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We employ a recently developed collective Monte Carlo algorithm to simulate the two-dimen- 
sional x - y  model at correlation lengths up to 69. No critical slowing down manifests itself in the 
measured observables. In the high-temperature phase of the model we observe an approach to 
criticality of the type predicted by Kosterlitz and Thouless and exclude a conventional critical 
point. The exponent ~ exceeds ¼ for the observed range of correlation lengths. In the spinwave 
phase we see a variable ~ and scaling behavior in agreement with the absence of ultraviolet 
coupling constant renormalization as expected for the abelian model. 

1. Introduction 

This paper serves the dual purpose of establishing in detail the advantages of a 
new collective Monte Carlo algorithm [1] and of producing physics results relevant 
to the recent controversy [2] about the Kosterlitz-Thouless (KT) transition [3, 4]. In 
a series of by now classical papers KT predicted a rather exceptional kind of phase 
transition in the 0(2) nonlinear o-model in two dimensions (x-y model). A 
standard member of its universality class is defined on a periodic square lattice of 
L 2 sites by the partition function 

Z= I-~Ix fs, ' ldoxexp(B~o,.ox+,) (1.1) 

with n---2. In eq. (1.1) an n-component spin o X is integrated at each site over the 
unit sphere S n 1, and nearest neighbors in the two directions ~ = 1, 2 (euclidean 
space and time) are coupled. Due to an interplay between the spin space S 1 and the 
2-dimensional euclidean base space (scaffolded by the lattice) the abelian n = 2 
model possesses topologically stable vortex configurations. KT predict that there is 
a critical inverse temperature tic such that for/3 < Bc vortices are thermodynamically 
important  degrees of freedom which occur with a finite density and disorder the 
system. At fie this density tends to zero, vortices and antivortices bind more and 
more strongly as fl grows and eventually lose their meaning as relevant dynamical 
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degrees of freedom. In an approximate renormalization group calculation for small 
vortex densities KT derive essential singularities at tic for various physical quantities 
as a consequence of vortex dynamics. The magnetic susceptibility, 

X = Y~. (%" ox),  (1.2) 
y 

for example, is supposed to diverge as 

xCC exp[bx(1- fl/flc) ~] (1.3) 

for fl ..~ tic with u = ½ and a nonuniversal b×. An analogous behavior is expected for 
the correlation length 4(/~), and the critical exponent ~ = ¼ is predicted at fie such 
that 

X (3c 4 2 - ~  = 4 7/4 . ( 1 . 4 )  

In the spinwave dominated region above fie the model is expected to be critical at all 
/3 with continuously changing critical exponents. For the O(2)-symmetric two-point 
function the long-distance behavior is given by 

(ax. Oy ) oc Ix-yl -~ (1.5) 

with ~/= ~/(fl), and 77 ---- (2~rfl) 1 at large fi from pure spinwave dynamics. In other 
words, the model does not generate a scale in this phase, and the susceptibility 
diverges with the size of the system as 

X cr L 2-'~(~) , (1.6) 

if we scale up L at fixed ft. 
Earlier computer simulations [5] of the x-y model were severely hampered by 

critical slowing down. They could not study the region 1 << 4 with a lattice size and 
statistics sufficient for a first principles test of the KT predictions. A combination of 
data from relatively small lattices and finite-size scaling assumptions typically led to 
results consistent with but not necessarily distinctive of the KT picture. Another 
general problem is, that to verify (1.3) from numerical results, three or, if u is 
determined rather than assumed, even four parameters have to be fitted. Since they 
are strongly correlated, high-quality data and analysis are required. In ref. [2] 
correlation lengths up to 4 -= 6 have been studied on an 802 lattice using the Z(10) 
clock model that is indistinguishable from the x-y model in this range. The authors 
conclude that a conventional critical point with X and 4 diverging as powers of 
tic - fl yields a more plausible fit to their data than the KT form. During our own 
simulation we received a preprint of ref. [6]. An overrelaxation algorithm with 
reduced slowing down (Tee 412) is used there. Armed with a parallel computer 
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correlation lengths ~ --- 22 are reached on a 5122 lattice. The " raw"  data, i.e. X(fl) 
and ((13), will be seen to be consistent between ref. [6] and the present simulation. 
We find it both  fortunate and comforting that this comparison is available, because 
two relatively new methods are used in rather extreme regimes. The results of our 
data  analysis differ from ref. [6]. Although we also generally confirm KT, we come 
nowhere close to the precision of 1 : 500 with which the authors of ref. [6] derive 
v = ½. This is rather surprising as we have more data at our disposal ranging up to 

~ 69 on 5122 with comparable errors. The source of this discrepancy is presently 
not understood (see sect. 3 for more details). As to the algorithmic aspect of this 

work, we conclude that the problem of slowing down is completely eliminated by 
the new algorithm [1]. With an average CPU effort of the order of one local 
Metropolis sweep we produce an independent estimate for long distance correlation 

functions at any of the correlation lengths studied. 
The paper  is organized as follows: In sect. 2, the collective algorithm is intro- 

duced. It is followed by the presentations and discussions of our data in the vortex 
phase in sect. 3, and the spinwave phase in sect. 4. An outlook and some conclusions 

are offered in sect. 5. 

2. Collective updating for O(n) o-models 

The new collective algorithm for spin systems has already been briefly described 
in ref. [1]. Here we derive it in a slightly more formal way. To execute one 
elementary update  step we first choose isotropically a random direction r ~ S n_ 1- 
Only components  of o x parallel to r will be changed in this step. Next we construct 
one cluster C - a subset of the lattice sites - that depends globally on r .  % To this 
end we may  imagine activating each bond {xy) on the whole lattice with a 

probabil i ty given locally by 

p~(o~,oy)= 1 -  exp[min(O, -2 f lOx . rO) , . r ) ] .  (2.1) 

Active bonds are now interpreted in the sense of bond percolation, and the lattice 
sites are decomposed into a maximal number of mutually unconnected subsets or 
clusters c i, i = 1 . . . . .  N c. This means that there is no chain of active bonds leading 
f rom a site in one cluster to a site in any other cluster. The one cluster C is 
determined by selecting a lattice site x at random and taking C = ci~x), where C~(x~ is 
the cluster containing x. The new spin configuration succeeding o is R(r)% where 

(R(r)Co) =R(r)o~ f o r x ~ C  
o x f o r x ~ C  (2.2) 
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and R(r) GO(n), 
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R(r)Ox=Ox-2(Ox.r)r,  (2.3) 

is the reflection operation from ref. [1]. The probability of reaching a configuration 
o '  from o in this way is 

W(o-~o ' )=fs  dr Y'. Qr(o,C)8[o',R(r)Co], (2.4) 
n-1  C E ~ '  

where ~ is the set of all possible clusters on the lattice. In eq. (2.4) the symmetric 
"funct ional"  &function is defined with the normalized invariant measure on the 
sphere 

1-~I fs,_, doxS[O,o'lF[o] = F[o' ] , (2.5) 

and Qr(o,C) is the probability of forming cluster C by the above process. It 
factorizes into 

Q~(o ,C)-  ICI L z r-I [1-pr(ox,Oy)] Vr(o,C), (2.6) 
(xy)~ac 

where [C[ is the number of sites in C, and the surface O C is the set of nearest 
neighbor bonds (xy) that connect sites x ~ C to sites y ~ C. In eq. (2.6) the various 
explicit factors account for the necessity of choosing member C among the clusters 
c i and for the fact that for C to be among the c i its surface bonds must not be 
activated. The remaining term Vr(O, C) is the probability that the bonds (xy) with 
both x ~ C and y ~  C are activated such that C gets connected. It is a very 
complicated function of the activation probabilities inside of C. We shall, however, 
only need the simple property 

Vr(O,C)=Vr(R(r)%,C) (2.7) 

which is a trivial consequence of the invariance 

Pr( R( r )ox, R( r )oy) = Pr( Ox, Oy). (2.8) 

We are now ready to prove detailed balance for transitions between configurations 
o and o '  that can actually be mediated by our process, 
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for some r, C. Apart  from a set of configurations of measure zero r and C are 
uniquely fixed by o, o '  up to the sign of r. Unless o = o '  there is a spin o x =g o~' = 

R(r)o x. If there is another r '  such that o" = R(r')ax, then r and r '  have to be 
collinear f rom eq. (2.3). If there is a cluster C '  larger than the unique C where o and 
o '  differ, then for all y ~ C' \C the condition R(r)% = % implies r .  Oy = 0 and 
restricts these configurations to measure zero. Upon using eqs. (2.6), (2.7), and (2.1) 
we find 

W(° -~ o') 1 - p~(~ ,  o~) 
FI W(a'--+ o) (xy)cac 1 --pr(O;, Oy) 

=exp[fl ~" ( ° ' '%' - °x '%)]  (2.10) 

Ergodicity under repeated applications of the elementary updates follows from a 
simple argument  presented in ref. [1]. Also a more efficient implementation is 
described there which requires only O([ C I) operations for the elementary step 
flipping C rather than O(L 2) if one first builds all clusters ci. 

We conclude this section by some comments on the connection between the 
present algorithm and the one by Swendsen and Wang (SW) [7] which in its original 
form is applicable for n = 1. If one flips each c i independently with R(r) ci with 
probabil i ty  ½ rather than selecting C and flipping it alone, detailed balance holds, 

too. The special case n -- 1, fl > 0 coincides with SW. By eq. (2.1) only sites with 
like-sign a x • r aggregate to the same cluster for fl > 0. Then, for n = 1, flipping a 
cluster at r andom or picking a new global spin orientation on it is identical. If  fl < 0 

the present algorithm will automatically produce staggered clusters that are flipped. 

Of course, this case can be trivially mapped back to the ferromagnetic one by 
% --+ - a x on the odd sublattice, and the algorithm is merely covariant: the transfor- 
mat ion on the initial configuration is handed through to its successor. The algorithm 
as it is formulated h e r e -  both flipping single clusters or conditionally all c i -  is 
also applicable if fl --+ fl(xy) is bond dependent with arbitrary sign, a case met in the 
spin glass problem. It is of course open whether clusters form which lead to good 
relaxation behavior. As discussed in ref. [1] an important feature of the one-cluster 
selection method with probability given by the size is that more CPU time goes into 
moving large clusters. We exclusively used this method implemented as described in 
ref. [1] for our x-y model simulation whose results follows. 

3. Numerical results in the vortex phase 

In the vortex phase we performed simulations of the x-y model in a range of fl 
chosen such that the condition 1 << ~ << L is fulfilled for the correlation length ~. 

The dependence of ~ on fl is plotted in fig. 1 for lattices of various sizes, and some 
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Fig. 1. Correlation length ( versus fl in the vortex phase. Errors correspond roughly to the size of 
the symbols. 

results of ref. [6] are shown for comparison, too. At fl = 0.98 (4 --- 26) there are two 
data points corresponding to lattice sizes L = 128 and 256. Although close to each 

other, the two values show a small finite-size dependence somewhat above the level 
of our errors. Since we are interested in the infinite-volume limit, we clearly use the 
larger lattice here and keep L / 4  safely larger than about 6 for the other points. All 
quoted correlation lengths are derived from the zero (spatial) momentum timeslice 
correlation function. It is fitted by a hyperbolic cosine (appropriate for the periodic 

1 lattice) over a selfconsistently chosen range from 4 to the maximal distance 5L. In 
each case we convinced ourselves that a fit starting from 24 gives the same result 
within statistical errors. The latter are estimated by subdividing our runs with 
typically several 105 measurements of direct correlations into 2, 4 . . . .  ,128 subsam- 
ples. For each of them the fits and other nontrivial combinations of primary 
observables are made, and their fluctuations are observed and give the errors. In 
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TABLE 1 
Numerical results of simulations in the vortex phase 

765 

trun 
fl L 1000 rx "inn X ~ Cv 

0.82 56 30.2 36.33(14) 4.315(27) 
0.86 128 1 5 . 2  0.139(2) 2 .4 (2 )  5 9 . 8 5 ( 2 6 )  5 . 8 4 3 ( 3 8 )  1.265(22) 
0.88 128 2 5 . 5  0.135(I) 2 .4 (2)  8 0 . 5 8 ( 3 1 )  7 , 0 1 1 ( 4 0 )  1.326(21) 
0.90 128 2 1 . 3  0.139(2) 2 .7(2)  1 1 1 . 4 3 ( 4 4 )  8 . 4 7 6 ( 6 6 )  1.344(22) 
0.91 128 2 5 . 6  0.140(2) 2 .7(2)  134 .17 (45 )  9 . 3 6 0 ( 5 3 )  1.392(20) 
0.92 128 2 4 . 7  0.147(2) 2 .9(2)  162 .68(61)  1 0 . 6 9 ( 8 )  1.432(20) 
0.93 128 5 0 . 9  0.152(3) 2 .8(2)  201 .29(53)  1 2 . 0 3 ( 6 )  1.413(15) 
0.94 128 3 1 . 7  0.165(2) 3 .0(3)  249 .9 (0 .8 )  1 3 . 5 0 ( 9 )  1.445(19) 
0.95 i28 40.7 0.182(2) 3.0(2)  319 .6 (1 .1 )  1 5 . 6 1 ( 1 0 )  1.436(19) 
0.96 128 26 .1  0.211(3) 3.3(2) 414 .1 (1 .7 )  1 8 . 0 8 ( 1 3 )  1.447(22) 
0.97 128 2 8 . 2  0.268(4) 3.6(2)  554 .9 (2 .9 )  2 1 . 6 6 ( 1 3 )  1.445(21) 
0.98 128 3 7 . 9  0.358(5) 3.7(1)  744 .1 (3 .0 )  2 5 . 8 4 ( 1 5 )  1.464(20) 
0.98 256 2 8 . 9  0.148(1) 3 .8(2)  764 .6 (3 .0 )  2 6 . 3 7 ( 1 9 )  1.491(22) 
0.99 256 2 7 . 6  0.172(2) 3.8(2) 1092(4) 31.78(21) 1.404(19) 
1.00 256 60.9 0.223(2) 4.0(2) 1604(4) 40.19(18) 1.444(16) 
1.02 512 1 4 . 0  0.171(3) 4.1(5) 4170(19) 69.27(59) 1.311(27) 

Runt ime  /'run and integrated autocorrelation times 'r x of the susceptibility and 7"nn of the nearest- 
neighbor correlation refer to the unit "flip per spin". Also shown are the correlation length ~ and, for 
completeness,  the specific heat C,,. Errors are lo  in all tables. 

table 1 all results for X, ~ and the specific heat C v are collected. We also quote 
values for the integrated autocorrelation times ~-x for X and ~'nn for the nearest 
neighbor correlation. For any quantity with a connected autocorrelation function 
between successive measurements F(t) ,  ,r is defined as 

] t = W  

2F(O), =E w F(t). (3.1) 

Here W is a suitably defined window, to which the infinite summation has to be 
truncated as discussed in ref. [8]. It was selfconsistently taken to be larger than 67. 
Errors on ~- were also computed following ref. [8], appendix C. The practical 
importance of ~- derives from the fact that 2~- is the factor by which naive rms errors 
have to be scaled up due to autocorrelations. At each /3 our measurements are 
separated by a fixed number of update steps chosen such that an average of about 
f L  2 spins are flipped with f around 0.1. These measurements are correlated on a 
timescale ~ between 1 and about 3. In table 1 ~ -= f~  is quoted which thus refers to 
units comparable to the sweeps of a local Metropolis algorithm as far as CPU effort 
is concerned. Another check on integrated autocorrelations is provided by compar- 
ing errors of  simple observables estimated by the binning procedure. To actually 
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determine T in this way is, however, unnecessarily inaccurate as the window is 
effectively given by the subsample block size [8]. We first also planned a column in 
table 1 showing the average size (LCI) of clusters in the update steps. It turned out, 
however, that it is well represented within statistical errors by the formula (ICI) ---- 
0.8Ix for all fl in table 1 and also for values that will appear in the spinwave phase. 
The constancy of the coeff ic ient -  it is exactly equal to 1 in the Ising model 
[1] - demonstrates nicely that our clusters are directly coupled to the physics of the 
model. A similar behavior was observed in simulations of the 0(3) model. 

The observed values of ~x indicate that it is a universal function of ~/L .  This is 
apparent if one compares for instance data points at /3 -- 0.95, L = 128, /3 = 0.99, 
L = 256, and /3 = 1.02, L = 512, which have very similar ~'x values. In other words, 
critical slowing down is completely absent for physical simulations where one makes 
L and ( grow in the same proportion. Moreover rx---0"14 for ( /L--_O is a 
pleasantly small value showing that even for small correlation lengths the new 
algorithm is very efficient. The autocorrelation time %n of the correlation at the 
shortest nontrivial distance possible shows a gradual increase with ~ comparable to 
the SW algorithm. Its growth is intuitively understandable as the scalar product of 
nearest-neighbor spins are only changed if they become part of a cluster surface. As 
the typical clusters grow large this happens less often. In principle local sweeps 
could be tried to speed up the short-wavelength modes, but we found no necessity to 
d o  so. 

We further analyze our data by investigating the relation between X and ~ as/3 
approaches /3c from below. To check if eq. (1.4) is obeyed we plot in fig. 2 
Iog(x/~ 7/4) versus log(~). Had ~ the KT value ¼, then we should find a horizontal 

2.7- 

2.6- 

x__ 

2.5- 

I 128 

io !; 2'0 

256 512 

ao 70 

Fig. 2. Connection between magnetic susceptibility X and correlation length ~. Errors in this plot (only) 
are 2a. They have been neglected for ~ and determined by the binning procedure directly for the 
combination X/~ 7/4. The numbers on the top give the lattice size. Two different least-square fits deleting 

smaller ~ are shown. 
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line. A straight line of nonzero slope -AT/corresponds to eq. (1.4) with ~/= ¼ + A T. 
One sees a clear tendency for a negative slope in fig. 2. We performed two different 
straight-line fits using only points with ~ > 5 and ~ > 10: 

a = 1.05(1), }/= 0.287(3), X2LS = 26.7 (13 dgf), ~> 5 

a = 1 . 0 3 ( 1 ) ,  ~=0 .280(4 ) ,  X2s=20 .0  ( 9 d g f ) ,  ~ > 1 0  

in l o g ( x / ~  7/4) = a -  A T l l o g ( ~ ) ,  (3.2) 

where X[s is the sum of the squared residues. Even with improved simulation 
possibilities it remains of course undecided in a numerical calculation whether 
closer to the transition point at - say - ~ -- l0 s the KT value for ~ will be assumed. 
In ref. [9] it has in fact been argued that for KT like systems such an extreme 
proximity to the transition point may be required. Note that eq. (3.2) shows the 
tendency toward a lower ~ as more data at smaller ~ are ignored. 

We finally fit X versus/3 to the form (1.3). In the actual fit we use (1.3) for the 
logarithm 

l °g (x )  = cx + bx(1 - f l / [~c ) -~  (3.3) 

This has the advantage that in the least-square minimization c x and b x occur as 
linear parameters. They are easily optimized for any fixed values of tic and v, and 
we only have to use nonlinear optimization in two or, if v is frozen, in one 
parameter. Although trivial we found that this strategy is far superior to the use of 
general nonlinear fit routines for three and four parameters. In fig. 3 we see the 
least-square X~s as a function of v with the three other parameters of eq. (3.3) 
always at their optimal values. Again we fit in the modes with only ~ > 5 and with 

> 10. The crosses result from analogous fits with the asymptotic KT form written 
in the temperature rather than /3, i.e. fitting 

log(x)  = Cx + bx ( f l ,5/fl  - 1) ~. (3.4) 

We find reasonable minimal X2s values for all fits and for ( > 10 also consistency 
between the two asymptotically equivalent parametrizations. This is only marginally 
the case for ~ > 5, which thus indicates the presence of deviations from KT scaling 
due to finite lattice spacing effects. But even in this case the difference between eqs. 
(3.3) and (3.4) is much less than what is reported in ref. [6]. A plausible estimate for 

2 __  v on the basis of fig. 3 is v = 0 . 4 5 ( + 0 . 2 5 / - 0 . 1 5 )  with errors given by AXES--1. 
Table 2 displays results from a number of fits for eq. (3.3) with both frozen v and 
with four free parameters. Errors on these fit parameters are derived by modelling 
the fluctuations of the input data by a normal distribution with the observed 
variance and repeating the fit many times. An important observation from table 2 is 
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Fig. 3. The sum of least squares in fitting X(fl) to the KT form (3.3) for various values of v (dots 
connected by lines to guide the eye). Two different subsets of data from table 2 are used as indicated. The 

crosses were obtained by fitting with (3.4) and map out similar curves shifted to slightly higher v. 

that, when v is fitted, c x and b× remain almost undetermined,  and also Be is much 
less well determined.  This proves almost-flatness of the 2 X Ls landscape in some 
directions corresponding to joint  deformations of  our fit parameters.  Would  one 

vary  them one at a time, clearly a much smaller but  totally unrealistic error-estimate 
would  result. Table  2 entries with v = 0 correspond to a conventional  critical point  

l o g ( x )  = c o n s t .  - ~ l o g ( f i e  - f l  ) .  (3.5) 

TABLE 2 
Results from fits of X(fl) to the KT  form (3.3) 

~min X2S 1,' ~c b x Cx 

> 5 11.6 0.35(8) 1.11(4) 6(2) 
> 5 17.1 0.5 1.128(5) 3.57(4) 
> 5 76.0 0 1.074(8) 
> 10 9.76 0.45(25) 1.12(7) 4(10) 
> 10 9.83 0.5 1.13(1) 3.5(1) 
> 10 10.8 0.28 1.10(1) 8.0(3) 
> 10 10.8 0.67 1.14(2) 2.2(1) 
> 10 21.7 0 1.08(1) 

~=  3.1 

.~ = 3.2 

6(2) 
-3.24(5) 

-4(10)  
3.1(2) 
8.2(3) 

- 1 . 5 ( 2 )  

Where v is quoted with errors four parameters (incl. v) were fitted, otherwise v was frozen to the 
value given. 
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As in ref. [2] we find that it leads to a lower estimate for tic- Since XZs is higher by 
at least 12 units we think that this fit is excluded. Also the rather large values for 
seem to show that the data demand a strong singularity. 

4. Numerical results in the spinwave phase 

We now come to x - y  model results above and deeply in the transition region 
where the finite size of the periodic lattice is the smallest or the only mass scale. 
Data from these runs are compiled in table 3. With sizes L = 32, 64,128 for each/3 
we can check relation (1.6) by plotting log(x)  against log(L) as done in fig. 4. We 
find good linearity and determine ~/by fits (see table 4). The slight deviation from 
linearity at ]3 = 1.07 is taken into account by a larger error. Note, that ]3 = 1.07 is 
still expected to produce the vortex phase in infinite volume. Autocorrelation times 
are listed in table 3 in the same units as in sect. 3. We see a slow increase of ~-× with 
]3 but no strong L-dependence at fixed /3. As mentioned before, the average size of 
the clusters is given by ( ] C I ) -  0.81X in all runs including the asymmetric ones 
(T ~ L, see below). 

TABLE 3a 
Data for larger fl-values Q2 is the thermal average of the global U(1) charge squared 

/run 
fl L 1000 ~x ,rn n x / L  2 Q2 C,, 

1.07 32 83.1 1.56(3) 3.4(2) 0 .3958(4 )  0 ,6070(12)  1.072(9) 
1.07 64 33.7 1.32(5) 3.6(3) 0 .3245(5)  0 .5776(17)  1.067(14) 
1.07 128 20.3 1.12(4) 3.8(5) 0 .2608(5)  0 .5433(24)  1.105(20) 
1.12 32 222.0 1.60(2) 3.5(1) 0 .4420(2 )  0.7096(5) 
1.12 64 79.6 1.40(3) 3.6(1) 0 .3754(3)  0.6997(9) 
1.12 128 51.6 1.26(3) 3.8(2) 0 .3190(3)  0.6900(9) 
1.30 32 112.0 2.12(4) 5.2(2) 0 .5383(3)  0 . 9 6 2 2 ( 4 )  0.757(5) 
1.30 64 49.8 1.86(5) 4.6(2) 0 .4794(4)  0 . 9 6 1 3 ( 4 )  0.757(9) 
1.30 128 22.1 1.95(9) 5.1(3) 0 .4275(5)  0 . 9 6 0 2 ( 6 )  0.779(14) 
1.50 32 126.0 2.47(5) 6.1(2) 0 ,6053(3 )  1 . 1892 (3 )  0.660(6) 
1.50 64 57.3 2.50(8) 6.6(3) 0 ,5517(4 )  1 . 1883 (3 )  0.665(9) 
1.50 128 25.9 2.44(12) 6.9(8) 0 ,5017(5)  1 . 1885 (4 )  0.670(13) 

TABLE 3b 
Some results on asymmetric L × T lattices 

,8 L T "r x x / L T Q2 

1.12 32 256 0 .52(2)  0 . 1 7 0 6 ( 1 0 )  0.08782(14) 44.1(5) 
1.50 32 256 1 . 3 ( 2 )  0.3526(15) 0.14860(4) 76.5(8) 
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Fig. 4. l o g ( x / L  2) versus log(L) for several fl-values. 

At large fl we expect the x - y  model to be solvable by perturbation theory. In 
contrast to the nonabelian n > 2 o-models there are no perturbative ultraviolet 
divergences in this case. This leads to a vanishing fl-function, and the continuum 
limit should be reached at fixed finite/3. Of course, still only suitable long-range 
quantities (as compared to the lattice spacing) will become universal. This in 
particular necessitates taking L ~ ~ to truly get rid of lattice artifacts. In this limit 
a one parameter family of continuum models arises that may for instance be 
labelled by 7/. We use (2~r~) 1 = fiR as a renormalized inverse coupling. For/3 ~ ~c 
we know from spinwave analysis [4] that tiP. =/311 + O(1//3)] holds. We may also 
use Wilson type renormalization group arguments in a direct way. A Villain action 
written for the spin angles qPx, 

.j0 ) Z =  dq~xeX p 5 V~](qOx+.--qOxlmod2~) 2 , (4.1) 
x~t 

TABLE 4 
Values for 77 from fits to data points shown in fig. 4 and corresponding values f iR  = (2~*/) 1 

The last columns are zero and one-loop mean field calculations for fiR 

1.07 0.304(4) 0.524 0.769 0.723 
1.12 0.2325(7) 0.685 0.823 0.782 
1.30 0.1665(9) 0.956 1.013 0.983 
1.50 0.1350(7) 1.179 1.221 1.197 
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is expected to lie in the same universality class as eq. (1.1) for n = 2 since it keeps all 
symmetries and drops only irrelevant terms. Then there should be a choice of the 
only coupling f lv(f l )  producing the same long-range physics. For this action the 
lowest-order spinwave calculation is exact up to terms exponentially small in flv 
from the compactness of the angles. We conjecture that f i r  and flv agree to all 
orders in 1~ft.  We may then evaluate all physical quantities with the Villain action 
and the renormalized coupling. This is nothing but a way to set up a renormalized 
perturbation expansion for continuum physics. 

To assess the validity of the above picture, we looked at two types of physical 
quantities apart from ~/. The first is the finite volume mass gap induced by the 
toroidal spatial geometry, that - as emphasized by Lfischer [10] - can be used as a 
convenient probe of universal physics. We now consider an asymmetric L × T 
lattice with T >> L. Eq. (4.1) gives us an effective action for the spatially constant 

modes 93t, t = 0 . . . . .  T -  1, 

- Seer [93t] = ½ f l v t Z  (93t+1 - %lmod2~) 2" (4.2) 
t 

With - r r  ~< 93t ~< 7r the integral over these modes is recognized as the euclidean 
Feynman path integral for a particle on a circle with hamiltonian 

nef f = - -  (2f lvL) - t0 2/0 932 . (4.3) 

Its gap (2f lvL)  1 equals the inverse correlation length as it is defined in this paper. 
This coincides with the general small-volume results [10] for n = 2. Note that in the 
abelian model any finite volume is physically small in some sense. Since no coupling 
between zero momentum and other modes occurs, eq. (4.3) may be used for all L. 
Comparison between flv -= f i r  from table 4 and mass gap results ~ at L = 32 in 
table 3 gives evidence for agreement within errors. 

A second type of physical observable makes use of the global U(1)=  SO(2) 
symmetry of the model. We may diagonalize the associated charge Q simultaneously 
with the transfer matrix e x p ( - H ) .  It was shown in ref. [11] how thermal averages of 
powers of Q are related to simple euclidean correlation functions. The generating 
function is 

Tr e - rH + i~,Q Z,  e (4.4) 
( (e i rQ))  = Tre_ rH  = Z o ,  

where Zr 
time 

is the partition function with twisted boundary conditions in euclidean 

°x+ r~ = eYl °x (4.5) 
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( 0 In) of the SO(2). Comparing coefficients of using the real matrix generator I = -1 

y2 we find the charge square related to a combination of the temporal nearest- 
neighbor correlation and a current susceptibility 

(4.6) 

We measured Q2 in all runs. Whenever (<< L, T one finds Q2=  0 within errors 
which simply shows that the vacuum is neutral. In the spinwave phase Q2 becomes 
measurable and independent of L = T at larger fi (see table 3). It assumes its 
continuum limit as T, L --* oo which can only depend on fl and T/L for dimen- 
sional reasons. Our data thus corroborate the existence of the continuum limit at 
fixed fi in the spinwave phase. 

For a theoretical calculation of Q2 we employ again the Villain action (4.1). A 
simple perturbative calculation gives 

L ) Q2 L 
1 2 

Z v = e x p  - T f l v ~ ,  , = f i V T -  (4.7),(4.8) 

Again data in tables 3 and 4 (flv -- fiR) agree reasonably well with this formula. 
Finally, we discuss a possibility to get some control over the finite relation 

between bare coupling fl and the renormalized fiR- It turns out that perturbation 
theory in 1/fl exhibits bad convergence which is not surprising in the range of 
relevant ft. We found the expansion around the mean field [12] more successful. 
When re-expanded in 1/fl the perturbative information is contained in it too. The 
same experience has been discussed in ref. [11]. To set up this expansion we 
compute Zv as the saddle point (SP) approximation of 

c o  2 i o o  . - 2 

Zv = r-Ix f_  co d ox g i c o ( 2 w , ) 6 2 %  

×exp{ [fl(o~.ox+ i E  +°~'e'V/r°.+i) +W([aXI)- .ox %]} 
x 

(4.9) 

with the Fourier transform of the original measure on the circle given by a modified 
Bessel function 

W(Lal) = log[Io(laL)]. (4.10) 

Variables have been changed in eq. (4.9) such that all fields are periodic now. We 
shift the a-contours to pass through the constant real saddle point (%m, %m)  
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where m is some direction on $1, and (o0, %)  obey the SP equations 
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% = s0 = 2/ (1 + c o s ( v / r ) ) % .  (4.11) 

The SP approximation yields then to order .f2 

Z v c~ exp( - 1Bo~yZL/T), Q2 = floZL/T, (4.12), (4.13) 

where o 0 is now given by solving (4.11) with , /=  0. Using eq. (4.8) we see 19 R to be 
approximately given by 

flMF0 = flO2, (4.14) 

which is also evaluated in table 4 and represents a much better approximation than 
the leading perturbative result fir----fl" We also analysed the gaussian fluctuations 
around the SP in eq. (4.9). The calculation is a little lengthy but straightforward. 
The resulting determinant has an infrared finite y-dependence whose infinite lattice 
limit leads to the corrected /~F1. When re-expanded in 1//~ one finds that the first 
perturbative correction is fully contained in fl~vo, and the one-loop term starts only 
in the next order. We strongly recommend also for other models to use the mean 
field as a resummation technique for lattice perturbation theory if one wants to look 
for asymptotic scaling in the bare parameters. 

5. Conclusions 

The most important result of the present study of the x-y model is the confirma- 
tion that the new collective Monte Carlo technique completely eliminates the 
problem of critical slowing down. This is particularly welcome for two-dimensional 
models where already on presently existing computers slowing down had become 
the main obstacle to progress in physically interesting simulations. It is remarkable 
that the complexity of operations needed for updating is entirely comparable to that 
of standard local algorithms. We hope to develop similar schemes for gauge 
theories, where the problem will become similar with future supercomputers. 

The physics of the x-y model could be studied in new regimes closer to the 
transition region. The Kosterlitz-Thouless behavior is confirmed and a conven- 
tional critical point excluded. We approach the critical temperature to within 10% 
corresponding to correlation lengths up to 69 in the vortex phase. In this range the 
critical exponent ~, defined from the scaling relation between susceptibility and 
correlation length, exceeds the KT value ¼. There are theoretical arguments [9] that 
suggest that this may still be due to deviations from scaling, i.e. to a too small 
correlation length. With the new algorithm one could clearly simulate still bigger 
systems with the main limitation being computer memory. Such a calculation would 
be considerably further simplified by the use of reduced variance estimators that we 
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discovered  in the  mean t ime  in con junc t ion  with the cluster  upda t e  scheme. This will 

be  r e p o r t e d  on in the near  future  together  with results in the 0 (3)  mode l  [13]. In  the 

sp inwave  phase  the x - y  model  was found  to behave  as expected on pe r tu rba t ive  

g rounds .  

A n  exchange  with  Alan  Sokal  and  Erhard  Seiler improved  this work  cons iderably .  

A l so  he lpfu l  were conversa t ions  with A. Burkit t ,  D. Heerman ,  I. Montvay ,  F. 

N i e d e r m a y e r ,  and  F. Wagner .  F ina l ly  the au thor  would  like to thank  the D E S Y  

theory  g roup  for  their  hospi ta l i ty .  The  s imula t ions  were carr ied  out  on the Cray  

X - M P / 1 8  and  V A X  8550 at Kie l  Univers i ty .  
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