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In the framework of SU(2) X U(1) X U’(1) gauge models we investigate the decay K* — 77 +
X, where X is the light gauge boson corresponding to the U’(1) group. Contributions of the
annihilation and spectator diagrams are taken into account. We discuss possibilities of the
experimental observation of the X-bosons in the decays K*— #*+ X. It is shown that if the X
boson is the carrier of a new long-range interaction (“the fifth force™), then the width of the
process K* — 7% X is extremely small.

1. Introduction

At present, the standard SU(3) X SU(2) X U(1) model is in a good agreement with
all the data. However, a number of theoretical drawbacks of the model (the
problems of hierarchy, the number of families, the unification of interactions)
require going beyond its framework (the grand unified theories, technicolour,
supersymmetry, superstrings, etc.). Quite often, the low-energy symmetry group
proves to be larger than SU(3) X SU(2) X U(1). The simplest and at the same time
most frequent case is the enlargement of the standard group with an additional U(1)
factor. This possibility is often realized in grand unified theories [1], supersymmgetric
models [2], and superstring theories [3]. Recently, the interest in such kinds of
models has been kindled by possible indications for the existence of a new
long-range interaction (the “fifth force”) [4]. So, the important problem is the
theoretical study of the properties of new U(1) gauge bosons and the investigation
of the possibilities of their experimental detection.

Since the masses of such bosons in general are not predicted by the theory, one
should extensively use the experimental data in order to obtain information on the
possible masses of these bosons.
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If these bosons were sufficiently light, their effects could be searched for in the
e"e” annihilation, deep-inelastic scattering, the measuring of muon and electron
anomalous magnetic moments, in the quarkonia decays, etc. In ref. [5] it was shown
that one of the effective methods of searching for new light gauge bosons is to look
for the decay #°— y+ “nothing” (by “nothing” we mean neutral unobservable
particles). A number of limits on the mass and the coupling constant of new U(1)
bosons was obtained in ref. [6].

In a number of cases rather strong constraints on the properties of such bosons
can be obtained from the existing data on the decay K*— #*+ “nothing”, which is
a usual place to look for new light unobservable particles. A detailed investigation
of this process is inspired also by the fact that a rather sensitive experiment in
search of this decay is taking place in the Brookhaven National Laboratory {7]. It is
expected that the decay K*— #*+ “nothing” will be detected when its branching
ratio exceeds ~ 107! It is worth noting that the width of this decay in the
framework of the standard model is [§8]

BR(K " — 7 »7) =107 11. (1)

Therefore, the positive result of the BNL experiment will mark the observation of
new light undetectable particles. So it seems to be very interesting to know whether
new U(1) bosons can play the role of “nothing” in this process.

In this paper we investigate the decay K*— #*+ X, where X is the gauge boson
corresponding to the extra U’(1) group, possessing an arbitrary mass (my < myg —
m_) and coupling to a quark current. The most general type of the interaction
lagrangian is discussed in sect. 2. The effective sdX vertex is calculated in sect. 3. In
sect. 4 we obtain the contribution of the annihilation diagrams to the matrix
element of the decay K™ — 77X using PCAC for the K meson. Conclusions and an
outlook are presented in sect. 5.

2. Coupling of the X boson to quarks

We consider the gauge theory based on the group SU(2) X U(1) X U’(1) (strong
interactions are not taken into account). We assume that the quark and lepton
sectors of the theory are identical to those of the standard model, and for simplicity
we restrict ourselves to considering only the first two quark generations:

u c
Ll:(dcosﬂc+ssin0C)L’ L2=(—dsin0+sc050)L'
Ug, Cr»> Sp> dg -

We wish to find the most general form of the lagrangian of the interaction of the
X boson and quarks. It turns out that the U’(1) charges of the doublets L, and L,
and of the right-singlets cannot be independent.
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Because of the mixing between different generations, the Higgs sector of the
theory has to contain terms of the following type:

P =fiLHsg + fyL,Hsy + fyL,Hdg + f,L,Hdy + ..., (2)

where H is the Higgs doublet giving mass to down quarks (it does not matter which
Higgs boson gives masses to up quarks and leptons*.

In order that the first two terms in eq. (2) be U’(1) gauge invariant, the U’(1)
charges of the left doublets L, and L, have to be equal. From the gauge invariance
of the first and third terms one can deduce that the U’(1) charges of the right
singlets sp and dp are equal as well. In the same manner one can prove the equality
of the charges of the right singlets up and cg. Thus the coupling of the X boson to
quarks depends on three parameters: G; which is the U’(1) charge of the left
doublets L, ,, G} and G§ which are the U’(1) charges of the right up and down
quarks respectively. So the most general form of the interaction lagrangian of the X
boson and quarks reads

gim=gX{GL Z qLquL+G;Z‘jRquR+Gclj{ Z 5RY,L‘IR}X,L~ (3)

up,down up down

Note that the couplings of the X boson to the s and d quarks are the same. So it
proves impossible to build any model based on the group SU(2) X U(1) X U’(1) in
which the X boson would couple to the vector current of the baryon hypercharge.
(Such a model, in which such a X boson was called a hyperphoton, was proposed in
ref. [9] in order to explain gravitational anomalies in geophysical data.)

Let us consider once more the quark mass term LHgqg. One can see that if
G # Gg, then the Higgs doublet H has nonzero U’(1) charge. In that case the
symmetries SU(2) X U(1) and U’(1) are broken down at the same time. The physical
Z and X bosons will be superpositions of the fields X° and Z° entering the
interaction lagrangian.

If there is only one Higgs doublet H in the theory then in order to make the X
boson massive, one should introduce an extra Higgs field ¢ which is a singlet under
SU(2) X U(1). It is its vacuum expectation value that determines the value of the
physical X-boson mass:

mi = 318xGy(9).  my=3(g+gkGy+ g7 )(H). (4)

* One can see that one must have at least three nonzero constants f; in eq. (2) in order to get mixing.
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The fields of physical bosons are

224Gy 22.Gy
X= =—7+Xx°, z=2- =" x° (5)

In deriving egs. (4) and (5) it was assumed that my <m, and gy < g, g’".
The gauge invariance of the mass terms of the up and down quarks gives

GH:GL_ngGE‘GL (6)

Hence, in the case where the same Higgs doublet gives mass to both up and down
quarks, the coupling of the X boson to quarks is determined by the two parameters
Gy and G§, while G, = 1(G} + G2).

We do not investigate restrictions on the quark U’(1) charges which can be
imposed by the requirement of the absence of the triangle anomalies, because it
always can be respected by adjusting U’(1) charges in the lepton sector or by
introducing new heavy fermions.

In the case of the nonminimal Higgs sector one is not obliged to introduce an
extra Higgs singlet. For instance, in the case of two Higgs doublets H, and H,
which give masses to up and down quarks respectively (as is the case in supersym-
metric theories), the X boson acquires the mass

2 (H)XH,)

(Y T (Y )

my = %8%{((;111 + GHZ)

In the case when (H,) = {( H,) =250 GeV we obtain

8x my |’
“X_4w_(250Gev) ’ ®
which is a rather strong limit on ay in the case of sufficiently light X bosons.

In many theories the mixing between Higgs doublets, &, jH{sz, plays a rather
important role. When it is absent, there usually appear almost massless pseudoscalar
(axion) and scalar bosons which are forbidden by the experiment. If this mixing is
present then Gy + Gy, = 0. From eq. (7) we conclude that in order to make the X
boson massive, in this case one has to introduce again an extra Higgs field, singlet
under SU(2) X U(1). As in the first case here we have G; = X(GY + G&).

In what follows we shall restrict ourselves to the theory, the Higgs sector of which
consists of one doublet and one singlet. In this case we are free from the rather
stringent constraint (8).
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3. Calculation of the effective sdX vertex

In the calculation of the effective sdX vertex in general we shall follow the
method of ref. [10], where the effective sdZ vertex was calculated in detail.

First, let us note the following circumstance. When the X boson is massless, the
decay K*— 7" X is forbidden kinematically by angular momentum conservation.
Indeed, in the K-meson restframe the # meson and X boson produced in the decay
fly away in the opposite directions along the same line. Since the X boson is
massless, the projection of its spin on this line equals + 1. The projections of the
orbital angular momentum of the # meson and the X boson on this line are equal to
zero. Since in the initial state we had the scalar (K meson), the process is forbidden.
Hence, the width of the decay K*— #%X should be proportional to the X-boson
mass

BR(K - 7" X) ~ (3)2 9)

myg

So the bosons with extremely small masses, which could be carriers of a new
long-range interaction, give negligibly small contributions to the width of the decay
K*— 7%+ “nothing”.

When calculating the effective sdX vertex one may assume that the s and d
quarks are on their mass shell and their masses are equal to zero. Accounting for the
quark masses leads to small corrections BR — BR [1 + O(m?2/m%,)]

We shall make all calculations in the framework of the four-quark model. Besides
we shall keep only the leading terms in the powers of m?/m3,, m%/m%,.

Now let us come to the detailed calculation of the sdX° vertex. The process
S(k) — d( p)X(4q) 1s described by two types of diagrams depicted in fig. 1. Diagram
(a) corresponds to the sum of six diagrams presented in fig. 2. Self-energy diagrams
marked with black circles in fig. 1b are described by the three diagrams of fig. 3. We
choose the renormalization scheme in fig. 3 such that the counterterm (¢) completely
cancels the contribution of the diagrams (a) and (b) in the non-diagonal sd
transition. This sd counterterm gives rise to the counterterm of the form Sy, d X,
which is depicted in fig. 2f (for more details see ref. [10]). So the effective sdX,
vertex is described by fig. 1a only.

X X X
(@) (b)

Fig. 1.
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s d s

(c) (d)

Fig. 2.

All calculations in this section were carried out in the R, gauge, in which the

propagator of the W boson reads

4,,= ~—1—(g,w +(¢-1)p,p,/( P —tm

2 2
P —my

The expressions for each diagram 2a-2f of fig. 2 are

m2 2
2a __ u uy __ ¢
I —A“{2(GR— G}) oy 2

2 2
c

m q 1
+(268 - 1G63)— 1n£+4G£—’;!2—f0 dxx(1-x)In
w

My

m

2 2b _
L+ 17 =406y o)
w

m¢ u u m
lnm—2+(GL—2GR) 3

Fig. 3.

2
c

My

m2—x(1—x)q?)

2
c

1+

3In ¢
=

W

s d § d

u,c

(a)

(c)

mi—x(1-x)q?

f’ (10)

(11)



T.M. Alievetal. / K*>a* X 317

where

2

.88x . -7
A =zmsmﬂccos 6.y, Py, P =

2

n

The contributions of the diagrams 2d, 2e and the contribution of that part of the
diagram 2f which corresponds to the counterterm for the diagram in fig. 3b, cancel
each other completely, as is the case for the Z° boson

I+ e+ L =0 (12)

The remaining part of the diagram 2f, which corresponds to the counterterm
appearing due to the W-boson exchange (fig. 3a), reads

IXM=4G6{(1+3n¢) (13)

Let us note that in the specific case of the effective sdZ° vertex these results agree
with those obtained in ref. [10].

It was stressed above that in the case under consideration, the U’(1) charges obey
the following equations:

Gi=Gi=G.=3(Gi+GR),

Gyr=GL—Gg=—Gpy- (14)

Hence we obtain the following expression for the effective sdX° vertex:

2 2 2
.88x . u Mw 1-£ me
FFX=l'émSlnacCOSaCYMPL{(GR—GL) 3—2lnm—z+mln§ m—%v

mi—x(1-x)q?)

mi—ti=op | Y

2
+4GLrZ—2'/(;ldxx(l —x)In
w

The effective sdZ° vertex has the form

2. /o2 2 2 2 7—¢
. - . me My
F“Z=,——Twz—smﬂccosﬂcy#PL;Z\;{—%Jrln—?—mlné . (16)
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X

0
al

Fig. 4.

From egs. (15) and (16), taking into account the mixing (5) and eq. (14) for the
U’(1) charges, one gets the following expression for the sdX vertex:

8x Gr . _
r= iw—)z( 7;51“0&305 0.1(Gy+ G ) g%y, d,

m?—¢*x(1 - x)

my=gx(1-x)

X/ dxx(1—x)In (17)

It is worth noting that when there is no mixing between the X and Z bosons (i.e.
the X boson couples only to a vector quark current) the expression (17) for the
effective sdX vertex does not change.

Now we have everything to compute the matrix element of the decay K*(k)—
77 ( p)X(q) corresponding to the spectator diagram in fig. 4.

M=e(K*|T|7")

g
R

L sing . cos0,1(Gy + Gy )mx} i(mi)

m2 — x(1 - x)m;
X(p+k),e fdxx(l—x)ln > ( )

(18)

—x(1—x)m%~

where ¢, is the polarization vector of the X boson, f1(g?) is the form factor of the
K*— 7™ transition:

(KK 5y, diln* (p)y =fi(a*)(p+ k) + 1 (4)q,. (19)

Since eg =0, the second term in eq. (19) does not contribute to the matrix
element. To a good accuracy the form factor f7(m%) equals [11]

my
1+0.03— |. (20)
m

™

1
fi(mi):ﬁ
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Note that the matrix element of the decay K*— #*X turns out to be propor-
tional to m% in agreement with the qualitative arguments presented in the beginning
of this section.

It is well known that in the limit my — 0 (when gy — 0) the X boson behaves like
the corresponding Goldstone boson G*. It is interesting to note that although the
decay K*— #*G is not kinematically forbidden, its matrix element nevertheless
vanishes (see appendix B).

4. Contribution of the annihilation diagrams

In this section we calculate the contribution to the matrix element corresponding
to the annihilation diagrams. We assume that the X boson couples to the quark
current of the general form

Jo=JY + 10 = g4qv,q + 84qvsv.4.-
As above we shall suppose that the X boson interacts with s and d quarks in the

same way.
The matrix element of the decay K*(k) — #*( p)X(¢) may be written as

M= E”MF R
where ¢, is the polarization vector of the X boson and

M, = fd“xe—"qx (KT (x) L (0)|m+ ). (21)

Here ¢ is the effective lagrangian of the K-« transition. Without strong
corrections it has the following form:

G

F= 7 sin @, cos 8.5y, (1 — vs)uuy, (1 —v5) d. (22)

Let us begin with the calculation of the contribution (21) due to the s-quark
vector current. In this case the matrix element of the decay is

GF S o 4 —igx + 5
M, = —zﬁgvsmﬂccosﬁcfd xe K| Tsy,s(x)

X5y, (1 — ys)uity, (1 — ys) d(0)|7 7).

* See, e.g. the second entry of ref. [2].
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Using the standard vacuum dominance assumption one gets
M, = Gggyf, sin §,cos Hcp,,f d*x e K" T5y,s(x)5y,ysu(0)|0).

In the following calculations of the matrix elements we shall restrict ourselves to
the leading terms in the limit of vanishing squared momenta of K and # mesons;
K2, p?— 0. (This means that we apply the PCAC hypothesis to the entire mesonic
SU(3) octet. The accuracy of our results will correspond to the accuracy of the
hadron SU(3) symmetry. So, the expected error will be about 20%.) From the
kinematics of the decay one deduces that in this limit all momenta are tending to
zero. Hence one obtains

m

G
M=~ —
fx

o2

sinf.cos.—m_p,T

py

where
T, =i [ d% diye ™ *X0| T 5y,5(x)5v,75u(0)iiyss ()]0

In the calculation of the matrix element M, we shall use the following method.
Using the Lorentz invariance M, can be written as

Mﬂ =ap,+ bq# .
The value T, can be calculated from the triangle diagram depicted in fig. 5. The

coefficient b turns out to be finite. To render the coefficient a finite we use the
following Ward identity:

q,M, = iG/2sin8,cos b, f, fx ( pk). (23)

(The detailed derivation of this formula is contained in Appendix A.) Finally one

Fig. 5.
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gets

Gy
#=lﬁgv

f
fK

M} v siné_cos 6,

2

{ [UK( kp) — (;pq—zp ) +qﬂ#[%pq—%p2]}- (24)

Reasoning in the same manner in the case of d quark and changing identity (23) to

q,M3= —iGgV2sinb,cos b, f, fy (kp) (25)

one obtains

G
M= —iﬁFgﬁl,sinﬂccosﬁC
I ! [3k%—pk] — & L 2(k < (32~ pk) 26)
X =g —|3k*—pk| —k,— + — (3K - .
fK q“2772 2 p p.kq f'rr p) 277_2 2 p (

And now let us find out the contribution of the coupling of the X boson to the
current #y,u. Since the u quark is contained both in K" and in #* mesons, the
corresponding matrix element can be represented as the sum

M= M, +

2#’

where

G ; _ _
My, = — ﬁg% sin @, cos 0Cf d*x e 7K™ | Tuy,u(x)5v,(1— vs)u(0)|0)

X (Oluy,(1—ys)d|m*)

Gr

= 1/_ —=gYsinf.cos6,~—m_p,T,

lpv >

Ik

T,,= ifd“x d*yex—iky (Q] Tﬂyﬂu(x)ﬂySS(y)Ey,,YSu(O)m)



322 T.M. Alievetal. /f K*>a* X

and

M, = sinf,cos 0 K* |5v,(1 — vs) u|0)

G
- ﬁg‘\’/
X/d"x ele~ <0|Tﬁyﬂu(x)t_ly,,(l —v5) d(0)|7*)

GF . fK
= TZ—g% sin §_cos 0°f_(m“ +my)k, Ty,

Ty, = i [ dxddy e P 0| Tay,u(x) dysu(y)av,vs d(0)|0)

When computing the M, one cannot neglect the u-quark mass as compared to
the s-quark mass, because in the PCAC limit this results in the appearance of
divergent integrals.

Let us show the explicit form of p,T;
later:

w and kT, , which will be useful for us

a4 1,[2lp + pq] + q,lp — p,[1* + Iq]

Ty, =12m, : 5 . (27
Py lpv msf (27T)4 [(l+q)2_mi][(1_p)2_mz][lz_mg] ( )
a4 2L kp + q k*+ Kk, [12 =21
kT, =12 : - e , (28
Loy mqf @m)* [(1+q)" = m2][(1- k)* = m2][ 12 - m2] %)

In the last equation we assumed
my=my=m

q°

Following the same procedure as for s and d quarks and using the identities (see
appendix A)

q;LMll:L == lGFﬁSIH 0(: cos 0CfﬂfK(kp)g% ’

qu M2up, =G F‘/Esnl 0(: cos acf'ler(kP)gl\l/ ’ (283)
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| m2 5
nmﬁ 6

1 q° mZ 5
—p —|2F2(kp) + — | 1p2 _ In— — —
p,,pq[ fk(kp) 4772(217 pq(nmi < ,

we get

u G f 1 2
My, =i ngSIHHCOSHf Py ip*—pq

(29)
Gr q*
Mz“ﬂ=i—‘/2:gvsm0 cosﬂ}{ {quz 2[kp k2]+k [2/‘ (kp)——( k )}}
(30)

Now let us proceed to the calculation of the contribution to the matrix element
due to the intersection of the X boson with axial quark currents. Note that in this
case we cannot use the Ward identity as in the case above, because in general the K
and 7 mesons have no definite axial charge.

We start with the case of the coupling of the X boson to the current uysy,u. As in
the case of the vector coupling we decompose the matrix element into the sum:

M, =M, +M

2u
where

G .
M, =— ﬁgx sin 8, cos Hc/ d*x e’ (K* | Tuysy,u(x)5v,(1 - v5)u(0)/0)
X (Ofuy, (1 = vs) d|m™)

-—E;-Fg“ sinf cosﬂﬁm p.L
‘/5 A ¢ ch sty

lup >

Ly, =i [ dxdiy e ip (0| Taysy,u(x) dysu(y) iy, d(0)]0),

Gg
n _ﬁgl\
X (0] Tuysy,u(x)iy, (1 —vys)dlz*)

G .
= - \_F2—gA sin 8 cos 8,

M,, = 4 sin 8, cos HCf d*x e (K" |5,(1 — vs)u|0)

fx
f—zmqusz, B

Ly, =i [ d*xdtye ™™ (0| Tavsy,u(x) dysu(y)ay, d(0)[0).
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The value p,L,, 1

. =3j' U Trys(l=p+m)p(I+m,)vys(T+g+m,)
T et p) —m2] [ m2][(1+ ) = 2]
Using eq. (27) one gets
d% Tr(/ = p+m,) py,(I+ 4+ m,
p( lpv Tlp.v)z_ f £ )

2m)* [(1=p)? = m2][(1+ q)* = m2][ 12— m?]

So, within our accuracy we obtain p,L,,, = p,T,,,. Therefore,

G 1. 1 X m: 5
M1,L=—17——2“8A sin @, cost‘)f qM4 p°—pq lnmi_g
1 q* m: 5
2fK(kp)+—— P —pg|ln— — -
Pq mi 6

J

To compute M,, we proceed in the same way. The difference k,(L,,, — T,,)

turns out to be finite, and taking eq. (28) into account one gets

i 1
k,,(LZW— T2;w) = m ;n—[—2q”kq+ k#(k2 + qz)] .
q

Using egs. (28) and (30) we arrive at

Gg -
M,, = —zﬁgAschcos()c

Xﬁ— i_{_kszZk __i(k 2)__1_(k )(k2+ 2)
e\ P ag? T g | T g VP T 272 d

3

(32)
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Now let the X boson couple to the current sysy,s. The matrix element to be
computed is

G .- _
M,= - ﬁg; sin , cos 0¢/d4x e' " (K*[T5ysy,s(x)
x5,(1 = v5)u(0)]0)(0]y, (1 = v5) d|7 ")

GFgs sin . cos 6, f"m L
= =8 [ C— SpV v?
v2 ot fx g

L,,=i[d*xd'ye s %> 0| T5ysy,s(x)5y,u(0) yss|0) (33)

As in the case of the vector current §y,s, we represent the matrix element as the
sum:

M#= ap,+ bqu.

The coefficient b may be extracted directly from the corresponding Feynman
diagram. It proves to be

1
b= —I[4r’ = 3nd].

s

The coefficient a is divergent. To obtain a one should use the corresponding Ward
identity.
Consider the following field transformation:
u— ey, so>e g,
The corresponding current J: and the charge Q read
Jil = $YsY,s — uvsyu,
Q(K")=0, Q[0)=0. (34)

Note that Jlf conserves in the PCAC limit. Consider the matrix element C,,:

G = fd“x e (K™ |TJ(x)57,(1 — v5)u(0)|0). (35)

It is shown in appendix A that

q.C,.=0.

By
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Inserting eq. (34) into (35) we can see that
%M, = q. M,

where M, and M, are defined by the formulae (31) and (33), respectively. Using
eq. (31) we conclude that the Ward identity which we need reads

q,M, = iG/2sinf,cos b.f, f (kp).

So the final expression for M, is

M OF 6.cos 8
#—tﬁgAsm .cos 6,
f‘” 1 1,2 1 1 2 qZ 1,2 1
X}; qu——zﬂz[z —§P(I]—P,L;); 2fx(kP)+2wz(5P —1ipq)|}. (36)

Finally, let us consider the interaction of the X boson with the current Jysy#d.
The matrix element we are looking for is

G .
M, = - ﬁFgg sin 6, cos OCf d*x e’ (K" |57,(1 — v5)u|0)

X (0| Tdvsy,d(x)uy,(1—vs)dl7")

fx

7 2qu L

L 13 4

Ge 4 .
= - ﬁgg sin 6, cos 0,

L, = ifd“x d*y e+ 1Py (0| Tdvgy, d(x )y, d(0) dysu( y)|0).

ny

Comparing the contribution of the current d YsY,d with that of the current d Y4,
one can show that their difference is finite and is equal to

i1
k,(L,,—T )=———5m—[k“kq+q#(k2+q2)].
q

L 27
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Finally we get

GF fK
M, =i—=sinf cos§,—
V2 fx

I

1
{qpm[%kz—qz—pq]

1 q° 1
k. —|2f2(kp) + —— (2k2—kp) + —ka(k2+ ¢2)|}. (37
,qu[ fE(kp) 2772(2 ) Saka(k>+4%) } (37)

Thus, we have computed all the annihilation diagrams. Before we write down the
final answer it is worth making two remarks.

First, all calculations were made in the approximation of the hadron SU(3)
symmetry, so we should put f, = f = f= 100 MeV. Moreover, we used the PCAC
limit. Therefore we have to keep in the final expression only those terms which are
proportional to the lowest power of the momenta.

Thus, the answer is (we do not write down terms proportional to g, since they do
not contribute to the matrix element M)

1) gv+gy

Gy

kp
M, = sinf,cos ,2( g8 — g% — g4 + g% ) p, f 2> —— 38)
" 2 (gv 8v— 8a gA)P,L q (pq)(kq) (
(2) g¥=g¥ (in this case g4 =0)

Gy . L, 1 m: 3
M#=1ﬁsmﬂccosﬂcqu o ln;i—— Py (39)

u

Hence, for the physical X boson we obtain
(1) Gg + G§ (in this case there is mixing between X and Z bosons). From eq.
(38) the contributions of the X and Z bosons are

. u Gp | kp
MMX=1gX(G‘,’{—GR)ﬁsml?Ccosﬂcfzqzmpﬂ,
G kp
MZ= —jjg>+ g cos? By —sin b, cos 8,1 2q> ——p._.
T e ey T k)

Taking eq. (5) into account we get the final result for the contribution of the
annihilation diagrams:

Gr

kp
M, =igy(G% — G& sinf-cos 8,f g ——— (1 + cos? 8 . (40
® x( R R)ﬁ C (pq)(kq)( W)P,L ( )
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(2) G& = G4 (in this case the mixing between X and Z bosons is absent). Directly
from eq. (39) we get

. u Gr . ) m; 3
Mﬂ=ngGRﬁs1n0‘:cosﬂcq yy lnm2 — 5| (41)
Summing up the contributions of the spectator and annihilation diagrams we can
write down the complete answer for the matrix element of the decay K*— 7" X:
(1) Gx* Gy

G 1
M=igx7_2£sin¢9ccos0c HGy+ G )mis i(mg()(p+k),,/0 dxx(1-x)

2 2
me—mx(1l—x)x

m2—mi(1—x)x

kp
XIn +pM(G%_GR)f2m§(—(pq—)(k—q_)(l+C0$20W)}8F’

(42)

(2) Gr=GR=0Gx

G
M= ingR—FsinHCcos g.m2{ Lft(m¥)(p+ k),,fldxx(l —x)
V2 0

m2—mix(1—x) 1 m2 3
X1In 5 +p"4—‘—2 In i AR
: 7

mi—m%x(1—x) mi 2
(43)
The width of the decay is
L= Gamz P 1M1 (44)
where
ol = o (mi = ) = b

and M is defined by eq. (42) if G} # G4, and by eq. (43) if G} = G§.

5. Conclusions and outlook

Let us consider the numerical results. Using eqs. (42), (43) and (44) we can find
the width of the decay K — #X which proves to depend rather strongly on the
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BR{(K—» 1 X) - &’

(2)

0 T Y T T T —T "t T
o] 100 200 300 400

M, (MeV)

Fig. 6. The dependence of the branching ratio of the decay K*— 7% X on the X-boson mass with
various choices of U’(1) charges of right-handed quarks: (1) GR =1, G§ = -1,(2) Gk =1, G =1, 3)
GR=0,Gi=1,HGr=1Ga=0.

choice of the U’(1) charges of right quarks (G4 and G{). Fig. 6 presents the
behaviour of the branching ratio BR(K — 7X) assuming various X-boson masses
and various choices of Gy and G§. One can see that in all four cases the maximal
value of the branching ratio lies in the region about m, =200 MeV.

When G% = G§ =1, one may take BR(K — 7 X) .. ~ ay in order to get a rough
estimate. So if ay > 107°-10"1° it is possible to observe X bosons in the BNL
experiment by looking for the decay K*— #* + “nothing”. But due to the strong
dependence of BR(K*— 7*X) on the values of the U’(1) charges of quarks and on
the X-boson mass, it seems to be impossible to extract a model-independent upper
bound on ay from the existing data on the decay K*— 77+ “nothing”.

As an example let us consider the supersymmetric Fayet model [2] and try to get
limits on the mass of the corresponding X boson (it is usually called the U boson).
In this model the coupling constant of the U boson is

2
:3><10—7( ) .
Au 1GeV

It is reasonable to suppose that the presence of two Higgs doublets in this model
will insignificantly alter the obtained results. Then if m < 300 MeV we get

BR(K - 7U) <3x 1072,
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So whatever the mass of the U boson, its existence does not contradict the
experimental data on K-meson decays. (Obviously, other experiments can impose
independent limits on m,. For instance, from the beam-dump experiments one can
conclude that the mass region 1 MeV <m <7 MeV is forbidden [2].)

It is worth noting as well that if the X boson is a superlight gauge boson
corresponding to a new long-range interaction (“the fifth force”), then the rate of
the decay K — # X is extremely small.

The authors are thankful to A.A. Belkov, V.I. Zakharov, V.A. Kuzmin, V. A.
Matveev and M.E. Shaposhnikov for their interest in the work and fruitful discus-

sions. One of us (A.L) would like to thank R.D. Peccei and members of the DESY
Theory Division for hospitality at DESY where this work was completed.

Appendix A

In this appendix we present the detailed derivation of the Ward identities used in
the text (eqs. (23), (25) and (28a)) [11]. Let us start with eq. (21):

M,= fd‘*xe"'fx (KT, (x) £ (0)7y, (A.1)

where # is the effective lagrangian of the K — # transition. Without gluon
corrections it has the form

G

P= 7 sin 6, cos 0,5,(1 — vs) uuy,(1 — v5) d. (A2)

Let the X boson interact with a vector current J#. In the lowest order of the weak
interaction d,J, = 0. Therefore, from eq. (A.1) we obtain

g.M, =i [d*xe 9K | TI(x) L (O)n")
=ifd3xe"q'x<K+1[Jo(x)$(0)]|w+>. (A.3)

Since g, M, is the Lorentz scalar, it may be calculated in the frame where 4= 0. We
define the charge in the standard way as

0= fd3xJ0(x,0).
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So from eq. (A.3) one gets
g M, = i(K*[[Q, 2(0)]|n*) =i(Q(K*) = Q(="))(K* L (0)|7 ).
Assuming the vacuum dominance we obtain
g.M,= —i(Q(K") = 0(7"))GeV2 fi £, sin.cos b.(kp) . (A.5)

Formula (A.5) is the basic point for all further reasoning. Let the X boson couple
to the current 5v,s. Since the charge corresponding to this current is the strangeness,
we have Q(K*) =1, Q(#7)=0. So

g,M; = iGg/2 fy f,(kp)sin8,cos 6. (A.6)

This is just the Ward identity used in sect. 4 (eq. (23)).
If the X-boson couples to the current dy,d then Q4(K") =0, Q4(7")= —1 and

g,M?= —iGpV2 fy [, sinf.cos 6,(kp). (A7)

This is just eq. (25).

Let the X boson interact with the U-quark vector current. Since the U quark is
contained both in K* and =% mesons, the matrix element can be decomposed into
the sum

u_ u u
M} =M, +M,,.

For the uy,u current the charges are Q. K =0 (7*)=1. When the X boson
couples to the U quark contained in the K* meson, one gets from eq. (A.5)

q,M,, = —iG V2 sin 6.cosb.f fx(kp).
When the X boson couples to the U quark contained in the #*-meson, then eq.
(A.5) gives
g, M, = iGV2sin6,cos 6,(kp). (A.8)

Eqgs. (A.6)—(A.8) are the Ward identities (23), (25) and (28a) of sect. 4.

Appendix B

It 1s well known that in local gauge theories vector bosons acquire mass eating up
corresponding Goldstone bosons. So one may think that if the masses of the vector
bosons tend to zero, then these bosons should behave like Goldstone bosons. The
transverse polarization of the vector bosons is decoupled and the behaviour of the
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gauge bosons in this limit (my — 0, gx — 0, myx/gy = const.) is determined by
their longitudinal polarizations.

Now when the X bosons behave like the Goldstone boson, it is worthwhile
confirming the correctness of eq. (17) with the help of independent calculations.
That means to show that if my — 0 then I, =0.

Let us define the conserved current J, in the Goldstone case (for more details see,
e.g. ref. [2]):

J,=vV2 3,ii + J (leptons + quarks). (B.1)
Since d,J, = 0 we obtain

O (B.2)

1
i=——=2,J
u U‘/j e

The interaction of the X° and Z° bosons with quark currents is (for up quarks)
8x _
S Zanlou+ i+ (-G + 6wl x¢
up
+3g? + 87 Lav.(gv + 8ars) 92, (B.3)
up

where G, Gy are the U’(1) charges of the left doublet and right singlet, gy and g,
are the vector and axial coupling constants of the Z° boson in the standard model.

Using eq. (5) we obtain that the interaction of the physical X boson with up
quark has the form:

1

(ngGn/Vg +g )

gx u u
{ an[Gﬁ Gi+(—=GL+GR)xslq

+2gxG HZqY,L(ngLgAvs)q} (B.4)
up

Hence one gets

gx
3,J) = Zquqy5q{ GL+Gy— Gy} =0. (B.S)

1+(2ngH/\/g tg )

So the matrix element of the decay K*— #* + Goldstone equals zero. Therefore,
if the X boson is massless the decay K*— 7 X is forbidden and we obtain eq. (17).
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