to 0.563 0.554 36.1 46.6 5.1 86 

Compar ing  o and X2 in tables 1 and 2 one can see that at r = 0.077 on the 10 3 
lattice the reflection method and the invariant method give very similar results 
which differ by  less than the statistical errors. Similarly, the mass m obtained by the 

reflection method is also equal to Els and E~a within small errors. This means that 
for these quantities tunneling is negligible. It is possible, however, that for other 
quantities as e.g. A ,  the effect of tunneling is still important  and one has to go to 

larger volumes in order to suppress it. In this respect one has to note that tunneling 
can occur not only globally for the whole lattice, but also for some parts of it, and 
the quantities involving a large degree of cancellation may be more sensitive to these 
partial  tunnelings. 

Once vacuum tunneling is negligible, for the estimate of the finite volume effects 
one can apply renormalized perturbation theory, which is an expansion around one 

of the vacua. Taking m, v and X2 for L = 16 from table 1 as input data, one can 
determine mR, Z R and gR by using the formulas given in sect. 4. From the 
renormalized mass and coupling at infinite volume the volume dependence of every 
renormalized physical quantity can be determined. The one-loop formulas given in 
sect. 4 are compared with the numerical results in table 3. 

For  L >/10 the agreement of the data with renormalized perturbation theory can 
be considered satisfactory, especially for the largest lattices, but in this case the 
deviations f rom the infinite volume are already small and comparable with the 
statistical errors. In this respect the situation becomes worse at x = 0.076 where, as 
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TABLE 4 
The results of the numerical calculation on L 4 lattices at r = 0.076. The number of sweeps is 

given in millions (Ms). The quantities were measured after every fifth Metropolis sweeps. 
Error estimates in last numerals are in parentheses. 

L Ms Els Ela o X2 ZR gR g(~) 

16 10 0.386(2) 0.389(2) 0.30130(3) 38.35(6) 0.895(8) 29.8(5) 38(12) 
20 7.5 0.3914(12) 0.3909(14) 0.30158(2) 37.85(6) 0.893(4) 30.2(4) 92(24) 

noted before, tunneling effects are still strong on a 123 lattice. At the same time, the 
perturbative finite size effects on 143 are already very weak, actually smaller than 
our statistical errors. In other words, the measurable finite volume effects are 
dominated by tunneling. At this x value the numerical results on our largest lattices 
are collected in table 4. 

5.3. V A C U U M  SPLITTING AND INSTANTONS 

A s  described in subsect. 4.3 and in more detail in ref. [4], the energy splitting of 

the vacuum state can be estimated by a one-loop instanton calculation. Here we 

compare  the prediction, eqs. (43)-(45) with the Monte Carlo data. At x = 0.076 the 
values of the surface tension a and the constant C in (17) have been determined 

f rom a fit of E0a up tO L = 10 in ref. [3], namely 

o = 0.00358(2), C = 0.101. (56) 

With the value m R = 0.395(1) obtained from table 5 we get the dimensionless ratio 

o / m  3 = 0.0581(5). (57) 

On the other hand the theoretical prediction with gR = 30.2(4) is 

ooo/m 3 = 0.0589(8), C = 0.105(1). (58) 

Including also the L-dependence in eq. (44) yields a small correction: 

o / m  3 = 0.0585(8) for L = 10. (59) 

The agreement with the numbers above is remarkably good. 

TABLE 5 
Comparison of the results of the numerical simulation from tables 3 and 4 with the predictions 

of ref. [6]. The numbers to the right of LW are obtained from table 3 in ref. [6]. 

mR gR ZR 

MC 0.077 0.563(1) 36.1(2) 0.886(3) 
LW 0.0767(4) 0.56 35(4) 0.920(15) 

MC 0.076 0.395(1) 30.2(4) 0.893(4) 
LW 0.0759(2) 0.40 27(2) 0.929(14) 
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The small energy difference E0a gives also the tunneling rate for a local updating 
algorithm, as for instance the Metropolis algorithm [15, 22]. The average number of 
sweeps between two consecutive sign flips of the average spin is approximately 

% -  E---~a - L -1 exp(2crL3). (60) 

In order to obtain ~'L we have performed MC runs, using the Metropolis 
algorithm, on 84, 104 and 124 lattices at K = 0.076 and monitored the tunneling 
events. This was done by calculating v averaged over different blocks of measure- 
ments, where the number of measurements in a block is 2 n, n = 1 . . . . .  16. If for a 
given block size v changes its sign on successive blocks, we stored this as one "flip 
event". 
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Fig .  2. The number of flip events on the 124 lattice at x = 0.076 as function of the block length 2 n. The 
run has 1 Msweeps in total. 
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If  now the block length is too small one overestimates the flip rate, as every 

fluctuation of the system is registered as a flip event. If  the block length is too large 
one clearly underestimates the flip rate as one integrates over a number  of flip 

events. So one expects to observe a plateau in the number of flip events if it is 
plotted as a function of the block length. Indeed, fig. 2 shows such a behaviour for a 
124 lattice. Similar pictures are obtained for the other lattices. Extracting % for a 
given lattice size from the plateau, one can fit the L-dependence according to eq. 
(60). The result of the fit is 

o=0 .00289(7 ) .  (61) 

This is in qualitative agreement with the value in eq. (56). 

5.4. CHECK OF THE SCALING CONNECTION 

The infinite volume renormalized mass and coupling extracted from our numeri- 
cal simulation data can be compared to the Liischer-Weisz solution [5, 6]. 

In most cases the agreement is good within the indicated errors. Somewhat larger 
deviations are, however, observed for Z R. The errors of the numerical calculation 
are smaller than the errors estimated in ref. [6]. 

The analytical solution in the broken phase is based on the connection between 
the scaling behaviours on the two sides of the critical point. This connection can be 
considered as a consequence of the relation between initial data at vanishing 

renormalized mass (m R = 0) for the solutions of the renormalization group equa- 
tions at either side of the critical point. In order to exploit this connection one has 

to integrate the renormalization group equations starting from a finite renormalized 
mass and determine the asymptotic behaviour for m R ~ 0. Since the natural 
variable is log mR, it is a long way to go from any finite m R to m R= 0, and 
therefore the unknown higher loop corrections to the Cal lan-Symanzik functions 
may influence the asymptotics considerably. In order to check the scaling connec- 
tion on the two sides of the critical point we can take the last measured point in the 

symmetric phase from ref. [2] at mR=0.3078(3 ) and start the integration of 
the renormalization group equations there. Using the 3-loop functions together with 
the l - loop lattice artifact corrections as given in refs. [5, 6] we obtain at m ~ = 0.395 
in the broken phase the prediction 

gR[mR = 0.3951 = 30.6 + 1.1, ZR[m a = 0.3951 = 0.918 + 0.009. (62) 

The errors indicated here correspond to the uncertainty of the initial data. gR is in 
excellent agreement with table 4. For Z R there is, however, a small discrepancy. 
Using the two-loop functions would not change the prediction for Z R essentially, 
but  the renormalized coupling would be changed to gR(mR = 0.395) ---- 35.7. There- 
fore, the three-loop prediction agrees clearly better with the numerical data. The 
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situation concerning the convergence of renormalized perturbation theory looks 
good from this point of view. Nevertheless, one has to note that in our points at 

= 0.077 and 0.076 the renormalized coupling is not very small. In some quantities, 
as for instance g~), the convergence of the perturbation series is quite poor. For 

= 0.076 (where the coupling is smaller), the one-loop result with gR = 30.2 is 
g~) - -62  [note that at tree level g(R 4) = gR and the numerical value in table 4 is 
g~) = 92(24)]. Therefore, a real stringent test of the perturbative scaling connection 
can only be performed at smaller masses. 

6. Conclusion 

With the present paper we conclude our detailed numerical study of the 4-dimen- 
sional Ising model. In these investigations [1-3] our main emphasis was put on the 
aspects important from the point of view of particle physics, namely the determina- 
tion of physical masses and couplings in the infinite volume limit. The precision 
achieved is in general satisfactory. Generally speaking, the fortunate circumstance in 
this simple 4-dimensional quantum field theory model is the fact that besides the 
precise numerical simulations also analytical tools are available and the combina- 
tion of these two methods is possible. 

Concerning the broken phase studied in the present paper, an important conclu- 
sion is that the finite volume effects on small and intermediate volumes are 
dominated by vacuum tunneling. In order to have full control over the tunneling 
effects, we investigated the behaviour of the system on lattices elongated in the time 
direction (see also ref. [3]). In particular, the low-lying zero momentum energy 
spectrum was determined as a function of volume and hopping parameter. The 
splitting of the states reflecting the existence of two vacua could be measured. The 
behaviour of the energy of the antisymmetric ground state was compared to an 
instanton calculation [4] and very good agreement was found. This energy vanishes 
exponentially with the volume, and therefore it gives a very large correlation length 
which can be measured on elongated lattices. This phenomenon is expected to be 
characteristic of first order phase transitions, where there are two (or more) 
degenerate ground states. (Note that in the Ising model there is a first order phase 
transition at x > K c as a function of the external magnetic field.) It is not impossible 
that the large correlation length observed by the Ape Collaboration [23] at the 
deconfining phase transition in pure gauge QCD is due to this vacuum tunneling 
phenomenon. 

The renormalized mass and coupling was extrapolated to infinite volume from 
large lattices where the effect of tunneling is negligible. This extrapolation can, in 
principle, be controlled by using the estimates of the asymptotic finite volume 
effects given by renormalized perturbation theory. In practice the perturbative 
corrections turned out to be small, in most cases comparable to the statistical errors 
on large lattices. 
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The  values  ob ta ined  for the renormal ized  mass  and  coupl ing  agree with the 

p r ed i c t i ons  of  Li ischer  and  Weisz  [6] which are based  on the scal ing connec t ion  on 

the two sides of  the cri t ical  point .  Tak ing  the results  of the s imula t ions  at ~ = 0.0732 

in the  symmet r i c  phase  [2] and  at ~ = 0.076 in the b roken  phase  the scal ing 

c onnec t i on  can  direct ly  be checked.  A very good  agreement  with the 3- loop 

p e r t u r b a t i v e  renormal iza t ion  group funct ions  is found,  a l though in the vicini ty  of 

the  po in t s  measu red  in the b roken  phase  the convergence of renormal ized  pe r tu rba -  

t ion  theory  for  some quant i t ies  is qui te  poor .  
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